Properties

Label 855.2.a.k
Level $855$
Weight $2$
Character orbit 855.a
Self dual yes
Analytic conductor $6.827$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(1,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,1,0,1,-3,0,-4,3,0,-1,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + \beta_1) q^{4} - q^{5} + (\beta_{2} + 2 \beta_1 - 2) q^{7} + (\beta_{2} + 1) q^{8} - \beta_1 q^{10} + (2 \beta_{2} + \beta_1 + 1) q^{11} + ( - 3 \beta_{2} - 2) q^{13}+ \cdots + ( - \beta_{2} + 2 \beta_1 - 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + q^{4} - 3 q^{5} - 4 q^{7} + 3 q^{8} - q^{10} + 4 q^{11} - 6 q^{13} + 10 q^{14} - 3 q^{16} + 16 q^{17} + 3 q^{19} - q^{20} + 4 q^{22} + 10 q^{23} + 3 q^{25} + 4 q^{26} + 14 q^{28} - 2 q^{29}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.48119
0.311108
2.17009
−1.48119 0 0.193937 −1.00000 0 −3.28726 2.67513 0 1.48119
1.2 0.311108 0 −1.90321 −1.00000 0 −3.59210 −1.21432 0 −0.311108
1.3 2.17009 0 2.70928 −1.00000 0 2.87936 1.53919 0 −2.17009
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 855.2.a.k yes 3
3.b odd 2 1 855.2.a.j 3
5.b even 2 1 4275.2.a.bc 3
15.d odd 2 1 4275.2.a.bl 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
855.2.a.j 3 3.b odd 2 1
855.2.a.k yes 3 1.a even 1 1 trivial
4275.2.a.bc 3 5.b even 2 1
4275.2.a.bl 3 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(855))\):

\( T_{2}^{3} - T_{2}^{2} - 3T_{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{3} + 4T_{7}^{2} - 8T_{7} - 34 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - T^{2} - 3T + 1 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( (T + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 4 T^{2} + \cdots - 34 \) Copy content Toggle raw display
$11$ \( T^{3} - 4 T^{2} + \cdots + 38 \) Copy content Toggle raw display
$13$ \( T^{3} + 6 T^{2} + \cdots - 118 \) Copy content Toggle raw display
$17$ \( T^{3} - 16 T^{2} + \cdots - 92 \) Copy content Toggle raw display
$19$ \( (T - 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 10 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$29$ \( T^{3} + 2 T^{2} + \cdots - 74 \) Copy content Toggle raw display
$31$ \( T^{3} - 8 T^{2} + \cdots + 92 \) Copy content Toggle raw display
$37$ \( T^{3} + 20 T^{2} + \cdots + 118 \) Copy content Toggle raw display
$41$ \( T^{3} - 10 T^{2} + \cdots + 494 \) Copy content Toggle raw display
$43$ \( T^{3} + 10 T^{2} + \cdots - 310 \) Copy content Toggle raw display
$47$ \( T^{3} - 6 T^{2} + \cdots + 460 \) Copy content Toggle raw display
$53$ \( T^{3} - 8 T^{2} + \cdots + 740 \) Copy content Toggle raw display
$59$ \( T^{3} + 6 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$61$ \( T^{3} - 6 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$67$ \( T^{3} + 2 T^{2} + \cdots + 232 \) Copy content Toggle raw display
$71$ \( T^{3} - 10 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$73$ \( T^{3} + 4 T^{2} + \cdots + 80 \) Copy content Toggle raw display
$79$ \( T^{3} - 12 T^{2} + \cdots + 976 \) Copy content Toggle raw display
$83$ \( T^{3} - 6 T^{2} + \cdots + 428 \) Copy content Toggle raw display
$89$ \( T^{3} - 40 T^{2} + \cdots - 2042 \) Copy content Toggle raw display
$97$ \( T^{3} + 2 T^{2} + \cdots - 158 \) Copy content Toggle raw display
show more
show less