Properties

Label 855.2.a.c.1.1
Level $855$
Weight $2$
Character 855.1
Self dual yes
Analytic conductor $6.827$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(1,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 855.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{4} +1.00000 q^{5} -2.00000 q^{7} -3.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{4} +1.00000 q^{5} -2.00000 q^{7} -3.00000 q^{8} +1.00000 q^{10} +6.00000 q^{11} -2.00000 q^{14} -1.00000 q^{16} +6.00000 q^{17} +1.00000 q^{19} -1.00000 q^{20} +6.00000 q^{22} +8.00000 q^{23} +1.00000 q^{25} +2.00000 q^{28} -4.00000 q^{29} +5.00000 q^{32} +6.00000 q^{34} -2.00000 q^{35} +4.00000 q^{37} +1.00000 q^{38} -3.00000 q^{40} -2.00000 q^{43} -6.00000 q^{44} +8.00000 q^{46} +8.00000 q^{47} -3.00000 q^{49} +1.00000 q^{50} -2.00000 q^{53} +6.00000 q^{55} +6.00000 q^{56} -4.00000 q^{58} -12.0000 q^{59} +2.00000 q^{61} +7.00000 q^{64} -8.00000 q^{67} -6.00000 q^{68} -2.00000 q^{70} -16.0000 q^{71} +14.0000 q^{73} +4.00000 q^{74} -1.00000 q^{76} -12.0000 q^{77} +8.00000 q^{79} -1.00000 q^{80} +6.00000 q^{85} -2.00000 q^{86} -18.0000 q^{88} -8.00000 q^{92} +8.00000 q^{94} +1.00000 q^{95} -12.0000 q^{97} -3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) −3.00000 −1.06066
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) 6.00000 1.80907 0.904534 0.426401i \(-0.140219\pi\)
0.904534 + 0.426401i \(0.140219\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 6.00000 1.27920
\(23\) 8.00000 1.66812 0.834058 0.551677i \(-0.186012\pi\)
0.834058 + 0.551677i \(0.186012\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 2.00000 0.377964
\(29\) −4.00000 −0.742781 −0.371391 0.928477i \(-0.621119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 5.00000 0.883883
\(33\) 0 0
\(34\) 6.00000 1.02899
\(35\) −2.00000 −0.338062
\(36\) 0 0
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) 1.00000 0.162221
\(39\) 0 0
\(40\) −3.00000 −0.474342
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) −6.00000 −0.904534
\(45\) 0 0
\(46\) 8.00000 1.17954
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 0 0
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) 6.00000 0.809040
\(56\) 6.00000 0.801784
\(57\) 0 0
\(58\) −4.00000 −0.525226
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) −6.00000 −0.727607
\(69\) 0 0
\(70\) −2.00000 −0.239046
\(71\) −16.0000 −1.89885 −0.949425 0.313993i \(-0.898333\pi\)
−0.949425 + 0.313993i \(0.898333\pi\)
\(72\) 0 0
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) 4.00000 0.464991
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) −12.0000 −1.36753
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) −1.00000 −0.111803
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 6.00000 0.650791
\(86\) −2.00000 −0.215666
\(87\) 0 0
\(88\) −18.0000 −1.91881
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −8.00000 −0.834058
\(93\) 0 0
\(94\) 8.00000 0.825137
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) −12.0000 −1.21842 −0.609208 0.793011i \(-0.708512\pi\)
−0.609208 + 0.793011i \(0.708512\pi\)
\(98\) −3.00000 −0.303046
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 18.0000 1.79107 0.895533 0.444994i \(-0.146794\pi\)
0.895533 + 0.444994i \(0.146794\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 6.00000 0.572078
\(111\) 0 0
\(112\) 2.00000 0.188982
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 8.00000 0.746004
\(116\) 4.00000 0.371391
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 2.00000 0.181071
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) −3.00000 −0.265165
\(129\) 0 0
\(130\) 0 0
\(131\) 2.00000 0.174741 0.0873704 0.996176i \(-0.472154\pi\)
0.0873704 + 0.996176i \(0.472154\pi\)
\(132\) 0 0
\(133\) −2.00000 −0.173422
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) −18.0000 −1.54349
\(137\) 10.0000 0.854358 0.427179 0.904167i \(-0.359507\pi\)
0.427179 + 0.904167i \(0.359507\pi\)
\(138\) 0 0
\(139\) −16.0000 −1.35710 −0.678551 0.734553i \(-0.737392\pi\)
−0.678551 + 0.734553i \(0.737392\pi\)
\(140\) 2.00000 0.169031
\(141\) 0 0
\(142\) −16.0000 −1.34269
\(143\) 0 0
\(144\) 0 0
\(145\) −4.00000 −0.332182
\(146\) 14.0000 1.15865
\(147\) 0 0
\(148\) −4.00000 −0.328798
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) −3.00000 −0.243332
\(153\) 0 0
\(154\) −12.0000 −0.966988
\(155\) 0 0
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 8.00000 0.636446
\(159\) 0 0
\(160\) 5.00000 0.395285
\(161\) −16.0000 −1.26098
\(162\) 0 0
\(163\) −22.0000 −1.72317 −0.861586 0.507611i \(-0.830529\pi\)
−0.861586 + 0.507611i \(0.830529\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 6.00000 0.460179
\(171\) 0 0
\(172\) 2.00000 0.152499
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) −2.00000 −0.151186
\(176\) −6.00000 −0.452267
\(177\) 0 0
\(178\) 0 0
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −24.0000 −1.76930
\(185\) 4.00000 0.294086
\(186\) 0 0
\(187\) 36.0000 2.63258
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) 1.00000 0.0725476
\(191\) −10.0000 −0.723575 −0.361787 0.932261i \(-0.617833\pi\)
−0.361787 + 0.932261i \(0.617833\pi\)
\(192\) 0 0
\(193\) 24.0000 1.72756 0.863779 0.503871i \(-0.168091\pi\)
0.863779 + 0.503871i \(0.168091\pi\)
\(194\) −12.0000 −0.861550
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) −3.00000 −0.212132
\(201\) 0 0
\(202\) 18.0000 1.26648
\(203\) 8.00000 0.561490
\(204\) 0 0
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) 0 0
\(209\) 6.00000 0.415029
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 2.00000 0.137361
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) −2.00000 −0.136399
\(216\) 0 0
\(217\) 0 0
\(218\) −6.00000 −0.406371
\(219\) 0 0
\(220\) −6.00000 −0.404520
\(221\) 0 0
\(222\) 0 0
\(223\) 8.00000 0.535720 0.267860 0.963458i \(-0.413684\pi\)
0.267860 + 0.963458i \(0.413684\pi\)
\(224\) −10.0000 −0.668153
\(225\) 0 0
\(226\) 6.00000 0.399114
\(227\) 28.0000 1.85843 0.929213 0.369546i \(-0.120487\pi\)
0.929213 + 0.369546i \(0.120487\pi\)
\(228\) 0 0
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) 8.00000 0.527504
\(231\) 0 0
\(232\) 12.0000 0.787839
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) 12.0000 0.781133
\(237\) 0 0
\(238\) −12.0000 −0.777844
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 25.0000 1.60706
\(243\) 0 0
\(244\) −2.00000 −0.128037
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 1.00000 0.0632456
\(251\) 6.00000 0.378717 0.189358 0.981908i \(-0.439359\pi\)
0.189358 + 0.981908i \(0.439359\pi\)
\(252\) 0 0
\(253\) 48.0000 3.01773
\(254\) 4.00000 0.250982
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 22.0000 1.37232 0.686161 0.727450i \(-0.259294\pi\)
0.686161 + 0.727450i \(0.259294\pi\)
\(258\) 0 0
\(259\) −8.00000 −0.497096
\(260\) 0 0
\(261\) 0 0
\(262\) 2.00000 0.123560
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) −2.00000 −0.122859
\(266\) −2.00000 −0.122628
\(267\) 0 0
\(268\) 8.00000 0.488678
\(269\) −12.0000 −0.731653 −0.365826 0.930683i \(-0.619214\pi\)
−0.365826 + 0.930683i \(0.619214\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) −6.00000 −0.363803
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) 6.00000 0.361814
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) −16.0000 −0.959616
\(279\) 0 0
\(280\) 6.00000 0.358569
\(281\) 4.00000 0.238620 0.119310 0.992857i \(-0.461932\pi\)
0.119310 + 0.992857i \(0.461932\pi\)
\(282\) 0 0
\(283\) −14.0000 −0.832214 −0.416107 0.909316i \(-0.636606\pi\)
−0.416107 + 0.909316i \(0.636606\pi\)
\(284\) 16.0000 0.949425
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) −4.00000 −0.234888
\(291\) 0 0
\(292\) −14.0000 −0.819288
\(293\) −30.0000 −1.75262 −0.876309 0.481749i \(-0.840002\pi\)
−0.876309 + 0.481749i \(0.840002\pi\)
\(294\) 0 0
\(295\) −12.0000 −0.698667
\(296\) −12.0000 −0.697486
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) 0 0
\(300\) 0 0
\(301\) 4.00000 0.230556
\(302\) −16.0000 −0.920697
\(303\) 0 0
\(304\) −1.00000 −0.0573539
\(305\) 2.00000 0.114520
\(306\) 0 0
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) 12.0000 0.683763
\(309\) 0 0
\(310\) 0 0
\(311\) −34.0000 −1.92796 −0.963982 0.265969i \(-0.914308\pi\)
−0.963982 + 0.265969i \(0.914308\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) −2.00000 −0.112867
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) 7.00000 0.391312
\(321\) 0 0
\(322\) −16.0000 −0.891645
\(323\) 6.00000 0.333849
\(324\) 0 0
\(325\) 0 0
\(326\) −22.0000 −1.21847
\(327\) 0 0
\(328\) 0 0
\(329\) −16.0000 −0.882109
\(330\) 0 0
\(331\) 28.0000 1.53902 0.769510 0.638635i \(-0.220501\pi\)
0.769510 + 0.638635i \(0.220501\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −16.0000 −0.875481
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) −12.0000 −0.653682 −0.326841 0.945079i \(-0.605984\pi\)
−0.326841 + 0.945079i \(0.605984\pi\)
\(338\) −13.0000 −0.707107
\(339\) 0 0
\(340\) −6.00000 −0.325396
\(341\) 0 0
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 6.00000 0.323498
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) −8.00000 −0.429463 −0.214731 0.976673i \(-0.568888\pi\)
−0.214731 + 0.976673i \(0.568888\pi\)
\(348\) 0 0
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) −2.00000 −0.106904
\(351\) 0 0
\(352\) 30.0000 1.59901
\(353\) 34.0000 1.80964 0.904819 0.425797i \(-0.140006\pi\)
0.904819 + 0.425797i \(0.140006\pi\)
\(354\) 0 0
\(355\) −16.0000 −0.849192
\(356\) 0 0
\(357\) 0 0
\(358\) 20.0000 1.05703
\(359\) −10.0000 −0.527780 −0.263890 0.964553i \(-0.585006\pi\)
−0.263890 + 0.964553i \(0.585006\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 10.0000 0.525588
\(363\) 0 0
\(364\) 0 0
\(365\) 14.0000 0.732793
\(366\) 0 0
\(367\) −14.0000 −0.730794 −0.365397 0.930852i \(-0.619067\pi\)
−0.365397 + 0.930852i \(0.619067\pi\)
\(368\) −8.00000 −0.417029
\(369\) 0 0
\(370\) 4.00000 0.207950
\(371\) 4.00000 0.207670
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 36.0000 1.86152
\(375\) 0 0
\(376\) −24.0000 −1.23771
\(377\) 0 0
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) −1.00000 −0.0512989
\(381\) 0 0
\(382\) −10.0000 −0.511645
\(383\) −8.00000 −0.408781 −0.204390 0.978889i \(-0.565521\pi\)
−0.204390 + 0.978889i \(0.565521\pi\)
\(384\) 0 0
\(385\) −12.0000 −0.611577
\(386\) 24.0000 1.22157
\(387\) 0 0
\(388\) 12.0000 0.609208
\(389\) 14.0000 0.709828 0.354914 0.934899i \(-0.384510\pi\)
0.354914 + 0.934899i \(0.384510\pi\)
\(390\) 0 0
\(391\) 48.0000 2.42746
\(392\) 9.00000 0.454569
\(393\) 0 0
\(394\) −6.00000 −0.302276
\(395\) 8.00000 0.402524
\(396\) 0 0
\(397\) 6.00000 0.301131 0.150566 0.988600i \(-0.451890\pi\)
0.150566 + 0.988600i \(0.451890\pi\)
\(398\) −20.0000 −1.00251
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) −4.00000 −0.199750 −0.0998752 0.995000i \(-0.531844\pi\)
−0.0998752 + 0.995000i \(0.531844\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −18.0000 −0.895533
\(405\) 0 0
\(406\) 8.00000 0.397033
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 8.00000 0.394132
\(413\) 24.0000 1.18096
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 6.00000 0.293470
\(419\) 30.0000 1.46560 0.732798 0.680446i \(-0.238214\pi\)
0.732798 + 0.680446i \(0.238214\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) −20.0000 −0.973585
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 6.00000 0.291043
\(426\) 0 0
\(427\) −4.00000 −0.193574
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) −2.00000 −0.0964486
\(431\) −36.0000 −1.73406 −0.867029 0.498257i \(-0.833974\pi\)
−0.867029 + 0.498257i \(0.833974\pi\)
\(432\) 0 0
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.00000 0.287348
\(437\) 8.00000 0.382692
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) −18.0000 −0.858116
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 8.00000 0.378811
\(447\) 0 0
\(448\) −14.0000 −0.661438
\(449\) 8.00000 0.377543 0.188772 0.982021i \(-0.439549\pi\)
0.188772 + 0.982021i \(0.439549\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −6.00000 −0.282216
\(453\) 0 0
\(454\) 28.0000 1.31411
\(455\) 0 0
\(456\) 0 0
\(457\) −6.00000 −0.280668 −0.140334 0.990104i \(-0.544818\pi\)
−0.140334 + 0.990104i \(0.544818\pi\)
\(458\) 2.00000 0.0934539
\(459\) 0 0
\(460\) −8.00000 −0.373002
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) −14.0000 −0.650635 −0.325318 0.945605i \(-0.605471\pi\)
−0.325318 + 0.945605i \(0.605471\pi\)
\(464\) 4.00000 0.185695
\(465\) 0 0
\(466\) −22.0000 −1.01913
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 8.00000 0.369012
\(471\) 0 0
\(472\) 36.0000 1.65703
\(473\) −12.0000 −0.551761
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 12.0000 0.550019
\(477\) 0 0
\(478\) −6.00000 −0.274434
\(479\) −18.0000 −0.822441 −0.411220 0.911536i \(-0.634897\pi\)
−0.411220 + 0.911536i \(0.634897\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 18.0000 0.819878
\(483\) 0 0
\(484\) −25.0000 −1.13636
\(485\) −12.0000 −0.544892
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) −6.00000 −0.271607
\(489\) 0 0
\(490\) −3.00000 −0.135526
\(491\) 26.0000 1.17336 0.586682 0.809818i \(-0.300434\pi\)
0.586682 + 0.809818i \(0.300434\pi\)
\(492\) 0 0
\(493\) −24.0000 −1.08091
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 32.0000 1.43540
\(498\) 0 0
\(499\) −24.0000 −1.07439 −0.537194 0.843459i \(-0.680516\pi\)
−0.537194 + 0.843459i \(0.680516\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) 6.00000 0.267793
\(503\) 36.0000 1.60516 0.802580 0.596544i \(-0.203460\pi\)
0.802580 + 0.596544i \(0.203460\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) 48.0000 2.13386
\(507\) 0 0
\(508\) −4.00000 −0.177471
\(509\) 24.0000 1.06378 0.531891 0.846813i \(-0.321482\pi\)
0.531891 + 0.846813i \(0.321482\pi\)
\(510\) 0 0
\(511\) −28.0000 −1.23865
\(512\) −11.0000 −0.486136
\(513\) 0 0
\(514\) 22.0000 0.970378
\(515\) −8.00000 −0.352522
\(516\) 0 0
\(517\) 48.0000 2.11104
\(518\) −8.00000 −0.351500
\(519\) 0 0
\(520\) 0 0
\(521\) 4.00000 0.175243 0.0876216 0.996154i \(-0.472073\pi\)
0.0876216 + 0.996154i \(0.472073\pi\)
\(522\) 0 0
\(523\) −4.00000 −0.174908 −0.0874539 0.996169i \(-0.527873\pi\)
−0.0874539 + 0.996169i \(0.527873\pi\)
\(524\) −2.00000 −0.0873704
\(525\) 0 0
\(526\) 12.0000 0.523225
\(527\) 0 0
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) −2.00000 −0.0868744
\(531\) 0 0
\(532\) 2.00000 0.0867110
\(533\) 0 0
\(534\) 0 0
\(535\) 12.0000 0.518805
\(536\) 24.0000 1.03664
\(537\) 0 0
\(538\) −12.0000 −0.517357
\(539\) −18.0000 −0.775315
\(540\) 0 0
\(541\) −42.0000 −1.80572 −0.902861 0.429934i \(-0.858537\pi\)
−0.902861 + 0.429934i \(0.858537\pi\)
\(542\) −20.0000 −0.859074
\(543\) 0 0
\(544\) 30.0000 1.28624
\(545\) −6.00000 −0.257012
\(546\) 0 0
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) −10.0000 −0.427179
\(549\) 0 0
\(550\) 6.00000 0.255841
\(551\) −4.00000 −0.170406
\(552\) 0 0
\(553\) −16.0000 −0.680389
\(554\) −2.00000 −0.0849719
\(555\) 0 0
\(556\) 16.0000 0.678551
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 2.00000 0.0845154
\(561\) 0 0
\(562\) 4.00000 0.168730
\(563\) −36.0000 −1.51722 −0.758610 0.651546i \(-0.774121\pi\)
−0.758610 + 0.651546i \(0.774121\pi\)
\(564\) 0 0
\(565\) 6.00000 0.252422
\(566\) −14.0000 −0.588464
\(567\) 0 0
\(568\) 48.0000 2.01404
\(569\) 8.00000 0.335377 0.167689 0.985840i \(-0.446370\pi\)
0.167689 + 0.985840i \(0.446370\pi\)
\(570\) 0 0
\(571\) −24.0000 −1.00437 −0.502184 0.864761i \(-0.667470\pi\)
−0.502184 + 0.864761i \(0.667470\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.00000 0.333623
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 19.0000 0.790296
\(579\) 0 0
\(580\) 4.00000 0.166091
\(581\) 0 0
\(582\) 0 0
\(583\) −12.0000 −0.496989
\(584\) −42.0000 −1.73797
\(585\) 0 0
\(586\) −30.0000 −1.23929
\(587\) 20.0000 0.825488 0.412744 0.910847i \(-0.364570\pi\)
0.412744 + 0.910847i \(0.364570\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −12.0000 −0.494032
\(591\) 0 0
\(592\) −4.00000 −0.164399
\(593\) 10.0000 0.410651 0.205325 0.978694i \(-0.434175\pi\)
0.205325 + 0.978694i \(0.434175\pi\)
\(594\) 0 0
\(595\) −12.0000 −0.491952
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) 0 0
\(599\) 20.0000 0.817178 0.408589 0.912719i \(-0.366021\pi\)
0.408589 + 0.912719i \(0.366021\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) 4.00000 0.163028
\(603\) 0 0
\(604\) 16.0000 0.651031
\(605\) 25.0000 1.01639
\(606\) 0 0
\(607\) 16.0000 0.649420 0.324710 0.945814i \(-0.394733\pi\)
0.324710 + 0.945814i \(0.394733\pi\)
\(608\) 5.00000 0.202777
\(609\) 0 0
\(610\) 2.00000 0.0809776
\(611\) 0 0
\(612\) 0 0
\(613\) −2.00000 −0.0807792 −0.0403896 0.999184i \(-0.512860\pi\)
−0.0403896 + 0.999184i \(0.512860\pi\)
\(614\) −8.00000 −0.322854
\(615\) 0 0
\(616\) 36.0000 1.45048
\(617\) −34.0000 −1.36879 −0.684394 0.729112i \(-0.739933\pi\)
−0.684394 + 0.729112i \(0.739933\pi\)
\(618\) 0 0
\(619\) 8.00000 0.321547 0.160774 0.986991i \(-0.448601\pi\)
0.160774 + 0.986991i \(0.448601\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −34.0000 −1.36328
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 10.0000 0.399680
\(627\) 0 0
\(628\) 2.00000 0.0798087
\(629\) 24.0000 0.956943
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) −24.0000 −0.954669
\(633\) 0 0
\(634\) 6.00000 0.238290
\(635\) 4.00000 0.158735
\(636\) 0 0
\(637\) 0 0
\(638\) −24.0000 −0.950169
\(639\) 0 0
\(640\) −3.00000 −0.118585
\(641\) −40.0000 −1.57991 −0.789953 0.613168i \(-0.789895\pi\)
−0.789953 + 0.613168i \(0.789895\pi\)
\(642\) 0 0
\(643\) 2.00000 0.0788723 0.0394362 0.999222i \(-0.487444\pi\)
0.0394362 + 0.999222i \(0.487444\pi\)
\(644\) 16.0000 0.630488
\(645\) 0 0
\(646\) 6.00000 0.236067
\(647\) −20.0000 −0.786281 −0.393141 0.919478i \(-0.628611\pi\)
−0.393141 + 0.919478i \(0.628611\pi\)
\(648\) 0 0
\(649\) −72.0000 −2.82625
\(650\) 0 0
\(651\) 0 0
\(652\) 22.0000 0.861586
\(653\) 18.0000 0.704394 0.352197 0.935926i \(-0.385435\pi\)
0.352197 + 0.935926i \(0.385435\pi\)
\(654\) 0 0
\(655\) 2.00000 0.0781465
\(656\) 0 0
\(657\) 0 0
\(658\) −16.0000 −0.623745
\(659\) −48.0000 −1.86981 −0.934907 0.354892i \(-0.884518\pi\)
−0.934907 + 0.354892i \(0.884518\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 28.0000 1.08825
\(663\) 0 0
\(664\) 0 0
\(665\) −2.00000 −0.0775567
\(666\) 0 0
\(667\) −32.0000 −1.23904
\(668\) 16.0000 0.619059
\(669\) 0 0
\(670\) −8.00000 −0.309067
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) 36.0000 1.38770 0.693849 0.720121i \(-0.255914\pi\)
0.693849 + 0.720121i \(0.255914\pi\)
\(674\) −12.0000 −0.462223
\(675\) 0 0
\(676\) 13.0000 0.500000
\(677\) −18.0000 −0.691796 −0.345898 0.938272i \(-0.612426\pi\)
−0.345898 + 0.938272i \(0.612426\pi\)
\(678\) 0 0
\(679\) 24.0000 0.921035
\(680\) −18.0000 −0.690268
\(681\) 0 0
\(682\) 0 0
\(683\) 36.0000 1.37750 0.688751 0.724998i \(-0.258159\pi\)
0.688751 + 0.724998i \(0.258159\pi\)
\(684\) 0 0
\(685\) 10.0000 0.382080
\(686\) 20.0000 0.763604
\(687\) 0 0
\(688\) 2.00000 0.0762493
\(689\) 0 0
\(690\) 0 0
\(691\) 32.0000 1.21734 0.608669 0.793424i \(-0.291704\pi\)
0.608669 + 0.793424i \(0.291704\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) −8.00000 −0.303676
\(695\) −16.0000 −0.606915
\(696\) 0 0
\(697\) 0 0
\(698\) −2.00000 −0.0757011
\(699\) 0 0
\(700\) 2.00000 0.0755929
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) 4.00000 0.150863
\(704\) 42.0000 1.58293
\(705\) 0 0
\(706\) 34.0000 1.27961
\(707\) −36.0000 −1.35392
\(708\) 0 0
\(709\) −14.0000 −0.525781 −0.262891 0.964826i \(-0.584676\pi\)
−0.262891 + 0.964826i \(0.584676\pi\)
\(710\) −16.0000 −0.600469
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −20.0000 −0.747435
\(717\) 0 0
\(718\) −10.0000 −0.373197
\(719\) 18.0000 0.671287 0.335643 0.941989i \(-0.391046\pi\)
0.335643 + 0.941989i \(0.391046\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 1.00000 0.0372161
\(723\) 0 0
\(724\) −10.0000 −0.371647
\(725\) −4.00000 −0.148556
\(726\) 0 0
\(727\) 26.0000 0.964287 0.482143 0.876092i \(-0.339858\pi\)
0.482143 + 0.876092i \(0.339858\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 14.0000 0.518163
\(731\) −12.0000 −0.443836
\(732\) 0 0
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) −14.0000 −0.516749
\(735\) 0 0
\(736\) 40.0000 1.47442
\(737\) −48.0000 −1.76810
\(738\) 0 0
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) −4.00000 −0.147043
\(741\) 0 0
\(742\) 4.00000 0.146845
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) −6.00000 −0.219823
\(746\) 0 0
\(747\) 0 0
\(748\) −36.0000 −1.31629
\(749\) −24.0000 −0.876941
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) −8.00000 −0.291730
\(753\) 0 0
\(754\) 0 0
\(755\) −16.0000 −0.582300
\(756\) 0 0
\(757\) −38.0000 −1.38113 −0.690567 0.723269i \(-0.742639\pi\)
−0.690567 + 0.723269i \(0.742639\pi\)
\(758\) 20.0000 0.726433
\(759\) 0 0
\(760\) −3.00000 −0.108821
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 0 0
\(763\) 12.0000 0.434429
\(764\) 10.0000 0.361787
\(765\) 0 0
\(766\) −8.00000 −0.289052
\(767\) 0 0
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) −12.0000 −0.432450
\(771\) 0 0
\(772\) −24.0000 −0.863779
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 36.0000 1.29232
\(777\) 0 0
\(778\) 14.0000 0.501924
\(779\) 0 0
\(780\) 0 0
\(781\) −96.0000 −3.43515
\(782\) 48.0000 1.71648
\(783\) 0 0
\(784\) 3.00000 0.107143
\(785\) −2.00000 −0.0713831
\(786\) 0 0
\(787\) −28.0000 −0.998092 −0.499046 0.866575i \(-0.666316\pi\)
−0.499046 + 0.866575i \(0.666316\pi\)
\(788\) 6.00000 0.213741
\(789\) 0 0
\(790\) 8.00000 0.284627
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 0 0
\(794\) 6.00000 0.212932
\(795\) 0 0
\(796\) 20.0000 0.708881
\(797\) 26.0000 0.920967 0.460484 0.887668i \(-0.347676\pi\)
0.460484 + 0.887668i \(0.347676\pi\)
\(798\) 0 0
\(799\) 48.0000 1.69812
\(800\) 5.00000 0.176777
\(801\) 0 0
\(802\) −4.00000 −0.141245
\(803\) 84.0000 2.96430
\(804\) 0 0
\(805\) −16.0000 −0.563926
\(806\) 0 0
\(807\) 0 0
\(808\) −54.0000 −1.89971
\(809\) −2.00000 −0.0703163 −0.0351581 0.999382i \(-0.511193\pi\)
−0.0351581 + 0.999382i \(0.511193\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) −8.00000 −0.280745
\(813\) 0 0
\(814\) 24.0000 0.841200
\(815\) −22.0000 −0.770626
\(816\) 0 0
\(817\) −2.00000 −0.0699711
\(818\) −10.0000 −0.349642
\(819\) 0 0
\(820\) 0 0
\(821\) −6.00000 −0.209401 −0.104701 0.994504i \(-0.533388\pi\)
−0.104701 + 0.994504i \(0.533388\pi\)
\(822\) 0 0
\(823\) −14.0000 −0.488009 −0.244005 0.969774i \(-0.578461\pi\)
−0.244005 + 0.969774i \(0.578461\pi\)
\(824\) 24.0000 0.836080
\(825\) 0 0
\(826\) 24.0000 0.835067
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) −6.00000 −0.208389 −0.104194 0.994557i \(-0.533226\pi\)
−0.104194 + 0.994557i \(0.533226\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −18.0000 −0.623663
\(834\) 0 0
\(835\) −16.0000 −0.553703
\(836\) −6.00000 −0.207514
\(837\) 0 0
\(838\) 30.0000 1.03633
\(839\) −8.00000 −0.276191 −0.138095 0.990419i \(-0.544098\pi\)
−0.138095 + 0.990419i \(0.544098\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 6.00000 0.206774
\(843\) 0 0
\(844\) 20.0000 0.688428
\(845\) −13.0000 −0.447214
\(846\) 0 0
\(847\) −50.0000 −1.71802
\(848\) 2.00000 0.0686803
\(849\) 0 0
\(850\) 6.00000 0.205798
\(851\) 32.0000 1.09695
\(852\) 0 0
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) −4.00000 −0.136877
\(855\) 0 0
\(856\) −36.0000 −1.23045
\(857\) −46.0000 −1.57133 −0.785665 0.618652i \(-0.787679\pi\)
−0.785665 + 0.618652i \(0.787679\pi\)
\(858\) 0 0
\(859\) 44.0000 1.50126 0.750630 0.660722i \(-0.229750\pi\)
0.750630 + 0.660722i \(0.229750\pi\)
\(860\) 2.00000 0.0681994
\(861\) 0 0
\(862\) −36.0000 −1.22616
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 0 0
\(865\) −6.00000 −0.204006
\(866\) −16.0000 −0.543702
\(867\) 0 0
\(868\) 0 0
\(869\) 48.0000 1.62829
\(870\) 0 0
\(871\) 0 0
\(872\) 18.0000 0.609557
\(873\) 0 0
\(874\) 8.00000 0.270604
\(875\) −2.00000 −0.0676123
\(876\) 0 0
\(877\) −24.0000 −0.810422 −0.405211 0.914223i \(-0.632802\pi\)
−0.405211 + 0.914223i \(0.632802\pi\)
\(878\) 24.0000 0.809961
\(879\) 0 0
\(880\) −6.00000 −0.202260
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) 0 0
\(883\) 2.00000 0.0673054 0.0336527 0.999434i \(-0.489286\pi\)
0.0336527 + 0.999434i \(0.489286\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 12.0000 0.403148
\(887\) −48.0000 −1.61168 −0.805841 0.592132i \(-0.798286\pi\)
−0.805841 + 0.592132i \(0.798286\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) 0 0
\(892\) −8.00000 −0.267860
\(893\) 8.00000 0.267710
\(894\) 0 0
\(895\) 20.0000 0.668526
\(896\) 6.00000 0.200446
\(897\) 0 0
\(898\) 8.00000 0.266963
\(899\) 0 0
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) −18.0000 −0.598671
\(905\) 10.0000 0.332411
\(906\) 0 0
\(907\) −52.0000 −1.72663 −0.863316 0.504664i \(-0.831616\pi\)
−0.863316 + 0.504664i \(0.831616\pi\)
\(908\) −28.0000 −0.929213
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −6.00000 −0.198462
\(915\) 0 0
\(916\) −2.00000 −0.0660819
\(917\) −4.00000 −0.132092
\(918\) 0 0
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) −24.0000 −0.791257
\(921\) 0 0
\(922\) −30.0000 −0.987997
\(923\) 0 0
\(924\) 0 0
\(925\) 4.00000 0.131519
\(926\) −14.0000 −0.460069
\(927\) 0 0
\(928\) −20.0000 −0.656532
\(929\) −18.0000 −0.590561 −0.295280 0.955411i \(-0.595413\pi\)
−0.295280 + 0.955411i \(0.595413\pi\)
\(930\) 0 0
\(931\) −3.00000 −0.0983210
\(932\) 22.0000 0.720634
\(933\) 0 0
\(934\) −12.0000 −0.392652
\(935\) 36.0000 1.17733
\(936\) 0 0
\(937\) 30.0000 0.980057 0.490029 0.871706i \(-0.336986\pi\)
0.490029 + 0.871706i \(0.336986\pi\)
\(938\) 16.0000 0.522419
\(939\) 0 0
\(940\) −8.00000 −0.260931
\(941\) −44.0000 −1.43436 −0.717180 0.696888i \(-0.754567\pi\)
−0.717180 + 0.696888i \(0.754567\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 12.0000 0.390567
\(945\) 0 0
\(946\) −12.0000 −0.390154
\(947\) −48.0000 −1.55979 −0.779895 0.625910i \(-0.784728\pi\)
−0.779895 + 0.625910i \(0.784728\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 1.00000 0.0324443
\(951\) 0 0
\(952\) 36.0000 1.16677
\(953\) 30.0000 0.971795 0.485898 0.874016i \(-0.338493\pi\)
0.485898 + 0.874016i \(0.338493\pi\)
\(954\) 0 0
\(955\) −10.0000 −0.323592
\(956\) 6.00000 0.194054
\(957\) 0 0
\(958\) −18.0000 −0.581554
\(959\) −20.0000 −0.645834
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) −18.0000 −0.579741
\(965\) 24.0000 0.772587
\(966\) 0 0
\(967\) −14.0000 −0.450210 −0.225105 0.974335i \(-0.572272\pi\)
−0.225105 + 0.974335i \(0.572272\pi\)
\(968\) −75.0000 −2.41059
\(969\) 0 0
\(970\) −12.0000 −0.385297
\(971\) 8.00000 0.256732 0.128366 0.991727i \(-0.459027\pi\)
0.128366 + 0.991727i \(0.459027\pi\)
\(972\) 0 0
\(973\) 32.0000 1.02587
\(974\) 8.00000 0.256337
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 3.00000 0.0958315
\(981\) 0 0
\(982\) 26.0000 0.829693
\(983\) −8.00000 −0.255160 −0.127580 0.991828i \(-0.540721\pi\)
−0.127580 + 0.991828i \(0.540721\pi\)
\(984\) 0 0
\(985\) −6.00000 −0.191176
\(986\) −24.0000 −0.764316
\(987\) 0 0
\(988\) 0 0
\(989\) −16.0000 −0.508770
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 32.0000 1.01498
\(995\) −20.0000 −0.634043
\(996\) 0 0
\(997\) 14.0000 0.443384 0.221692 0.975117i \(-0.428842\pi\)
0.221692 + 0.975117i \(0.428842\pi\)
\(998\) −24.0000 −0.759707
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.a.c.1.1 1
3.2 odd 2 285.2.a.a.1.1 1
5.4 even 2 4275.2.a.h.1.1 1
12.11 even 2 4560.2.a.h.1.1 1
15.2 even 4 1425.2.c.c.799.1 2
15.8 even 4 1425.2.c.c.799.2 2
15.14 odd 2 1425.2.a.g.1.1 1
57.56 even 2 5415.2.a.h.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.a.a.1.1 1 3.2 odd 2
855.2.a.c.1.1 1 1.1 even 1 trivial
1425.2.a.g.1.1 1 15.14 odd 2
1425.2.c.c.799.1 2 15.2 even 4
1425.2.c.c.799.2 2 15.8 even 4
4275.2.a.h.1.1 1 5.4 even 2
4560.2.a.h.1.1 1 12.11 even 2
5415.2.a.h.1.1 1 57.56 even 2