Properties

Label 855.2.be.a.64.2
Level $855$
Weight $2$
Character 855.64
Analytic conductor $6.827$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(64,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.be (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 64.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 855.64
Dual form 855.2.be.a.334.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73205 - 1.00000i) q^{2} +(1.00000 - 1.73205i) q^{4} +(-2.23205 + 0.133975i) q^{5} +4.00000i q^{7} +O(q^{10})\) \(q+(1.73205 - 1.00000i) q^{2} +(1.00000 - 1.73205i) q^{4} +(-2.23205 + 0.133975i) q^{5} +4.00000i q^{7} +(-3.73205 + 2.46410i) q^{10} +1.00000 q^{11} +(1.73205 + 1.00000i) q^{13} +(4.00000 + 6.92820i) q^{14} +(2.00000 + 3.46410i) q^{16} +(-1.73205 + 1.00000i) q^{17} +(3.50000 - 2.59808i) q^{19} +(-2.00000 + 4.00000i) q^{20} +(1.73205 - 1.00000i) q^{22} +(5.19615 + 3.00000i) q^{23} +(4.96410 - 0.598076i) q^{25} +4.00000 q^{26} +(6.92820 + 4.00000i) q^{28} +(-4.50000 + 7.79423i) q^{29} -7.00000 q^{31} +(6.92820 + 4.00000i) q^{32} +(-2.00000 + 3.46410i) q^{34} +(-0.535898 - 8.92820i) q^{35} -2.00000i q^{37} +(3.46410 - 8.00000i) q^{38} +(1.00000 + 1.73205i) q^{41} +(1.73205 - 1.00000i) q^{43} +(1.00000 - 1.73205i) q^{44} +12.0000 q^{46} +(-5.19615 - 3.00000i) q^{47} -9.00000 q^{49} +(8.00000 - 6.00000i) q^{50} +(3.46410 - 2.00000i) q^{52} +(3.46410 + 2.00000i) q^{53} +(-2.23205 + 0.133975i) q^{55} +18.0000i q^{58} +(-4.50000 - 7.79423i) q^{59} +(3.50000 - 6.06218i) q^{61} +(-12.1244 + 7.00000i) q^{62} +8.00000 q^{64} +(-4.00000 - 2.00000i) q^{65} +(-8.66025 - 5.00000i) q^{67} +4.00000i q^{68} +(-9.85641 - 14.9282i) q^{70} +(0.500000 + 0.866025i) q^{71} +(8.66025 - 5.00000i) q^{73} +(-2.00000 - 3.46410i) q^{74} +(-1.00000 - 8.66025i) q^{76} +4.00000i q^{77} +(0.500000 + 0.866025i) q^{79} +(-4.92820 - 7.46410i) q^{80} +(3.46410 + 2.00000i) q^{82} +6.00000i q^{83} +(3.73205 - 2.46410i) q^{85} +(2.00000 - 3.46410i) q^{86} +(5.50000 - 9.52628i) q^{89} +(-4.00000 + 6.92820i) q^{91} +(10.3923 - 6.00000i) q^{92} -12.0000 q^{94} +(-7.46410 + 6.26795i) q^{95} +(5.19615 - 3.00000i) q^{97} +(-15.5885 + 9.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{4} - 2 q^{5} - 8 q^{10} + 4 q^{11} + 16 q^{14} + 8 q^{16} + 14 q^{19} - 8 q^{20} + 6 q^{25} + 16 q^{26} - 18 q^{29} - 28 q^{31} - 8 q^{34} - 16 q^{35} + 4 q^{41} + 4 q^{44} + 48 q^{46} - 36 q^{49} + 32 q^{50} - 2 q^{55} - 18 q^{59} + 14 q^{61} + 32 q^{64} - 16 q^{65} + 16 q^{70} + 2 q^{71} - 8 q^{74} - 4 q^{76} + 2 q^{79} + 8 q^{80} + 8 q^{85} + 8 q^{86} + 22 q^{89} - 16 q^{91} - 48 q^{94} - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.00000i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(3\) 0 0
\(4\) 1.00000 1.73205i 0.500000 0.866025i
\(5\) −2.23205 + 0.133975i −0.998203 + 0.0599153i
\(6\) 0 0
\(7\) 4.00000i 1.51186i 0.654654 + 0.755929i \(0.272814\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) −3.73205 + 2.46410i −1.18018 + 0.779217i
\(11\) 1.00000 0.301511 0.150756 0.988571i \(-0.451829\pi\)
0.150756 + 0.988571i \(0.451829\pi\)
\(12\) 0 0
\(13\) 1.73205 + 1.00000i 0.480384 + 0.277350i 0.720577 0.693375i \(-0.243877\pi\)
−0.240192 + 0.970725i \(0.577210\pi\)
\(14\) 4.00000 + 6.92820i 1.06904 + 1.85164i
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) −1.73205 + 1.00000i −0.420084 + 0.242536i −0.695113 0.718900i \(-0.744646\pi\)
0.275029 + 0.961436i \(0.411312\pi\)
\(18\) 0 0
\(19\) 3.50000 2.59808i 0.802955 0.596040i
\(20\) −2.00000 + 4.00000i −0.447214 + 0.894427i
\(21\) 0 0
\(22\) 1.73205 1.00000i 0.369274 0.213201i
\(23\) 5.19615 + 3.00000i 1.08347 + 0.625543i 0.931831 0.362892i \(-0.118211\pi\)
0.151642 + 0.988436i \(0.451544\pi\)
\(24\) 0 0
\(25\) 4.96410 0.598076i 0.992820 0.119615i
\(26\) 4.00000 0.784465
\(27\) 0 0
\(28\) 6.92820 + 4.00000i 1.30931 + 0.755929i
\(29\) −4.50000 + 7.79423i −0.835629 + 1.44735i 0.0578882 + 0.998323i \(0.481563\pi\)
−0.893517 + 0.449029i \(0.851770\pi\)
\(30\) 0 0
\(31\) −7.00000 −1.25724 −0.628619 0.777714i \(-0.716379\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 6.92820 + 4.00000i 1.22474 + 0.707107i
\(33\) 0 0
\(34\) −2.00000 + 3.46410i −0.342997 + 0.594089i
\(35\) −0.535898 8.92820i −0.0905834 1.50914i
\(36\) 0 0
\(37\) 2.00000i 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 3.46410 8.00000i 0.561951 1.29777i
\(39\) 0 0
\(40\) 0 0
\(41\) 1.00000 + 1.73205i 0.156174 + 0.270501i 0.933486 0.358614i \(-0.116751\pi\)
−0.777312 + 0.629115i \(0.783417\pi\)
\(42\) 0 0
\(43\) 1.73205 1.00000i 0.264135 0.152499i −0.362084 0.932145i \(-0.617935\pi\)
0.626219 + 0.779647i \(0.284601\pi\)
\(44\) 1.00000 1.73205i 0.150756 0.261116i
\(45\) 0 0
\(46\) 12.0000 1.76930
\(47\) −5.19615 3.00000i −0.757937 0.437595i 0.0706177 0.997503i \(-0.477503\pi\)
−0.828554 + 0.559908i \(0.810836\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 8.00000 6.00000i 1.13137 0.848528i
\(51\) 0 0
\(52\) 3.46410 2.00000i 0.480384 0.277350i
\(53\) 3.46410 + 2.00000i 0.475831 + 0.274721i 0.718677 0.695344i \(-0.244748\pi\)
−0.242846 + 0.970065i \(0.578081\pi\)
\(54\) 0 0
\(55\) −2.23205 + 0.133975i −0.300970 + 0.0180651i
\(56\) 0 0
\(57\) 0 0
\(58\) 18.0000i 2.36352i
\(59\) −4.50000 7.79423i −0.585850 1.01472i −0.994769 0.102151i \(-0.967427\pi\)
0.408919 0.912571i \(-0.365906\pi\)
\(60\) 0 0
\(61\) 3.50000 6.06218i 0.448129 0.776182i −0.550135 0.835076i \(-0.685424\pi\)
0.998264 + 0.0588933i \(0.0187572\pi\)
\(62\) −12.1244 + 7.00000i −1.53979 + 0.889001i
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) −4.00000 2.00000i −0.496139 0.248069i
\(66\) 0 0
\(67\) −8.66025 5.00000i −1.05802 0.610847i −0.133135 0.991098i \(-0.542504\pi\)
−0.924883 + 0.380251i \(0.875838\pi\)
\(68\) 4.00000i 0.485071i
\(69\) 0 0
\(70\) −9.85641 14.9282i −1.17807 1.78426i
\(71\) 0.500000 + 0.866025i 0.0593391 + 0.102778i 0.894169 0.447730i \(-0.147767\pi\)
−0.834830 + 0.550508i \(0.814434\pi\)
\(72\) 0 0
\(73\) 8.66025 5.00000i 1.01361 0.585206i 0.101361 0.994850i \(-0.467680\pi\)
0.912245 + 0.409644i \(0.134347\pi\)
\(74\) −2.00000 3.46410i −0.232495 0.402694i
\(75\) 0 0
\(76\) −1.00000 8.66025i −0.114708 0.993399i
\(77\) 4.00000i 0.455842i
\(78\) 0 0
\(79\) 0.500000 + 0.866025i 0.0562544 + 0.0974355i 0.892781 0.450490i \(-0.148751\pi\)
−0.836527 + 0.547926i \(0.815418\pi\)
\(80\) −4.92820 7.46410i −0.550990 0.834512i
\(81\) 0 0
\(82\) 3.46410 + 2.00000i 0.382546 + 0.220863i
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 0 0
\(85\) 3.73205 2.46410i 0.404798 0.267269i
\(86\) 2.00000 3.46410i 0.215666 0.373544i
\(87\) 0 0
\(88\) 0 0
\(89\) 5.50000 9.52628i 0.582999 1.00978i −0.412123 0.911128i \(-0.635213\pi\)
0.995122 0.0986553i \(-0.0314541\pi\)
\(90\) 0 0
\(91\) −4.00000 + 6.92820i −0.419314 + 0.726273i
\(92\) 10.3923 6.00000i 1.08347 0.625543i
\(93\) 0 0
\(94\) −12.0000 −1.23771
\(95\) −7.46410 + 6.26795i −0.765801 + 0.643078i
\(96\) 0 0
\(97\) 5.19615 3.00000i 0.527589 0.304604i −0.212445 0.977173i \(-0.568143\pi\)
0.740034 + 0.672569i \(0.234809\pi\)
\(98\) −15.5885 + 9.00000i −1.57467 + 0.909137i
\(99\) 0 0
\(100\) 3.92820 9.19615i 0.392820 0.919615i
\(101\) 7.50000 12.9904i 0.746278 1.29259i −0.203317 0.979113i \(-0.565172\pi\)
0.949595 0.313478i \(-0.101494\pi\)
\(102\) 0 0
\(103\) 16.0000i 1.57653i 0.615338 + 0.788263i \(0.289020\pi\)
−0.615338 + 0.788263i \(0.710980\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 8.00000 0.777029
\(107\) 10.0000i 0.966736i −0.875417 0.483368i \(-0.839413\pi\)
0.875417 0.483368i \(-0.160587\pi\)
\(108\) 0 0
\(109\) 7.50000 + 12.9904i 0.718370 + 1.24425i 0.961645 + 0.274296i \(0.0884447\pi\)
−0.243276 + 0.969957i \(0.578222\pi\)
\(110\) −3.73205 + 2.46410i −0.355837 + 0.234943i
\(111\) 0 0
\(112\) −13.8564 + 8.00000i −1.30931 + 0.755929i
\(113\) 12.0000i 1.12887i 0.825479 + 0.564433i \(0.190905\pi\)
−0.825479 + 0.564433i \(0.809095\pi\)
\(114\) 0 0
\(115\) −12.0000 6.00000i −1.11901 0.559503i
\(116\) 9.00000 + 15.5885i 0.835629 + 1.44735i
\(117\) 0 0
\(118\) −15.5885 9.00000i −1.43503 0.828517i
\(119\) −4.00000 6.92820i −0.366679 0.635107i
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 14.0000i 1.26750i
\(123\) 0 0
\(124\) −7.00000 + 12.1244i −0.628619 + 1.08880i
\(125\) −11.0000 + 2.00000i −0.983870 + 0.178885i
\(126\) 0 0
\(127\) −5.19615 3.00000i −0.461084 0.266207i 0.251416 0.967879i \(-0.419104\pi\)
−0.712500 + 0.701672i \(0.752437\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) −8.92820 + 0.535898i −0.783055 + 0.0470014i
\(131\) 6.00000 + 10.3923i 0.524222 + 0.907980i 0.999602 + 0.0281993i \(0.00897729\pi\)
−0.475380 + 0.879781i \(0.657689\pi\)
\(132\) 0 0
\(133\) 10.3923 + 14.0000i 0.901127 + 1.21395i
\(134\) −20.0000 −1.72774
\(135\) 0 0
\(136\) 0 0
\(137\) −10.3923 6.00000i −0.887875 0.512615i −0.0146279 0.999893i \(-0.504656\pi\)
−0.873247 + 0.487278i \(0.837990\pi\)
\(138\) 0 0
\(139\) 10.0000 17.3205i 0.848189 1.46911i −0.0346338 0.999400i \(-0.511026\pi\)
0.882823 0.469706i \(-0.155640\pi\)
\(140\) −16.0000 8.00000i −1.35225 0.676123i
\(141\) 0 0
\(142\) 1.73205 + 1.00000i 0.145350 + 0.0839181i
\(143\) 1.73205 + 1.00000i 0.144841 + 0.0836242i
\(144\) 0 0
\(145\) 9.00000 18.0000i 0.747409 1.49482i
\(146\) 10.0000 17.3205i 0.827606 1.43346i
\(147\) 0 0
\(148\) −3.46410 2.00000i −0.284747 0.164399i
\(149\) 0.500000 + 0.866025i 0.0409616 + 0.0709476i 0.885779 0.464107i \(-0.153625\pi\)
−0.844818 + 0.535054i \(0.820291\pi\)
\(150\) 0 0
\(151\) 9.00000 0.732410 0.366205 0.930534i \(-0.380657\pi\)
0.366205 + 0.930534i \(0.380657\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 4.00000 + 6.92820i 0.322329 + 0.558291i
\(155\) 15.6244 0.937822i 1.25498 0.0753277i
\(156\) 0 0
\(157\) −3.46410 + 2.00000i −0.276465 + 0.159617i −0.631822 0.775113i \(-0.717693\pi\)
0.355357 + 0.934731i \(0.384359\pi\)
\(158\) 1.73205 + 1.00000i 0.137795 + 0.0795557i
\(159\) 0 0
\(160\) −16.0000 8.00000i −1.26491 0.632456i
\(161\) −12.0000 + 20.7846i −0.945732 + 1.63806i
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 4.00000 0.312348
\(165\) 0 0
\(166\) 6.00000 + 10.3923i 0.465690 + 0.806599i
\(167\) 10.3923 + 6.00000i 0.804181 + 0.464294i 0.844931 0.534875i \(-0.179641\pi\)
−0.0407502 + 0.999169i \(0.512975\pi\)
\(168\) 0 0
\(169\) −4.50000 7.79423i −0.346154 0.599556i
\(170\) 4.00000 8.00000i 0.306786 0.613572i
\(171\) 0 0
\(172\) 4.00000i 0.304997i
\(173\) 20.7846 12.0000i 1.58022 0.912343i 0.585399 0.810745i \(-0.300938\pi\)
0.994826 0.101598i \(-0.0323955\pi\)
\(174\) 0 0
\(175\) 2.39230 + 19.8564i 0.180841 + 1.50100i
\(176\) 2.00000 + 3.46410i 0.150756 + 0.261116i
\(177\) 0 0
\(178\) 22.0000i 1.64897i
\(179\) 15.0000 1.12115 0.560576 0.828103i \(-0.310580\pi\)
0.560576 + 0.828103i \(0.310580\pi\)
\(180\) 0 0
\(181\) 3.00000 5.19615i 0.222988 0.386227i −0.732726 0.680524i \(-0.761752\pi\)
0.955714 + 0.294297i \(0.0950855\pi\)
\(182\) 16.0000i 1.18600i
\(183\) 0 0
\(184\) 0 0
\(185\) 0.267949 + 4.46410i 0.0197000 + 0.328207i
\(186\) 0 0
\(187\) −1.73205 + 1.00000i −0.126660 + 0.0731272i
\(188\) −10.3923 + 6.00000i −0.757937 + 0.437595i
\(189\) 0 0
\(190\) −6.66025 + 18.3205i −0.483186 + 1.32911i
\(191\) 3.00000 0.217072 0.108536 0.994092i \(-0.465384\pi\)
0.108536 + 0.994092i \(0.465384\pi\)
\(192\) 0 0
\(193\) 13.8564 8.00000i 0.997406 0.575853i 0.0899262 0.995948i \(-0.471337\pi\)
0.907480 + 0.420096i \(0.138004\pi\)
\(194\) 6.00000 10.3923i 0.430775 0.746124i
\(195\) 0 0
\(196\) −9.00000 + 15.5885i −0.642857 + 1.11346i
\(197\) 18.0000i 1.28245i −0.767354 0.641223i \(-0.778427\pi\)
0.767354 0.641223i \(-0.221573\pi\)
\(198\) 0 0
\(199\) 6.50000 11.2583i 0.460773 0.798082i −0.538227 0.842800i \(-0.680906\pi\)
0.999000 + 0.0447181i \(0.0142390\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 30.0000i 2.11079i
\(203\) −31.1769 18.0000i −2.18819 1.26335i
\(204\) 0 0
\(205\) −2.46410 3.73205i −0.172100 0.260658i
\(206\) 16.0000 + 27.7128i 1.11477 + 1.93084i
\(207\) 0 0
\(208\) 8.00000i 0.554700i
\(209\) 3.50000 2.59808i 0.242100 0.179713i
\(210\) 0 0
\(211\) −2.50000 4.33013i −0.172107 0.298098i 0.767049 0.641588i \(-0.221724\pi\)
−0.939156 + 0.343490i \(0.888391\pi\)
\(212\) 6.92820 4.00000i 0.475831 0.274721i
\(213\) 0 0
\(214\) −10.0000 17.3205i −0.683586 1.18401i
\(215\) −3.73205 + 2.46410i −0.254524 + 0.168050i
\(216\) 0 0
\(217\) 28.0000i 1.90076i
\(218\) 25.9808 + 15.0000i 1.75964 + 1.01593i
\(219\) 0 0
\(220\) −2.00000 + 4.00000i −0.134840 + 0.269680i
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) −1.73205 + 1.00000i −0.115987 + 0.0669650i −0.556871 0.830599i \(-0.687998\pi\)
0.440884 + 0.897564i \(0.354665\pi\)
\(224\) −16.0000 + 27.7128i −1.06904 + 1.85164i
\(225\) 0 0
\(226\) 12.0000 + 20.7846i 0.798228 + 1.38257i
\(227\) 14.0000i 0.929213i 0.885517 + 0.464606i \(0.153804\pi\)
−0.885517 + 0.464606i \(0.846196\pi\)
\(228\) 0 0
\(229\) −17.0000 −1.12339 −0.561696 0.827344i \(-0.689851\pi\)
−0.561696 + 0.827344i \(0.689851\pi\)
\(230\) −26.7846 + 1.60770i −1.76612 + 0.106008i
\(231\) 0 0
\(232\) 0 0
\(233\) 6.92820 4.00000i 0.453882 0.262049i −0.255586 0.966786i \(-0.582269\pi\)
0.709468 + 0.704737i \(0.248935\pi\)
\(234\) 0 0
\(235\) 12.0000 + 6.00000i 0.782794 + 0.391397i
\(236\) −18.0000 −1.17170
\(237\) 0 0
\(238\) −13.8564 8.00000i −0.898177 0.518563i
\(239\) −19.0000 −1.22901 −0.614504 0.788914i \(-0.710644\pi\)
−0.614504 + 0.788914i \(0.710644\pi\)
\(240\) 0 0
\(241\) −0.500000 + 0.866025i −0.0322078 + 0.0557856i −0.881680 0.471848i \(-0.843587\pi\)
0.849472 + 0.527633i \(0.176921\pi\)
\(242\) −17.3205 + 10.0000i −1.11340 + 0.642824i
\(243\) 0 0
\(244\) −7.00000 12.1244i −0.448129 0.776182i
\(245\) 20.0885 1.20577i 1.28340 0.0770339i
\(246\) 0 0
\(247\) 8.66025 1.00000i 0.551039 0.0636285i
\(248\) 0 0
\(249\) 0 0
\(250\) −17.0526 + 14.4641i −1.07850 + 0.914790i
\(251\) 6.50000 11.2583i 0.410276 0.710620i −0.584643 0.811290i \(-0.698766\pi\)
0.994920 + 0.100671i \(0.0320989\pi\)
\(252\) 0 0
\(253\) 5.19615 + 3.00000i 0.326679 + 0.188608i
\(254\) −12.0000 −0.752947
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 5.19615 + 3.00000i 0.324127 + 0.187135i 0.653231 0.757159i \(-0.273413\pi\)
−0.329104 + 0.944294i \(0.606747\pi\)
\(258\) 0 0
\(259\) 8.00000 0.497096
\(260\) −7.46410 + 4.92820i −0.462904 + 0.305634i
\(261\) 0 0
\(262\) 20.7846 + 12.0000i 1.28408 + 0.741362i
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) −8.00000 4.00000i −0.491436 0.245718i
\(266\) 32.0000 + 13.8564i 1.96205 + 0.849591i
\(267\) 0 0
\(268\) −17.3205 + 10.0000i −1.05802 + 0.610847i
\(269\) −1.50000 2.59808i −0.0914566 0.158408i 0.816668 0.577108i \(-0.195819\pi\)
−0.908124 + 0.418701i \(0.862486\pi\)
\(270\) 0 0
\(271\) −1.50000 2.59808i −0.0911185 0.157822i 0.816864 0.576831i \(-0.195711\pi\)
−0.907982 + 0.419009i \(0.862378\pi\)
\(272\) −6.92820 4.00000i −0.420084 0.242536i
\(273\) 0 0
\(274\) −24.0000 −1.44989
\(275\) 4.96410 0.598076i 0.299347 0.0360654i
\(276\) 0 0
\(277\) 28.0000i 1.68236i 0.540758 + 0.841178i \(0.318138\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) 40.0000i 2.39904i
\(279\) 0 0
\(280\) 0 0
\(281\) 5.00000 8.66025i 0.298275 0.516627i −0.677466 0.735554i \(-0.736922\pi\)
0.975741 + 0.218926i \(0.0702554\pi\)
\(282\) 0 0
\(283\) 12.1244 7.00000i 0.720718 0.416107i −0.0942988 0.995544i \(-0.530061\pi\)
0.815017 + 0.579437i \(0.196728\pi\)
\(284\) 2.00000 0.118678
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) −6.92820 + 4.00000i −0.408959 + 0.236113i
\(288\) 0 0
\(289\) −6.50000 + 11.2583i −0.382353 + 0.662255i
\(290\) −2.41154 40.1769i −0.141611 2.35927i
\(291\) 0 0
\(292\) 20.0000i 1.17041i
\(293\) 4.00000i 0.233682i −0.993151 0.116841i \(-0.962723\pi\)
0.993151 0.116841i \(-0.0372769\pi\)
\(294\) 0 0
\(295\) 11.0885 + 16.7942i 0.645595 + 0.977798i
\(296\) 0 0
\(297\) 0 0
\(298\) 1.73205 + 1.00000i 0.100335 + 0.0579284i
\(299\) 6.00000 + 10.3923i 0.346989 + 0.601003i
\(300\) 0 0
\(301\) 4.00000 + 6.92820i 0.230556 + 0.399335i
\(302\) 15.5885 9.00000i 0.897015 0.517892i
\(303\) 0 0
\(304\) 16.0000 + 6.92820i 0.917663 + 0.397360i
\(305\) −7.00000 + 14.0000i −0.400819 + 0.801638i
\(306\) 0 0
\(307\) −13.8564 + 8.00000i −0.790827 + 0.456584i −0.840254 0.542194i \(-0.817594\pi\)
0.0494267 + 0.998778i \(0.484261\pi\)
\(308\) 6.92820 + 4.00000i 0.394771 + 0.227921i
\(309\) 0 0
\(310\) 26.1244 17.2487i 1.48376 0.979661i
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −25.9808 15.0000i −1.46852 0.847850i −0.469142 0.883123i \(-0.655437\pi\)
−0.999378 + 0.0352727i \(0.988770\pi\)
\(314\) −4.00000 + 6.92820i −0.225733 + 0.390981i
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) 1.73205 + 1.00000i 0.0972817 + 0.0561656i 0.547852 0.836576i \(-0.315446\pi\)
−0.450570 + 0.892741i \(0.648779\pi\)
\(318\) 0 0
\(319\) −4.50000 + 7.79423i −0.251952 + 0.436393i
\(320\) −17.8564 + 1.07180i −0.998203 + 0.0599153i
\(321\) 0 0
\(322\) 48.0000i 2.67494i
\(323\) −3.46410 + 8.00000i −0.192748 + 0.445132i
\(324\) 0 0
\(325\) 9.19615 + 3.92820i 0.510111 + 0.217898i
\(326\) 4.00000 + 6.92820i 0.221540 + 0.383718i
\(327\) 0 0
\(328\) 0 0
\(329\) 12.0000 20.7846i 0.661581 1.14589i
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 10.3923 + 6.00000i 0.570352 + 0.329293i
\(333\) 0 0
\(334\) 24.0000 1.31322
\(335\) 20.0000 + 10.0000i 1.09272 + 0.546358i
\(336\) 0 0
\(337\) −29.4449 + 17.0000i −1.60396 + 0.926049i −0.613280 + 0.789865i \(0.710150\pi\)
−0.990684 + 0.136184i \(0.956516\pi\)
\(338\) −15.5885 9.00000i −0.847900 0.489535i
\(339\) 0 0
\(340\) −0.535898 8.92820i −0.0290632 0.484200i
\(341\) −7.00000 −0.379071
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) 0 0
\(346\) 24.0000 41.5692i 1.29025 2.23478i
\(347\) −10.3923 + 6.00000i −0.557888 + 0.322097i −0.752297 0.658824i \(-0.771054\pi\)
0.194409 + 0.980921i \(0.437721\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 24.0000 + 32.0000i 1.28285 + 1.71047i
\(351\) 0 0
\(352\) 6.92820 + 4.00000i 0.369274 + 0.213201i
\(353\) 8.00000i 0.425797i 0.977074 + 0.212899i \(0.0682904\pi\)
−0.977074 + 0.212899i \(0.931710\pi\)
\(354\) 0 0
\(355\) −1.23205 1.86603i −0.0653905 0.0990383i
\(356\) −11.0000 19.0526i −0.582999 1.00978i
\(357\) 0 0
\(358\) 25.9808 15.0000i 1.37313 0.792775i
\(359\) 10.0000 + 17.3205i 0.527780 + 0.914141i 0.999476 + 0.0323801i \(0.0103087\pi\)
−0.471696 + 0.881761i \(0.656358\pi\)
\(360\) 0 0
\(361\) 5.50000 18.1865i 0.289474 0.957186i
\(362\) 12.0000i 0.630706i
\(363\) 0 0
\(364\) 8.00000 + 13.8564i 0.419314 + 0.726273i
\(365\) −18.6603 + 12.3205i −0.976722 + 0.644885i
\(366\) 0 0
\(367\) −13.8564 8.00000i −0.723299 0.417597i 0.0926670 0.995697i \(-0.470461\pi\)
−0.815966 + 0.578101i \(0.803794\pi\)
\(368\) 24.0000i 1.25109i
\(369\) 0 0
\(370\) 4.92820 + 7.46410i 0.256205 + 0.388040i
\(371\) −8.00000 + 13.8564i −0.415339 + 0.719389i
\(372\) 0 0
\(373\) 12.0000i 0.621336i −0.950518 0.310668i \(-0.899447\pi\)
0.950518 0.310668i \(-0.100553\pi\)
\(374\) −2.00000 + 3.46410i −0.103418 + 0.179124i
\(375\) 0 0
\(376\) 0 0
\(377\) −15.5885 + 9.00000i −0.802846 + 0.463524i
\(378\) 0 0
\(379\) 29.0000 1.48963 0.744815 0.667271i \(-0.232538\pi\)
0.744815 + 0.667271i \(0.232538\pi\)
\(380\) 3.39230 + 19.1962i 0.174022 + 0.984742i
\(381\) 0 0
\(382\) 5.19615 3.00000i 0.265858 0.153493i
\(383\) −5.19615 + 3.00000i −0.265511 + 0.153293i −0.626846 0.779143i \(-0.715654\pi\)
0.361335 + 0.932436i \(0.382321\pi\)
\(384\) 0 0
\(385\) −0.535898 8.92820i −0.0273119 0.455023i
\(386\) 16.0000 27.7128i 0.814379 1.41055i
\(387\) 0 0
\(388\) 12.0000i 0.609208i
\(389\) 16.5000 28.5788i 0.836583 1.44900i −0.0561516 0.998422i \(-0.517883\pi\)
0.892735 0.450582i \(-0.148784\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) 0 0
\(394\) −18.0000 31.1769i −0.906827 1.57067i
\(395\) −1.23205 1.86603i −0.0619912 0.0938899i
\(396\) 0 0
\(397\) 6.92820 4.00000i 0.347717 0.200754i −0.315963 0.948772i \(-0.602327\pi\)
0.663679 + 0.748017i \(0.268994\pi\)
\(398\) 26.0000i 1.30326i
\(399\) 0 0
\(400\) 12.0000 + 16.0000i 0.600000 + 0.800000i
\(401\) 1.50000 + 2.59808i 0.0749064 + 0.129742i 0.901046 0.433724i \(-0.142801\pi\)
−0.826139 + 0.563466i \(0.809468\pi\)
\(402\) 0 0
\(403\) −12.1244 7.00000i −0.603957 0.348695i
\(404\) −15.0000 25.9808i −0.746278 1.29259i
\(405\) 0 0
\(406\) −72.0000 −3.57330
\(407\) 2.00000i 0.0991363i
\(408\) 0 0
\(409\) −2.50000 + 4.33013i −0.123617 + 0.214111i −0.921192 0.389109i \(-0.872783\pi\)
0.797574 + 0.603220i \(0.206116\pi\)
\(410\) −8.00000 4.00000i −0.395092 0.197546i
\(411\) 0 0
\(412\) 27.7128 + 16.0000i 1.36531 + 0.788263i
\(413\) 31.1769 18.0000i 1.53412 0.885722i
\(414\) 0 0
\(415\) −0.803848 13.3923i −0.0394593 0.657402i
\(416\) 8.00000 + 13.8564i 0.392232 + 0.679366i
\(417\) 0 0
\(418\) 3.46410 8.00000i 0.169435 0.391293i
\(419\) 9.00000 0.439679 0.219839 0.975536i \(-0.429447\pi\)
0.219839 + 0.975536i \(0.429447\pi\)
\(420\) 0 0
\(421\) 7.50000 + 12.9904i 0.365528 + 0.633112i 0.988861 0.148844i \(-0.0475552\pi\)
−0.623333 + 0.781956i \(0.714222\pi\)
\(422\) −8.66025 5.00000i −0.421575 0.243396i
\(423\) 0 0
\(424\) 0 0
\(425\) −8.00000 + 6.00000i −0.388057 + 0.291043i
\(426\) 0 0
\(427\) 24.2487 + 14.0000i 1.17348 + 0.677507i
\(428\) −17.3205 10.0000i −0.837218 0.483368i
\(429\) 0 0
\(430\) −4.00000 + 8.00000i −0.192897 + 0.385794i
\(431\) 10.5000 18.1865i 0.505767 0.876014i −0.494211 0.869342i \(-0.664543\pi\)
0.999978 0.00667224i \(-0.00212386\pi\)
\(432\) 0 0
\(433\) 3.46410 + 2.00000i 0.166474 + 0.0961139i 0.580922 0.813959i \(-0.302692\pi\)
−0.414448 + 0.910073i \(0.636025\pi\)
\(434\) −28.0000 48.4974i −1.34404 2.32795i
\(435\) 0 0
\(436\) 30.0000 1.43674
\(437\) 25.9808 3.00000i 1.24283 0.143509i
\(438\) 0 0
\(439\) −6.50000 11.2583i −0.310228 0.537331i 0.668184 0.743996i \(-0.267072\pi\)
−0.978412 + 0.206666i \(0.933739\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −6.92820 + 4.00000i −0.329541 + 0.190261i
\(443\) 3.46410 + 2.00000i 0.164584 + 0.0950229i 0.580030 0.814595i \(-0.303041\pi\)
−0.415445 + 0.909618i \(0.636374\pi\)
\(444\) 0 0
\(445\) −11.0000 + 22.0000i −0.521450 + 1.04290i
\(446\) −2.00000 + 3.46410i −0.0947027 + 0.164030i
\(447\) 0 0
\(448\) 32.0000i 1.51186i
\(449\) 31.0000 1.46298 0.731490 0.681852i \(-0.238825\pi\)
0.731490 + 0.681852i \(0.238825\pi\)
\(450\) 0 0
\(451\) 1.00000 + 1.73205i 0.0470882 + 0.0815591i
\(452\) 20.7846 + 12.0000i 0.977626 + 0.564433i
\(453\) 0 0
\(454\) 14.0000 + 24.2487i 0.657053 + 1.13805i
\(455\) 8.00000 16.0000i 0.375046 0.750092i
\(456\) 0 0
\(457\) 34.0000i 1.59045i −0.606313 0.795226i \(-0.707352\pi\)
0.606313 0.795226i \(-0.292648\pi\)
\(458\) −29.4449 + 17.0000i −1.37587 + 0.794358i
\(459\) 0 0
\(460\) −22.3923 + 14.7846i −1.04405 + 0.689336i
\(461\) −12.5000 21.6506i −0.582183 1.00837i −0.995220 0.0976564i \(-0.968865\pi\)
0.413037 0.910714i \(-0.364468\pi\)
\(462\) 0 0
\(463\) 4.00000i 0.185896i −0.995671 0.0929479i \(-0.970371\pi\)
0.995671 0.0929479i \(-0.0296290\pi\)
\(464\) −36.0000 −1.67126
\(465\) 0 0
\(466\) 8.00000 13.8564i 0.370593 0.641886i
\(467\) 10.0000i 0.462745i 0.972865 + 0.231372i \(0.0743216\pi\)
−0.972865 + 0.231372i \(0.925678\pi\)
\(468\) 0 0
\(469\) 20.0000 34.6410i 0.923514 1.59957i
\(470\) 26.7846 1.60770i 1.23548 0.0741574i
\(471\) 0 0
\(472\) 0 0
\(473\) 1.73205 1.00000i 0.0796398 0.0459800i
\(474\) 0 0
\(475\) 15.8205 14.9904i 0.725895 0.687806i
\(476\) −16.0000 −0.733359
\(477\) 0 0
\(478\) −32.9090 + 19.0000i −1.50522 + 0.869040i
\(479\) −7.50000 + 12.9904i −0.342684 + 0.593546i −0.984930 0.172953i \(-0.944669\pi\)
0.642246 + 0.766498i \(0.278003\pi\)
\(480\) 0 0
\(481\) 2.00000 3.46410i 0.0911922 0.157949i
\(482\) 2.00000i 0.0910975i
\(483\) 0 0
\(484\) −10.0000 + 17.3205i −0.454545 + 0.787296i
\(485\) −11.1962 + 7.39230i −0.508391 + 0.335667i
\(486\) 0 0
\(487\) 38.0000i 1.72194i 0.508652 + 0.860972i \(0.330144\pi\)
−0.508652 + 0.860972i \(0.669856\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 33.5885 22.1769i 1.51737 1.00185i
\(491\) 6.50000 + 11.2583i 0.293341 + 0.508081i 0.974598 0.223963i \(-0.0718996\pi\)
−0.681257 + 0.732045i \(0.738566\pi\)
\(492\) 0 0
\(493\) 18.0000i 0.810679i
\(494\) 14.0000 10.3923i 0.629890 0.467572i
\(495\) 0 0
\(496\) −14.0000 24.2487i −0.628619 1.08880i
\(497\) −3.46410 + 2.00000i −0.155386 + 0.0897123i
\(498\) 0 0
\(499\) 14.0000 + 24.2487i 0.626726 + 1.08552i 0.988204 + 0.153141i \(0.0489388\pi\)
−0.361478 + 0.932381i \(0.617728\pi\)
\(500\) −7.53590 + 21.0526i −0.337016 + 0.941499i
\(501\) 0 0
\(502\) 26.0000i 1.16044i
\(503\) −22.5167 13.0000i −1.00397 0.579641i −0.0945483 0.995520i \(-0.530141\pi\)
−0.909420 + 0.415879i \(0.863474\pi\)
\(504\) 0 0
\(505\) −15.0000 + 30.0000i −0.667491 + 1.33498i
\(506\) 12.0000 0.533465
\(507\) 0 0
\(508\) −10.3923 + 6.00000i −0.461084 + 0.266207i
\(509\) −9.00000 + 15.5885i −0.398918 + 0.690946i −0.993593 0.113020i \(-0.963948\pi\)
0.594675 + 0.803966i \(0.297281\pi\)
\(510\) 0 0
\(511\) 20.0000 + 34.6410i 0.884748 + 1.53243i
\(512\) 32.0000i 1.41421i
\(513\) 0 0
\(514\) 12.0000 0.529297
\(515\) −2.14359 35.7128i −0.0944580 1.57369i
\(516\) 0 0
\(517\) −5.19615 3.00000i −0.228527 0.131940i
\(518\) 13.8564 8.00000i 0.608816 0.351500i
\(519\) 0 0
\(520\) 0 0
\(521\) −15.0000 −0.657162 −0.328581 0.944476i \(-0.606570\pi\)
−0.328581 + 0.944476i \(0.606570\pi\)
\(522\) 0 0
\(523\) −13.8564 8.00000i −0.605898 0.349816i 0.165460 0.986216i \(-0.447089\pi\)
−0.771358 + 0.636401i \(0.780422\pi\)
\(524\) 24.0000 1.04844
\(525\) 0 0
\(526\) 0 0
\(527\) 12.1244 7.00000i 0.528145 0.304925i
\(528\) 0 0
\(529\) 6.50000 + 11.2583i 0.282609 + 0.489493i
\(530\) −17.8564 + 1.07180i −0.775633 + 0.0465559i
\(531\) 0 0
\(532\) 34.6410 4.00000i 1.50188 0.173422i
\(533\) 4.00000i 0.173259i
\(534\) 0 0
\(535\) 1.33975 + 22.3205i 0.0579223 + 0.965000i
\(536\) 0 0
\(537\) 0 0
\(538\) −5.19615 3.00000i −0.224022 0.129339i
\(539\) −9.00000 −0.387657
\(540\) 0 0
\(541\) −11.5000 + 19.9186i −0.494424 + 0.856367i −0.999979 0.00642713i \(-0.997954\pi\)
0.505556 + 0.862794i \(0.331288\pi\)
\(542\) −5.19615 3.00000i −0.223194 0.128861i
\(543\) 0 0
\(544\) −16.0000 −0.685994
\(545\) −18.4808 27.9904i −0.791629 1.19898i
\(546\) 0 0
\(547\) 19.0526 + 11.0000i 0.814629 + 0.470326i 0.848561 0.529098i \(-0.177470\pi\)
−0.0339321 + 0.999424i \(0.510803\pi\)
\(548\) −20.7846 + 12.0000i −0.887875 + 0.512615i
\(549\) 0 0
\(550\) 8.00000 6.00000i 0.341121 0.255841i
\(551\) 4.50000 + 38.9711i 0.191706 + 1.66023i
\(552\) 0 0
\(553\) −3.46410 + 2.00000i −0.147309 + 0.0850487i
\(554\) 28.0000 + 48.4974i 1.18961 + 2.06046i
\(555\) 0 0
\(556\) −20.0000 34.6410i −0.848189 1.46911i
\(557\) −12.1244 7.00000i −0.513725 0.296600i 0.220638 0.975356i \(-0.429186\pi\)
−0.734364 + 0.678756i \(0.762519\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 29.8564 19.7128i 1.26166 0.833018i
\(561\) 0 0
\(562\) 20.0000i 0.843649i
\(563\) 24.0000i 1.01148i 0.862686 + 0.505740i \(0.168780\pi\)
−0.862686 + 0.505740i \(0.831220\pi\)
\(564\) 0 0
\(565\) −1.60770 26.7846i −0.0676362 1.12684i
\(566\) 14.0000 24.2487i 0.588464 1.01925i
\(567\) 0 0
\(568\) 0 0
\(569\) 15.0000 0.628833 0.314416 0.949285i \(-0.398191\pi\)
0.314416 + 0.949285i \(0.398191\pi\)
\(570\) 0 0
\(571\) 13.0000 0.544033 0.272017 0.962293i \(-0.412309\pi\)
0.272017 + 0.962293i \(0.412309\pi\)
\(572\) 3.46410 2.00000i 0.144841 0.0836242i
\(573\) 0 0
\(574\) −8.00000 + 13.8564i −0.333914 + 0.578355i
\(575\) 27.5885 + 11.7846i 1.15052 + 0.491452i
\(576\) 0 0
\(577\) 6.00000i 0.249783i −0.992170 0.124892i \(-0.960142\pi\)
0.992170 0.124892i \(-0.0398583\pi\)
\(578\) 26.0000i 1.08146i
\(579\) 0 0
\(580\) −22.1769 33.5885i −0.920846 1.39468i
\(581\) −24.0000 −0.995688
\(582\) 0 0
\(583\) 3.46410 + 2.00000i 0.143468 + 0.0828315i
\(584\) 0 0
\(585\) 0 0
\(586\) −4.00000 6.92820i −0.165238 0.286201i
\(587\) −20.7846 + 12.0000i −0.857873 + 0.495293i −0.863299 0.504692i \(-0.831606\pi\)
0.00542667 + 0.999985i \(0.498273\pi\)
\(588\) 0 0
\(589\) −24.5000 + 18.1865i −1.00950 + 0.749363i
\(590\) 36.0000 + 18.0000i 1.48210 + 0.741048i
\(591\) 0 0
\(592\) 6.92820 4.00000i 0.284747 0.164399i
\(593\) −27.7128 16.0000i −1.13803 0.657041i −0.192087 0.981378i \(-0.561526\pi\)
−0.945942 + 0.324337i \(0.894859\pi\)
\(594\) 0 0
\(595\) 9.85641 + 14.9282i 0.404073 + 0.611997i
\(596\) 2.00000 0.0819232
\(597\) 0 0
\(598\) 20.7846 + 12.0000i 0.849946 + 0.490716i
\(599\) 6.00000 10.3923i 0.245153 0.424618i −0.717021 0.697051i \(-0.754495\pi\)
0.962175 + 0.272433i \(0.0878284\pi\)
\(600\) 0 0
\(601\) 17.0000 0.693444 0.346722 0.937968i \(-0.387295\pi\)
0.346722 + 0.937968i \(0.387295\pi\)
\(602\) 13.8564 + 8.00000i 0.564745 + 0.326056i
\(603\) 0 0
\(604\) 9.00000 15.5885i 0.366205 0.634285i
\(605\) 22.3205 1.33975i 0.907458 0.0544684i
\(606\) 0 0
\(607\) 14.0000i 0.568242i 0.958788 + 0.284121i \(0.0917018\pi\)
−0.958788 + 0.284121i \(0.908298\pi\)
\(608\) 34.6410 4.00000i 1.40488 0.162221i
\(609\) 0 0
\(610\) 1.87564 + 31.2487i 0.0759426 + 1.26522i
\(611\) −6.00000 10.3923i −0.242734 0.420428i
\(612\) 0 0
\(613\) 20.7846 12.0000i 0.839482 0.484675i −0.0176058 0.999845i \(-0.505604\pi\)
0.857088 + 0.515170i \(0.172271\pi\)
\(614\) −16.0000 + 27.7128i −0.645707 + 1.11840i
\(615\) 0 0
\(616\) 0 0
\(617\) −15.5885 9.00000i −0.627568 0.362326i 0.152242 0.988343i \(-0.451351\pi\)
−0.779809 + 0.626017i \(0.784684\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 14.0000 28.0000i 0.562254 1.12451i
\(621\) 0 0
\(622\) 0 0
\(623\) 38.1051 + 22.0000i 1.52665 + 0.881411i
\(624\) 0 0
\(625\) 24.2846 5.93782i 0.971384 0.237513i
\(626\) −60.0000 −2.39808
\(627\) 0 0
\(628\) 8.00000i 0.319235i
\(629\) 2.00000 + 3.46410i 0.0797452 + 0.138123i
\(630\) 0 0
\(631\) −0.500000 + 0.866025i −0.0199047 + 0.0344759i −0.875806 0.482663i \(-0.839670\pi\)
0.855901 + 0.517139i \(0.173003\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 4.00000 0.158860
\(635\) 12.0000 + 6.00000i 0.476205 + 0.238103i
\(636\) 0 0
\(637\) −15.5885 9.00000i −0.617637 0.356593i
\(638\) 18.0000i 0.712627i
\(639\) 0 0
\(640\) 0 0
\(641\) 10.5000 + 18.1865i 0.414725 + 0.718325i 0.995400 0.0958109i \(-0.0305444\pi\)
−0.580674 + 0.814136i \(0.697211\pi\)
\(642\) 0 0
\(643\) −39.8372 + 23.0000i −1.57102 + 0.907031i −0.574981 + 0.818167i \(0.694991\pi\)
−0.996044 + 0.0888646i \(0.971676\pi\)
\(644\) 24.0000 + 41.5692i 0.945732 + 1.63806i
\(645\) 0 0
\(646\) 2.00000 + 17.3205i 0.0786889 + 0.681466i
\(647\) 6.00000i 0.235884i −0.993020 0.117942i \(-0.962370\pi\)
0.993020 0.117942i \(-0.0376297\pi\)
\(648\) 0 0
\(649\) −4.50000 7.79423i −0.176640 0.305950i
\(650\) 19.8564 2.39230i 0.778832 0.0938339i
\(651\) 0 0
\(652\) 6.92820 + 4.00000i 0.271329 + 0.156652i
\(653\) 10.0000i 0.391330i −0.980671 0.195665i \(-0.937313\pi\)
0.980671 0.195665i \(-0.0626866\pi\)
\(654\) 0 0
\(655\) −14.7846 22.3923i −0.577683 0.874940i
\(656\) −4.00000 + 6.92820i −0.156174 + 0.270501i
\(657\) 0 0
\(658\) 48.0000i 1.87123i
\(659\) −10.0000 + 17.3205i −0.389545 + 0.674711i −0.992388 0.123148i \(-0.960701\pi\)
0.602844 + 0.797859i \(0.294034\pi\)
\(660\) 0 0
\(661\) 7.50000 12.9904i 0.291716 0.505267i −0.682499 0.730886i \(-0.739107\pi\)
0.974216 + 0.225619i \(0.0724404\pi\)
\(662\) 34.6410 20.0000i 1.34636 0.777322i
\(663\) 0 0
\(664\) 0 0
\(665\) −25.0718 29.8564i −0.972243 1.15778i
\(666\) 0 0
\(667\) −46.7654 + 27.0000i −1.81076 + 1.04544i
\(668\) 20.7846 12.0000i 0.804181 0.464294i
\(669\) 0 0
\(670\) 44.6410 2.67949i 1.72463 0.103518i
\(671\) 3.50000 6.06218i 0.135116 0.234028i
\(672\) 0 0
\(673\) 20.0000i 0.770943i −0.922720 0.385472i \(-0.874039\pi\)
0.922720 0.385472i \(-0.125961\pi\)
\(674\) −34.0000 + 58.8897i −1.30963 + 2.26835i
\(675\) 0 0
\(676\) −18.0000 −0.692308
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 12.0000 + 20.7846i 0.460518 + 0.797640i
\(680\) 0 0
\(681\) 0 0
\(682\) −12.1244 + 7.00000i −0.464266 + 0.268044i
\(683\) 30.0000i 1.14792i −0.818884 0.573959i \(-0.805407\pi\)
0.818884 0.573959i \(-0.194593\pi\)
\(684\) 0 0
\(685\) 24.0000 + 12.0000i 0.916993 + 0.458496i
\(686\) −8.00000 13.8564i −0.305441 0.529040i
\(687\) 0 0
\(688\) 6.92820 + 4.00000i 0.264135 + 0.152499i
\(689\) 4.00000 + 6.92820i 0.152388 + 0.263944i
\(690\) 0 0
\(691\) 3.00000 0.114125 0.0570627 0.998371i \(-0.481827\pi\)
0.0570627 + 0.998371i \(0.481827\pi\)
\(692\) 48.0000i 1.82469i
\(693\) 0 0
\(694\) −12.0000 + 20.7846i −0.455514 + 0.788973i
\(695\) −20.0000 + 40.0000i −0.758643 + 1.51729i
\(696\) 0 0
\(697\) −3.46410 2.00000i −0.131212 0.0757554i
\(698\) −24.2487 + 14.0000i −0.917827 + 0.529908i
\(699\) 0 0
\(700\) 36.7846 + 15.7128i 1.39033 + 0.593889i
\(701\) 3.00000 + 5.19615i 0.113308 + 0.196256i 0.917102 0.398652i \(-0.130522\pi\)
−0.803794 + 0.594908i \(0.797189\pi\)
\(702\) 0 0
\(703\) −5.19615 7.00000i −0.195977 0.264010i
\(704\) 8.00000 0.301511
\(705\) 0 0
\(706\) 8.00000 + 13.8564i 0.301084 + 0.521493i
\(707\) 51.9615 + 30.0000i 1.95421 + 1.12827i
\(708\) 0 0
\(709\) 12.5000 21.6506i 0.469447 0.813107i −0.529943 0.848034i \(-0.677787\pi\)
0.999390 + 0.0349269i \(0.0111198\pi\)
\(710\) −4.00000 2.00000i −0.150117 0.0750587i
\(711\) 0 0
\(712\) 0 0
\(713\) −36.3731 21.0000i −1.36218 0.786456i
\(714\) 0 0
\(715\) −4.00000 2.00000i −0.149592 0.0747958i
\(716\) 15.0000 25.9808i 0.560576 0.970947i
\(717\) 0 0
\(718\) 34.6410 + 20.0000i 1.29279 + 0.746393i
\(719\) 10.5000 + 18.1865i 0.391584 + 0.678243i 0.992659 0.120950i \(-0.0385939\pi\)
−0.601075 + 0.799193i \(0.705261\pi\)
\(720\) 0 0
\(721\) −64.0000 −2.38348
\(722\) −8.66025 37.0000i −0.322301 1.37700i
\(723\) 0 0
\(724\) −6.00000 10.3923i −0.222988 0.386227i
\(725\) −17.6769 + 41.3827i −0.656504 + 1.53691i
\(726\) 0 0
\(727\) −6.92820 + 4.00000i −0.256953 + 0.148352i −0.622944 0.782267i \(-0.714063\pi\)
0.365991 + 0.930618i \(0.380730\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −20.0000 + 40.0000i −0.740233 + 1.48047i
\(731\) −2.00000 + 3.46410i −0.0739727 + 0.128124i
\(732\) 0 0
\(733\) 6.00000i 0.221615i −0.993842 0.110808i \(-0.964656\pi\)
0.993842 0.110808i \(-0.0353437\pi\)
\(734\) −32.0000 −1.18114
\(735\) 0 0
\(736\) 24.0000 + 41.5692i 0.884652 + 1.53226i
\(737\) −8.66025 5.00000i −0.319005 0.184177i
\(738\) 0 0
\(739\) −14.5000 25.1147i −0.533391 0.923861i −0.999239 0.0389959i \(-0.987584\pi\)
0.465848 0.884865i \(-0.345749\pi\)
\(740\) 8.00000 + 4.00000i 0.294086 + 0.147043i
\(741\) 0 0
\(742\) 32.0000i 1.17476i
\(743\) −43.3013 + 25.0000i −1.58857 + 0.917161i −0.595026 + 0.803706i \(0.702858\pi\)
−0.993543 + 0.113455i \(0.963808\pi\)
\(744\) 0 0
\(745\) −1.23205 1.86603i −0.0451388 0.0683659i
\(746\) −12.0000 20.7846i −0.439351 0.760979i
\(747\) 0 0
\(748\) 4.00000i 0.146254i
\(749\) 40.0000 1.46157
\(750\) 0 0
\(751\) −20.5000 + 35.5070i −0.748056 + 1.29567i 0.200698 + 0.979653i \(0.435679\pi\)
−0.948753 + 0.316017i \(0.897654\pi\)
\(752\) 24.0000i 0.875190i
\(753\) 0 0
\(754\) −18.0000 + 31.1769i −0.655521 + 1.13540i
\(755\) −20.0885 + 1.20577i −0.731094 + 0.0438825i
\(756\) 0 0
\(757\) −22.5167 + 13.0000i −0.818382 + 0.472493i −0.849858 0.527011i \(-0.823312\pi\)
0.0314762 + 0.999505i \(0.489979\pi\)
\(758\) 50.2295 29.0000i 1.82442 1.05333i
\(759\) 0 0
\(760\) 0 0
\(761\) 18.0000 0.652499 0.326250 0.945284i \(-0.394215\pi\)
0.326250 + 0.945284i \(0.394215\pi\)
\(762\) 0 0
\(763\) −51.9615 + 30.0000i −1.88113 + 1.08607i
\(764\) 3.00000 5.19615i 0.108536 0.187990i
\(765\) 0 0
\(766\) −6.00000 + 10.3923i −0.216789 + 0.375489i
\(767\) 18.0000i 0.649942i
\(768\) 0 0
\(769\) 2.50000 4.33013i 0.0901523 0.156148i −0.817423 0.576038i \(-0.804598\pi\)
0.907575 + 0.419890i \(0.137931\pi\)
\(770\) −9.85641 14.9282i −0.355200 0.537975i
\(771\) 0 0
\(772\) 32.0000i 1.15171i
\(773\) 29.4449 + 17.0000i 1.05906 + 0.611448i 0.925172 0.379549i \(-0.123921\pi\)
0.133887 + 0.990997i \(0.457254\pi\)
\(774\) 0 0
\(775\) −34.7487 + 4.18653i −1.24821 + 0.150385i
\(776\) 0 0
\(777\) 0 0
\(778\) 66.0000i 2.36621i
\(779\) 8.00000 + 3.46410i 0.286630 + 0.124114i
\(780\) 0 0
\(781\) 0.500000 + 0.866025i 0.0178914 + 0.0309888i
\(782\) −20.7846 + 12.0000i −0.743256 + 0.429119i
\(783\) 0 0