# Properties

 Label 855.2.a.i Level $855$ Weight $2$ Character orbit 855.a Self dual yes Analytic conductor $6.827$ Analytic rank $0$ Dimension $3$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [855,2,Mod(1,855)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(855, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("855.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$855 = 3^{2} \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 855.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$6.82720937282$$ Analytic rank: $$0$$ Dimension: $$3$$ Coefficient field: 3.3.148.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{3} - x^{2} - 3x + 1$$ x^3 - x^2 - 3*x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 95) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - \beta_1 q^{2} + (\beta_{2} + \beta_1) q^{4} - q^{5} + 2 \beta_{2} q^{7} + ( - \beta_{2} - 1) q^{8}+O(q^{10})$$ q - b1 * q^2 + (b2 + b1) * q^4 - q^5 + 2*b2 * q^7 + (-b2 - 1) * q^8 $$q - \beta_1 q^{2} + (\beta_{2} + \beta_1) q^{4} - q^{5} + 2 \beta_{2} q^{7} + ( - \beta_{2} - 1) q^{8} + \beta_1 q^{10} + (2 \beta_1 + 2) q^{11} + (\beta_{2} - \beta_1 + 3) q^{13} + ( - 2 \beta_1 + 2) q^{14} + ( - 2 \beta_{2} - 1) q^{16} + (2 \beta_{2} - 2 \beta_1) q^{17} - q^{19} + ( - \beta_{2} - \beta_1) q^{20} + ( - 2 \beta_{2} - 4 \beta_1 - 4) q^{22} + ( - 2 \beta_1 + 2) q^{23} + q^{25} + (\beta_{2} - 3 \beta_1 + 3) q^{26} + ( - 2 \beta_{2} + 4) q^{28} + ( - 2 \beta_{2} - 2 \beta_1 + 4) q^{29} + 4 \beta_1 q^{31} + (2 \beta_{2} + 3 \beta_1) q^{32} + (2 \beta_{2} + 6) q^{34} - 2 \beta_{2} q^{35} + (\beta_{2} - \beta_1 + 7) q^{37} + \beta_1 q^{38} + (\beta_{2} + 1) q^{40} + ( - 2 \beta_{2} + 2 \beta_1) q^{41} + ( - 6 \beta_{2} - 4 \beta_1) q^{43} + (4 \beta_{2} + 6 \beta_1 + 2) q^{44} + (2 \beta_{2} + 4) q^{46} - 2 \beta_{2} q^{47} + ( - 4 \beta_{2} - 4 \beta_1 + 5) q^{49} - \beta_1 q^{50} + (\beta_{2} + \beta_1 + 1) q^{52} + (\beta_{2} - \beta_1 - 5) q^{53} + ( - 2 \beta_1 - 2) q^{55} + (2 \beta_1 - 6) q^{56} + (2 \beta_{2} + 2) q^{58} + (2 \beta_{2} + 2 \beta_1 + 6) q^{59} + ( - 2 \beta_{2} + 4 \beta_1 - 2) q^{61} + ( - 4 \beta_{2} - 4 \beta_1 - 8) q^{62} + (\beta_{2} - 5 \beta_1 - 2) q^{64} + ( - \beta_{2} + \beta_1 - 3) q^{65} + (\beta_{2} + 5 \beta_1 - 1) q^{67} + ( - 4 \beta_{2} - 4 \beta_1 + 2) q^{68} + (2 \beta_1 - 2) q^{70} + (4 \beta_{2} + 4 \beta_1) q^{71} + (2 \beta_{2} + 2 \beta_1) q^{73} + (\beta_{2} - 7 \beta_1 + 3) q^{74} + ( - \beta_{2} - \beta_1) q^{76} + (4 \beta_{2} + 4 \beta_1 - 4) q^{77} + (6 \beta_{2} + 6 \beta_1 - 2) q^{79} + (2 \beta_{2} + 1) q^{80} + ( - 2 \beta_{2} - 6) q^{82} + (2 \beta_1 + 10) q^{83} + ( - 2 \beta_{2} + 2 \beta_1) q^{85} + (4 \beta_{2} + 10 \beta_1 + 2) q^{86} + ( - 2 \beta_{2} - 4 \beta_1) q^{88} + ( - 6 \beta_{2} - 2 \beta_1) q^{89} + (4 \beta_{2} - 4 \beta_1 + 8) q^{91} + ( - 2 \beta_1 - 2) q^{92} + (2 \beta_1 - 2) q^{94} + q^{95} + ( - 5 \beta_{2} - 7 \beta_1 + 9) q^{97} + (4 \beta_{2} + 3 \beta_1 + 4) q^{98}+O(q^{100})$$ q - b1 * q^2 + (b2 + b1) * q^4 - q^5 + 2*b2 * q^7 + (-b2 - 1) * q^8 + b1 * q^10 + (2*b1 + 2) * q^11 + (b2 - b1 + 3) * q^13 + (-2*b1 + 2) * q^14 + (-2*b2 - 1) * q^16 + (2*b2 - 2*b1) * q^17 - q^19 + (-b2 - b1) * q^20 + (-2*b2 - 4*b1 - 4) * q^22 + (-2*b1 + 2) * q^23 + q^25 + (b2 - 3*b1 + 3) * q^26 + (-2*b2 + 4) * q^28 + (-2*b2 - 2*b1 + 4) * q^29 + 4*b1 * q^31 + (2*b2 + 3*b1) * q^32 + (2*b2 + 6) * q^34 - 2*b2 * q^35 + (b2 - b1 + 7) * q^37 + b1 * q^38 + (b2 + 1) * q^40 + (-2*b2 + 2*b1) * q^41 + (-6*b2 - 4*b1) * q^43 + (4*b2 + 6*b1 + 2) * q^44 + (2*b2 + 4) * q^46 - 2*b2 * q^47 + (-4*b2 - 4*b1 + 5) * q^49 - b1 * q^50 + (b2 + b1 + 1) * q^52 + (b2 - b1 - 5) * q^53 + (-2*b1 - 2) * q^55 + (2*b1 - 6) * q^56 + (2*b2 + 2) * q^58 + (2*b2 + 2*b1 + 6) * q^59 + (-2*b2 + 4*b1 - 2) * q^61 + (-4*b2 - 4*b1 - 8) * q^62 + (b2 - 5*b1 - 2) * q^64 + (-b2 + b1 - 3) * q^65 + (b2 + 5*b1 - 1) * q^67 + (-4*b2 - 4*b1 + 2) * q^68 + (2*b1 - 2) * q^70 + (4*b2 + 4*b1) * q^71 + (2*b2 + 2*b1) * q^73 + (b2 - 7*b1 + 3) * q^74 + (-b2 - b1) * q^76 + (4*b2 + 4*b1 - 4) * q^77 + (6*b2 + 6*b1 - 2) * q^79 + (2*b2 + 1) * q^80 + (-2*b2 - 6) * q^82 + (2*b1 + 10) * q^83 + (-2*b2 + 2*b1) * q^85 + (4*b2 + 10*b1 + 2) * q^86 + (-2*b2 - 4*b1) * q^88 + (-6*b2 - 2*b1) * q^89 + (4*b2 - 4*b1 + 8) * q^91 + (-2*b1 - 2) * q^92 + (2*b1 - 2) * q^94 + q^95 + (-5*b2 - 7*b1 + 9) * q^97 + (4*b2 + 3*b1 + 4) * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q - q^{2} + q^{4} - 3 q^{5} - 3 q^{8}+O(q^{10})$$ 3 * q - q^2 + q^4 - 3 * q^5 - 3 * q^8 $$3 q - q^{2} + q^{4} - 3 q^{5} - 3 q^{8} + q^{10} + 8 q^{11} + 8 q^{13} + 4 q^{14} - 3 q^{16} - 2 q^{17} - 3 q^{19} - q^{20} - 16 q^{22} + 4 q^{23} + 3 q^{25} + 6 q^{26} + 12 q^{28} + 10 q^{29} + 4 q^{31} + 3 q^{32} + 18 q^{34} + 20 q^{37} + q^{38} + 3 q^{40} + 2 q^{41} - 4 q^{43} + 12 q^{44} + 12 q^{46} + 11 q^{49} - q^{50} + 4 q^{52} - 16 q^{53} - 8 q^{55} - 16 q^{56} + 6 q^{58} + 20 q^{59} - 2 q^{61} - 28 q^{62} - 11 q^{64} - 8 q^{65} + 2 q^{67} + 2 q^{68} - 4 q^{70} + 4 q^{71} + 2 q^{73} + 2 q^{74} - q^{76} - 8 q^{77} + 3 q^{80} - 18 q^{82} + 32 q^{83} + 2 q^{85} + 16 q^{86} - 4 q^{88} - 2 q^{89} + 20 q^{91} - 8 q^{92} - 4 q^{94} + 3 q^{95} + 20 q^{97} + 15 q^{98}+O(q^{100})$$ 3 * q - q^2 + q^4 - 3 * q^5 - 3 * q^8 + q^10 + 8 * q^11 + 8 * q^13 + 4 * q^14 - 3 * q^16 - 2 * q^17 - 3 * q^19 - q^20 - 16 * q^22 + 4 * q^23 + 3 * q^25 + 6 * q^26 + 12 * q^28 + 10 * q^29 + 4 * q^31 + 3 * q^32 + 18 * q^34 + 20 * q^37 + q^38 + 3 * q^40 + 2 * q^41 - 4 * q^43 + 12 * q^44 + 12 * q^46 + 11 * q^49 - q^50 + 4 * q^52 - 16 * q^53 - 8 * q^55 - 16 * q^56 + 6 * q^58 + 20 * q^59 - 2 * q^61 - 28 * q^62 - 11 * q^64 - 8 * q^65 + 2 * q^67 + 2 * q^68 - 4 * q^70 + 4 * q^71 + 2 * q^73 + 2 * q^74 - q^76 - 8 * q^77 + 3 * q^80 - 18 * q^82 + 32 * q^83 + 2 * q^85 + 16 * q^86 - 4 * q^88 - 2 * q^89 + 20 * q^91 - 8 * q^92 - 4 * q^94 + 3 * q^95 + 20 * q^97 + 15 * q^98

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 3x + 1$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$\nu^{2} - \nu - 2$$ v^2 - v - 2
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{2} + \beta _1 + 2$$ b2 + b1 + 2

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 2.17009 0.311108 −1.48119
−2.17009 0 2.70928 −1.00000 0 1.07838 −1.53919 0 2.17009
1.2 −0.311108 0 −1.90321 −1.00000 0 −4.42864 1.21432 0 0.311108
1.3 1.48119 0 0.193937 −1.00000 0 3.35026 −2.67513 0 −1.48119
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$5$$ $$1$$
$$19$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 855.2.a.i 3
3.b odd 2 1 95.2.a.a 3
5.b even 2 1 4275.2.a.bk 3
12.b even 2 1 1520.2.a.p 3
15.d odd 2 1 475.2.a.f 3
15.e even 4 2 475.2.b.d 6
21.c even 2 1 4655.2.a.u 3
24.f even 2 1 6080.2.a.by 3
24.h odd 2 1 6080.2.a.bo 3
57.d even 2 1 1805.2.a.f 3
60.h even 2 1 7600.2.a.bx 3
285.b even 2 1 9025.2.a.bb 3

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.a.a 3 3.b odd 2 1
475.2.a.f 3 15.d odd 2 1
475.2.b.d 6 15.e even 4 2
855.2.a.i 3 1.a even 1 1 trivial
1520.2.a.p 3 12.b even 2 1
1805.2.a.f 3 57.d even 2 1
4275.2.a.bk 3 5.b even 2 1
4655.2.a.u 3 21.c even 2 1
6080.2.a.bo 3 24.h odd 2 1
6080.2.a.by 3 24.f even 2 1
7600.2.a.bx 3 60.h even 2 1
9025.2.a.bb 3 285.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(855))$$:

 $$T_{2}^{3} + T_{2}^{2} - 3T_{2} - 1$$ T2^3 + T2^2 - 3*T2 - 1 $$T_{7}^{3} - 16T_{7} + 16$$ T7^3 - 16*T7 + 16

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{3} + T^{2} - 3T - 1$$
$3$ $$T^{3}$$
$5$ $$(T + 1)^{3}$$
$7$ $$T^{3} - 16T + 16$$
$11$ $$T^{3} - 8 T^{2} + 8 T + 16$$
$13$ $$T^{3} - 8 T^{2} + 12 T - 4$$
$17$ $$T^{3} + 2 T^{2} - 36 T - 104$$
$19$ $$(T + 1)^{3}$$
$23$ $$T^{3} - 4 T^{2} - 8 T + 16$$
$29$ $$T^{3} - 10 T^{2} + 12 T + 40$$
$31$ $$T^{3} - 4 T^{2} - 48 T + 64$$
$37$ $$T^{3} - 20 T^{2} + 124 T - 244$$
$41$ $$T^{3} - 2 T^{2} - 36 T + 104$$
$43$ $$T^{3} + 4 T^{2} - 144 T - 592$$
$47$ $$T^{3} - 16T - 16$$
$53$ $$T^{3} + 16 T^{2} + 76 T + 92$$
$59$ $$T^{3} - 20 T^{2} + 112 T - 160$$
$61$ $$T^{3} + 2 T^{2} - 84 T + 232$$
$67$ $$T^{3} - 2 T^{2} - 76 T - 116$$
$71$ $$T^{3} - 4 T^{2} - 80 T + 64$$
$73$ $$T^{3} - 2 T^{2} - 20 T + 8$$
$79$ $$T^{3} - 192T - 160$$
$83$ $$T^{3} - 32 T^{2} + 328 T - 1072$$
$89$ $$T^{3} + 2 T^{2} - 132 T - 680$$
$97$ $$T^{3} - 20 T^{2} - 60 T + 1748$$