Defining parameters
Level: | \( N \) | \(=\) | \( 855 = 3^{2} \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 855.k (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 11 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(855, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 256 | 64 | 192 |
Cusp forms | 224 | 64 | 160 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(855, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(855, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(855, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 2}\)