Properties

Label 855.2.bs.c
Level $855$
Weight $2$
Character orbit 855.bs
Analytic conductor $6.827$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.bs (of order \(9\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Defining polynomial: \( x^{18} - 3 x^{17} + 15 x^{16} - 14 x^{15} + 72 x^{14} - 51 x^{13} + 231 x^{12} - 93 x^{11} + 438 x^{10} - 156 x^{9} + 582 x^{8} - 138 x^{7} + 437 x^{6} - 132 x^{5} + 198 x^{4} - 16 x^{3} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{17}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{15} + \beta_{4}) q^{2} + (\beta_{14} - \beta_{12} + \beta_{10} + \beta_{9} + \beta_{7} + \beta_{5}) q^{4} + \beta_{6} q^{5} + (\beta_{13} - \beta_{11} + \beta_{10} + \beta_{6} - \beta_{4} - \beta_1) q^{7} + (\beta_{17} - \beta_{12} + \beta_{11} + \beta_{10} + \beta_{9} - 2 \beta_{8} - \beta_{7} - 2 \beta_{5} + \beta_1) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{15} + \beta_{4}) q^{2} + (\beta_{14} - \beta_{12} + \beta_{10} + \beta_{9} + \beta_{7} + \beta_{5}) q^{4} + \beta_{6} q^{5} + (\beta_{13} - \beta_{11} + \beta_{10} + \beta_{6} - \beta_{4} - \beta_1) q^{7} + (\beta_{17} - \beta_{12} + \beta_{11} + \beta_{10} + \beta_{9} - 2 \beta_{8} - \beta_{7} - 2 \beta_{5} + \beta_1) q^{8} + (\beta_{16} - \beta_{3}) q^{10} + (\beta_{17} + \beta_{16} + \beta_{15} + 2 \beta_{14} - \beta_{13} - 2 \beta_{12} - \beta_{11} + \beta_{10} - \beta_{7} + \cdots + 2 \beta_1) q^{11}+ \cdots + (3 \beta_{17} + 2 \beta_{16} - \beta_{15} + \beta_{14} - 2 \beta_{13} - 4 \beta_{12} + 2 \beta_{11} + \cdots + 3 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 3 q^{2} - 3 q^{4} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 18 q + 3 q^{2} - 3 q^{4} + 6 q^{8} - 3 q^{10} - 3 q^{13} + 12 q^{14} - 3 q^{16} - 24 q^{17} - 12 q^{20} + 9 q^{22} + 9 q^{23} - 3 q^{26} - 12 q^{28} - 15 q^{29} - 18 q^{31} - 15 q^{32} - 12 q^{34} + 36 q^{37} + 33 q^{38} - 6 q^{40} + 30 q^{41} - 36 q^{43} - 42 q^{44} + 9 q^{46} - 21 q^{47} + 9 q^{49} + 6 q^{50} - 39 q^{52} + 12 q^{53} + 3 q^{55} + 12 q^{58} - 18 q^{59} - 30 q^{61} + 24 q^{62} + 36 q^{64} + 9 q^{65} - 51 q^{68} + 33 q^{70} + 12 q^{71} + 24 q^{73} + 15 q^{74} - 33 q^{76} + 60 q^{77} - 51 q^{79} - 15 q^{80} - 15 q^{82} + 24 q^{85} - 63 q^{86} - 27 q^{88} + 54 q^{89} + 30 q^{91} + 42 q^{92} + 30 q^{94} - 15 q^{95} + 27 q^{97} + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{18} - 3 x^{17} + 15 x^{16} - 14 x^{15} + 72 x^{14} - 51 x^{13} + 231 x^{12} - 93 x^{11} + 438 x^{10} - 156 x^{9} + 582 x^{8} - 138 x^{7} + 437 x^{6} - 132 x^{5} + 198 x^{4} - 16 x^{3} + \cdots + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 2362215094 \nu^{17} - 176902925324 \nu^{16} + 523927730528 \nu^{15} - 2732196133634 \nu^{14} + 2458535955743 \nu^{13} + \cdots - 2601214274036 ) / 2269131592089 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 17485732004 \nu^{17} - 88297854546 \nu^{16} + 51093388053 \nu^{15} - 1446829381050 \nu^{14} - 1289873408104 \nu^{13} + \cdots + 1249494973861 ) / 6807394776267 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 31170269891 \nu^{17} + 67213359096 \nu^{16} + 77458832787 \nu^{15} + 1646328025947 \nu^{14} + 1576807416328 \nu^{13} + \cdots + 2036474776337 ) / 6807394776267 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 150661038729 \nu^{17} + 22583410048 \nu^{16} - 1207986331145 \nu^{15} - 3440777225226 \nu^{14} - 9048902407408 \nu^{13} + \cdots + 9924998536452 ) / 6807394776267 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 271722740134 \nu^{17} - 484705722592 \nu^{16} + 3183507161538 \nu^{15} + 840321900394 \nu^{14} + 16364383205847 \nu^{13} + \cdots - 2451247768033 ) / 6807394776267 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 14393251623 \nu^{17} - 18779546977 \nu^{16} + 163974948404 \nu^{15} + 84439865154 \nu^{14} + 1054848843451 \nu^{13} + \cdots - 139873473393 ) / 358283935593 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 99295558576 \nu^{17} + 144550753822 \nu^{16} - 988488698886 \nu^{15} - 1021310336031 \nu^{14} - 4366731414611 \nu^{13} + \cdots - 2743148781339 ) / 2269131592089 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 330462497810 \nu^{17} + 892333940472 \nu^{16} - 4644440262270 \nu^{15} + 3199654083801 \nu^{14} - 22408105306426 \nu^{13} + \cdots + 271722740134 ) / 6807394776267 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 335323421585 \nu^{17} - 1203461029533 \nu^{16} + 5639724390405 \nu^{15} - 7682766129021 \nu^{14} + 26906316005605 \nu^{13} + \cdots - 759862203949 ) / 6807394776267 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 169369527342 \nu^{17} - 512091105045 \nu^{16} + 2467349014493 \nu^{15} - 2179007028305 \nu^{14} + 10956780516730 \nu^{13} + \cdots + 671726483761 ) / 2269131592089 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 183989570606 \nu^{17} + 559360956938 \nu^{16} - 2765267144950 \nu^{15} + 2628615442511 \nu^{14} - 13085191107646 \nu^{13} + \cdots + 2362215094 ) / 2269131592089 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 759862203949 \nu^{17} + 1944263190262 \nu^{16} - 10194472029702 \nu^{15} + 4998346464881 \nu^{14} - 47027312555307 \nu^{13} + \cdots + 422383778863 ) / 6807394776267 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 1201752794172 \nu^{17} + 3351021374386 \nu^{16} - 17453288335442 \nu^{15} + 13589938568817 \nu^{14} + \cdots - 12113076116529 ) / 6807394776267 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 1764752036203 \nu^{17} + 5655888876310 \nu^{16} - 27296401124421 \nu^{15} + 29428427601899 \nu^{14} + \cdots + 1723605145714 ) / 6807394776267 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 2009357177810 \nu^{17} + 5675262379841 \nu^{16} - 29025194492163 \nu^{15} + 22542369486988 \nu^{14} + \cdots - 3751600650469 ) / 6807394776267 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 2169011193168 \nu^{17} + 7176985755886 \nu^{16} - 34139016228998 \nu^{15} + 39022236800535 \nu^{14} + \cdots + 2187209095662 ) / 6807394776267 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{12} - \beta_{10} + \beta_{8} + \beta_{7} + \beta_{5} - \beta_{4} + \beta_{3} - \beta_{2} + \beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{14} - 5\beta_{12} - 3\beta_{10} + 3\beta_{9} + 3\beta_{7} + 2\beta_{5} - 2\beta_{4} + \beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 3 \beta_{17} + 3 \beta_{14} - 2 \beta_{11} - 3 \beta_{10} + 9 \beta_{9} - 5 \beta_{8} + 3 \beta_{7} + 3 \beta_{5} + 3 \beta_{4} - 9 \beta_{3} + 2 \beta_{2} - 11 \beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 9 \beta_{17} + \beta_{15} + 3 \beta_{14} - \beta_{13} + 39 \beta_{12} - 12 \beta_{11} + 25 \beta_{10} - 13 \beta_{9} - 11 \beta_{8} - 23 \beta_{7} - 8 \beta_{5} + 38 \beta_{4} - 38 \beta_{3} + \beta_{2} - 39 \beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 13 \beta_{17} + 2 \beta_{16} - \beta_{15} - 25 \beta_{14} - 3 \beta_{13} + 114 \beta_{12} - 13 \beta_{11} + 128 \beta_{10} - 128 \beta_{9} - 115 \beta_{7} + 3 \beta_{6} - 64 \beta_{5} + 87 \beta_{4} - 41 \beta_{3} + 7 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 128 \beta_{17} + 13 \beta_{16} - 13 \beta_{15} - 128 \beta_{14} - 3 \beta_{13} + 87 \beta_{11} + 142 \beta_{10} - 269 \beta_{9} + 114 \beta_{8} - 128 \beta_{7} + 10 \beta_{6} - 128 \beta_{5} - 142 \beta_{4} + 269 \beta_{3} - 12 \beta_{2} + 375 \beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 269 \beta_{17} + 14 \beta_{16} - 27 \beta_{15} - 142 \beta_{14} + 27 \beta_{13} - 1181 \beta_{12} + 411 \beta_{11} - 883 \beta_{10} + 455 \beta_{9} + 375 \beta_{8} + 786 \beta_{7} - 14 \beta_{6} + 233 \beta_{5} - 1338 \beta_{4} + \cdots - 46 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 455 \beta_{17} - 97 \beta_{16} + 44 \beta_{15} + 883 \beta_{14} + 141 \beta_{13} - 3823 \beta_{12} + 455 \beta_{11} - 4309 \beta_{10} + 4309 \beta_{9} + 3857 \beta_{7} - 141 \beta_{6} + 2064 \beta_{5} - 2815 \beta_{4} + \cdots - 126 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 4309 \beta_{17} - 452 \beta_{16} + 452 \beta_{15} + 4309 \beta_{14} + 156 \beta_{13} - 2815 \beta_{11} - 4808 \beta_{10} + 9112 \beta_{9} - 3823 \beta_{8} + 4309 \beta_{7} - 296 \beta_{6} + 4309 \beta_{5} + \cdots - 12254 \beta_1 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 9112 \beta_{17} - 499 \beta_{16} + 980 \beta_{15} + 4808 \beta_{14} - 980 \beta_{13} + 39530 \beta_{12} - 13920 \beta_{11} + 29285 \beta_{10} - 15570 \beta_{9} - 12254 \beta_{8} - 26174 \beta_{7} + \cdots + 1307 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 15570 \beta_{17} + 3111 \beta_{16} - 1650 \beta_{15} - 29285 \beta_{14} - 4761 \beta_{13} + 127231 \beta_{12} - 15570 \beta_{11} + 144639 \beta_{10} - 144639 \beta_{9} - 129240 \beta_{7} + 4761 \beta_{6} + \cdots + 4244 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 144639 \beta_{17} + 15399 \beta_{16} - 15399 \beta_{15} - 144639 \beta_{14} - 5307 \beta_{13} + 94477 \beta_{11} + 161859 \beta_{10} - 304266 \beta_{9} + 127231 \beta_{8} - 144639 \beta_{7} + \cdots + 410121 \beta_1 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 304266 \beta_{17} + 17220 \beta_{16} - 32396 \beta_{15} - 161859 \beta_{14} + 32396 \beta_{13} - 1321304 \beta_{12} + 466125 \beta_{11} - 980815 \beta_{10} + 521594 \beta_{9} + 410121 \beta_{8} + \cdots - 43774 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 521594 \beta_{17} - 104569 \beta_{16} + 55469 \beta_{15} + 980815 \beta_{14} + 160038 \beta_{13} - 4258423 \beta_{12} + 521594 \beta_{11} - 4841863 \beta_{10} + 4841863 \beta_{9} + \cdots - 140792 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 4841863 \beta_{17} - 515741 \beta_{16} + 515741 \beta_{15} + 4841863 \beta_{14} + 179079 \beta_{13} - 3160375 \beta_{11} - 5418926 \beta_{10} + 10185670 \beta_{9} + \cdots - 13722757 \beta_1 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( - 10185670 \beta_{17} - 577063 \beta_{16} + 1085384 \beta_{15} + 5418926 \beta_{14} - 1085384 \beta_{13} + 44225341 \beta_{12} - 15604596 \beta_{11} + 32824390 \beta_{10} + \cdots + 1462096 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(\beta_{13} - \beta_{16}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
226.1
−0.566185 0.980662i
0.394508 + 0.683308i
1.61137 + 2.79097i
0.653994 + 1.13275i
−0.128481 0.222535i
−0.791558 1.37102i
−0.566185 + 0.980662i
0.394508 0.683308i
1.61137 2.79097i
−0.644984 1.11715i
0.154946 + 0.268374i
0.816390 + 1.41403i
0.653994 1.13275i
−0.128481 + 0.222535i
−0.791558 + 1.37102i
−0.644984 + 1.11715i
0.154946 0.268374i
0.816390 1.41403i
−0.370282 + 2.09998i 0 −2.39340 0.871127i 0.939693 0.342020i 0 −0.742812 1.28659i 0.583208 1.01015i 0 0.370282 + 2.09998i
226.2 −0.0366369 + 0.207778i 0 1.83756 + 0.668816i 0.939693 0.342020i 0 0.843614 + 1.46118i −0.417271 + 0.722735i 0 0.0366369 + 0.207778i
226.3 0.385975 2.18897i 0 −2.76323 1.00573i 0.939693 0.342020i 0 1.01254 + 1.75377i −1.04532 + 1.81055i 0 −0.385975 2.18897i
271.1 −0.289414 + 0.105338i 0 −1.45942 + 1.22460i −0.766044 0.642788i 0 −0.0445979 0.0772459i 0.601369 1.04160i 0 0.289414 + 0.105338i
271.2 1.18116 0.429906i 0 −0.321776 + 0.270002i −0.766044 0.642788i 0 −1.86196 3.22501i −1.52095 + 2.63437i 0 −1.18116 0.429906i
271.3 2.42733 0.883478i 0 3.57933 3.00342i −0.766044 0.642788i 0 0.200820 + 0.347830i 3.45167 5.97847i 0 −2.42733 0.883478i
541.1 −0.370282 2.09998i 0 −2.39340 + 0.871127i 0.939693 + 0.342020i 0 −0.742812 + 1.28659i 0.583208 + 1.01015i 0 0.370282 2.09998i
541.2 −0.0366369 0.207778i 0 1.83756 0.668816i 0.939693 + 0.342020i 0 0.843614 1.46118i −0.417271 0.722735i 0 0.0366369 0.207778i
541.3 0.385975 + 2.18897i 0 −2.76323 + 1.00573i 0.939693 + 0.342020i 0 1.01254 1.75377i −1.04532 1.81055i 0 −0.385975 + 2.18897i
586.1 −1.75422 1.47196i 0 0.563307 + 3.19467i −0.173648 + 0.984808i 0 1.46955 + 2.54534i 1.42431 2.46697i 0 1.75422 1.47196i
586.2 −0.528654 0.443593i 0 −0.264596 1.50060i −0.173648 + 0.984808i 0 1.16732 + 2.02186i −1.21589 + 2.10598i 0 0.528654 0.443593i
586.3 0.484738 + 0.406743i 0 −0.277766 1.57529i −0.173648 + 0.984808i 0 −2.04448 3.54114i 1.13887 1.97259i 0 −0.484738 + 0.406743i
631.1 −0.289414 0.105338i 0 −1.45942 1.22460i −0.766044 + 0.642788i 0 −0.0445979 + 0.0772459i 0.601369 + 1.04160i 0 0.289414 0.105338i
631.2 1.18116 + 0.429906i 0 −0.321776 0.270002i −0.766044 + 0.642788i 0 −1.86196 + 3.22501i −1.52095 2.63437i 0 −1.18116 + 0.429906i
631.3 2.42733 + 0.883478i 0 3.57933 + 3.00342i −0.766044 + 0.642788i 0 0.200820 0.347830i 3.45167 + 5.97847i 0 −2.42733 + 0.883478i
766.1 −1.75422 + 1.47196i 0 0.563307 3.19467i −0.173648 0.984808i 0 1.46955 2.54534i 1.42431 + 2.46697i 0 1.75422 + 1.47196i
766.2 −0.528654 + 0.443593i 0 −0.264596 + 1.50060i −0.173648 0.984808i 0 1.16732 2.02186i −1.21589 2.10598i 0 0.528654 + 0.443593i
766.3 0.484738 0.406743i 0 −0.277766 + 1.57529i −0.173648 0.984808i 0 −2.04448 + 3.54114i 1.13887 + 1.97259i 0 −0.484738 0.406743i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 766.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 855.2.bs.c 18
3.b odd 2 1 95.2.k.a 18
15.d odd 2 1 475.2.l.c 18
15.e even 4 2 475.2.u.b 36
19.e even 9 1 inner 855.2.bs.c 18
57.j even 18 1 1805.2.a.s 9
57.l odd 18 1 95.2.k.a 18
57.l odd 18 1 1805.2.a.v 9
285.bd odd 18 1 475.2.l.c 18
285.bd odd 18 1 9025.2.a.cc 9
285.bf even 18 1 9025.2.a.cf 9
285.bi even 36 2 475.2.u.b 36
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.k.a 18 3.b odd 2 1
95.2.k.a 18 57.l odd 18 1
475.2.l.c 18 15.d odd 2 1
475.2.l.c 18 285.bd odd 18 1
475.2.u.b 36 15.e even 4 2
475.2.u.b 36 285.bi even 36 2
855.2.bs.c 18 1.a even 1 1 trivial
855.2.bs.c 18 19.e even 9 1 inner
1805.2.a.s 9 57.j even 18 1
1805.2.a.v 9 57.l odd 18 1
9025.2.a.cc 9 285.bd odd 18 1
9025.2.a.cf 9 285.bf even 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{18} - 3 T_{2}^{17} + 6 T_{2}^{16} - 19 T_{2}^{15} + 33 T_{2}^{14} - 66 T_{2}^{13} + 268 T_{2}^{12} - 354 T_{2}^{11} + 804 T_{2}^{10} - 1130 T_{2}^{9} + 18 T_{2}^{8} + 591 T_{2}^{7} + 397 T_{2}^{6} - 270 T_{2}^{5} + 84 T_{2}^{3} + 30 T_{2}^{2} + \cdots + 1 \) acting on \(S_{2}^{\mathrm{new}}(855, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{18} - 3 T^{17} + 6 T^{16} - 19 T^{15} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{18} \) Copy content Toggle raw display
$5$ \( (T^{6} - T^{3} + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{18} + 27 T^{16} - 48 T^{15} + \cdots + 361 \) Copy content Toggle raw display
$11$ \( T^{18} + 60 T^{16} + 104 T^{15} + \cdots + 597529 \) Copy content Toggle raw display
$13$ \( T^{18} + 3 T^{17} + 18 T^{16} + \cdots + 2809 \) Copy content Toggle raw display
$17$ \( T^{18} + 24 T^{17} + 300 T^{16} + \cdots + 2859481 \) Copy content Toggle raw display
$19$ \( T^{18} + 45 T^{16} + \cdots + 322687697779 \) Copy content Toggle raw display
$23$ \( T^{18} - 9 T^{17} + \cdots + 2085474889 \) Copy content Toggle raw display
$29$ \( T^{18} + 15 T^{17} + \cdots + 44269422409 \) Copy content Toggle raw display
$31$ \( T^{18} + 18 T^{17} + \cdots + 47085094081 \) Copy content Toggle raw display
$37$ \( (T^{9} - 18 T^{8} - 15 T^{7} + 1624 T^{6} + \cdots - 11125)^{2} \) Copy content Toggle raw display
$41$ \( T^{18} - 30 T^{17} + 387 T^{16} + \cdots + 130321 \) Copy content Toggle raw display
$43$ \( T^{18} + 36 T^{17} + \cdots + 2531341458361 \) Copy content Toggle raw display
$47$ \( T^{18} + 21 T^{17} + \cdots + 2033313439249 \) Copy content Toggle raw display
$53$ \( T^{18} - 12 T^{17} + \cdots + 44884235881 \) Copy content Toggle raw display
$59$ \( T^{18} + 18 T^{17} + \cdots + 538419880441 \) Copy content Toggle raw display
$61$ \( T^{18} + 30 T^{17} + \cdots + 3789756721 \) Copy content Toggle raw display
$67$ \( T^{18} - 63 T^{16} + \cdots + 42166698100921 \) Copy content Toggle raw display
$71$ \( T^{18} - 12 T^{17} + \cdots + 28\!\cdots\!49 \) Copy content Toggle raw display
$73$ \( T^{18} + \cdots + 585504633023209 \) Copy content Toggle raw display
$79$ \( T^{18} + 51 T^{17} + 1185 T^{16} + \cdots + 14691889 \) Copy content Toggle raw display
$83$ \( T^{18} + 507 T^{16} + \cdots + 36\!\cdots\!49 \) Copy content Toggle raw display
$89$ \( T^{18} - 54 T^{17} + \cdots + 916651141561 \) Copy content Toggle raw display
$97$ \( T^{18} - 27 T^{17} + \cdots + 3665788890625 \) Copy content Toggle raw display
show more
show less