Properties

Label 855.2.a.a.1.1
Level $855$
Weight $2$
Character 855.1
Self dual yes
Analytic conductor $6.827$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(1,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 855.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{4} -1.00000 q^{5} +4.00000 q^{7} +3.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{4} -1.00000 q^{5} +4.00000 q^{7} +3.00000 q^{8} +1.00000 q^{10} -4.00000 q^{11} +2.00000 q^{13} -4.00000 q^{14} -1.00000 q^{16} -2.00000 q^{17} -1.00000 q^{19} +1.00000 q^{20} +4.00000 q^{22} +4.00000 q^{23} +1.00000 q^{25} -2.00000 q^{26} -4.00000 q^{28} +2.00000 q^{29} -5.00000 q^{32} +2.00000 q^{34} -4.00000 q^{35} -6.00000 q^{37} +1.00000 q^{38} -3.00000 q^{40} +6.00000 q^{41} +8.00000 q^{43} +4.00000 q^{44} -4.00000 q^{46} +12.0000 q^{47} +9.00000 q^{49} -1.00000 q^{50} -2.00000 q^{52} +14.0000 q^{53} +4.00000 q^{55} +12.0000 q^{56} -2.00000 q^{58} -4.00000 q^{59} +14.0000 q^{61} +7.00000 q^{64} -2.00000 q^{65} -4.00000 q^{67} +2.00000 q^{68} +4.00000 q^{70} -14.0000 q^{73} +6.00000 q^{74} +1.00000 q^{76} -16.0000 q^{77} +16.0000 q^{79} +1.00000 q^{80} -6.00000 q^{82} +2.00000 q^{85} -8.00000 q^{86} -12.0000 q^{88} +6.00000 q^{89} +8.00000 q^{91} -4.00000 q^{92} -12.0000 q^{94} +1.00000 q^{95} -10.0000 q^{97} -9.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 4.00000 1.51186 0.755929 0.654654i \(-0.227186\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 3.00000 1.06066
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) −4.00000 −1.06904
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) −4.00000 −0.755929
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −5.00000 −0.883883
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 1.00000 0.162221
\(39\) 0 0
\(40\) −3.00000 −0.474342
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) 12.0000 1.75038 0.875190 0.483779i \(-0.160736\pi\)
0.875190 + 0.483779i \(0.160736\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) 14.0000 1.92305 0.961524 0.274721i \(-0.0885855\pi\)
0.961524 + 0.274721i \(0.0885855\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 12.0000 1.60357
\(57\) 0 0
\(58\) −2.00000 −0.262613
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 2.00000 0.242536
\(69\) 0 0
\(70\) 4.00000 0.478091
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 6.00000 0.697486
\(75\) 0 0
\(76\) 1.00000 0.114708
\(77\) −16.0000 −1.82337
\(78\) 0 0
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) −6.00000 −0.662589
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) −8.00000 −0.862662
\(87\) 0 0
\(88\) −12.0000 −1.27920
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 8.00000 0.838628
\(92\) −4.00000 −0.417029
\(93\) 0 0
\(94\) −12.0000 −1.23771
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) −9.00000 −0.909137
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) 0 0
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) 6.00000 0.588348
\(105\) 0 0
\(106\) −14.0000 −1.35980
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) −4.00000 −0.381385
\(111\) 0 0
\(112\) −4.00000 −0.377964
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) −2.00000 −0.185695
\(117\) 0 0
\(118\) 4.00000 0.368230
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −14.0000 −1.26750
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 3.00000 0.265165
\(129\) 0 0
\(130\) 2.00000 0.175412
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) −4.00000 −0.346844
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) −6.00000 −0.514496
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 4.00000 0.338062
\(141\) 0 0
\(142\) 0 0
\(143\) −8.00000 −0.668994
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) 14.0000 1.15865
\(147\) 0 0
\(148\) 6.00000 0.493197
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) −3.00000 −0.243332
\(153\) 0 0
\(154\) 16.0000 1.28932
\(155\) 0 0
\(156\) 0 0
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) −16.0000 −1.27289
\(159\) 0 0
\(160\) 5.00000 0.395285
\(161\) 16.0000 1.26098
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) −2.00000 −0.153393
\(171\) 0 0
\(172\) −8.00000 −0.609994
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 4.00000 0.302372
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) −6.00000 −0.449719
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) −8.00000 −0.592999
\(183\) 0 0
\(184\) 12.0000 0.884652
\(185\) 6.00000 0.441129
\(186\) 0 0
\(187\) 8.00000 0.585018
\(188\) −12.0000 −0.875190
\(189\) 0 0
\(190\) −1.00000 −0.0725476
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 22.0000 1.58359 0.791797 0.610784i \(-0.209146\pi\)
0.791797 + 0.610784i \(0.209146\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) −9.00000 −0.642857
\(197\) −22.0000 −1.56744 −0.783718 0.621117i \(-0.786679\pi\)
−0.783718 + 0.621117i \(0.786679\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 3.00000 0.212132
\(201\) 0 0
\(202\) −10.0000 −0.703598
\(203\) 8.00000 0.561490
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) −16.0000 −1.11477
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) −14.0000 −0.961524
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) −8.00000 −0.545595
\(216\) 0 0
\(217\) 0 0
\(218\) 2.00000 0.135457
\(219\) 0 0
\(220\) −4.00000 −0.269680
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) −24.0000 −1.60716 −0.803579 0.595198i \(-0.797074\pi\)
−0.803579 + 0.595198i \(0.797074\pi\)
\(224\) −20.0000 −1.33631
\(225\) 0 0
\(226\) −10.0000 −0.665190
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) −26.0000 −1.71813 −0.859064 0.511868i \(-0.828954\pi\)
−0.859064 + 0.511868i \(0.828954\pi\)
\(230\) 4.00000 0.263752
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) −12.0000 −0.782794
\(236\) 4.00000 0.260378
\(237\) 0 0
\(238\) 8.00000 0.518563
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) −5.00000 −0.321412
\(243\) 0 0
\(244\) −14.0000 −0.896258
\(245\) −9.00000 −0.574989
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) 0 0
\(249\) 0 0
\(250\) 1.00000 0.0632456
\(251\) −28.0000 −1.76734 −0.883672 0.468106i \(-0.844936\pi\)
−0.883672 + 0.468106i \(0.844936\pi\)
\(252\) 0 0
\(253\) −16.0000 −1.00591
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 2.00000 0.124757 0.0623783 0.998053i \(-0.480131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) 0 0
\(259\) −24.0000 −1.49129
\(260\) 2.00000 0.124035
\(261\) 0 0
\(262\) 4.00000 0.247121
\(263\) 4.00000 0.246651 0.123325 0.992366i \(-0.460644\pi\)
0.123325 + 0.992366i \(0.460644\pi\)
\(264\) 0 0
\(265\) −14.0000 −0.860013
\(266\) 4.00000 0.245256
\(267\) 0 0
\(268\) 4.00000 0.244339
\(269\) 26.0000 1.58525 0.792624 0.609711i \(-0.208714\pi\)
0.792624 + 0.609711i \(0.208714\pi\)
\(270\) 0 0
\(271\) 24.0000 1.45790 0.728948 0.684569i \(-0.240010\pi\)
0.728948 + 0.684569i \(0.240010\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) −4.00000 −0.241209
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 4.00000 0.239904
\(279\) 0 0
\(280\) −12.0000 −0.717137
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) −16.0000 −0.951101 −0.475551 0.879688i \(-0.657751\pi\)
−0.475551 + 0.879688i \(0.657751\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 8.00000 0.473050
\(287\) 24.0000 1.41668
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 2.00000 0.117444
\(291\) 0 0
\(292\) 14.0000 0.819288
\(293\) −2.00000 −0.116841 −0.0584206 0.998292i \(-0.518606\pi\)
−0.0584206 + 0.998292i \(0.518606\pi\)
\(294\) 0 0
\(295\) 4.00000 0.232889
\(296\) −18.0000 −1.04623
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 8.00000 0.462652
\(300\) 0 0
\(301\) 32.0000 1.84445
\(302\) 0 0
\(303\) 0 0
\(304\) 1.00000 0.0573539
\(305\) −14.0000 −0.801638
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 16.0000 0.911685
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 18.0000 1.01580
\(315\) 0 0
\(316\) −16.0000 −0.900070
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 0 0
\(319\) −8.00000 −0.447914
\(320\) −7.00000 −0.391312
\(321\) 0 0
\(322\) −16.0000 −0.891645
\(323\) 2.00000 0.111283
\(324\) 0 0
\(325\) 2.00000 0.110940
\(326\) 0 0
\(327\) 0 0
\(328\) 18.0000 0.993884
\(329\) 48.0000 2.64633
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −8.00000 −0.437741
\(335\) 4.00000 0.218543
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) 9.00000 0.489535
\(339\) 0 0
\(340\) −2.00000 −0.108465
\(341\) 0 0
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 24.0000 1.29399
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) −32.0000 −1.71785 −0.858925 0.512101i \(-0.828867\pi\)
−0.858925 + 0.512101i \(0.828867\pi\)
\(348\) 0 0
\(349\) 30.0000 1.60586 0.802932 0.596071i \(-0.203272\pi\)
0.802932 + 0.596071i \(0.203272\pi\)
\(350\) −4.00000 −0.213809
\(351\) 0 0
\(352\) 20.0000 1.06600
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) 8.00000 0.422224 0.211112 0.977462i \(-0.432292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −22.0000 −1.15629
\(363\) 0 0
\(364\) −8.00000 −0.419314
\(365\) 14.0000 0.732793
\(366\) 0 0
\(367\) −20.0000 −1.04399 −0.521996 0.852948i \(-0.674812\pi\)
−0.521996 + 0.852948i \(0.674812\pi\)
\(368\) −4.00000 −0.208514
\(369\) 0 0
\(370\) −6.00000 −0.311925
\(371\) 56.0000 2.90738
\(372\) 0 0
\(373\) 34.0000 1.76045 0.880227 0.474554i \(-0.157390\pi\)
0.880227 + 0.474554i \(0.157390\pi\)
\(374\) −8.00000 −0.413670
\(375\) 0 0
\(376\) 36.0000 1.85656
\(377\) 4.00000 0.206010
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) −1.00000 −0.0512989
\(381\) 0 0
\(382\) 0 0
\(383\) −32.0000 −1.63512 −0.817562 0.575841i \(-0.804675\pi\)
−0.817562 + 0.575841i \(0.804675\pi\)
\(384\) 0 0
\(385\) 16.0000 0.815436
\(386\) −22.0000 −1.11977
\(387\) 0 0
\(388\) 10.0000 0.507673
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 27.0000 1.36371
\(393\) 0 0
\(394\) 22.0000 1.10834
\(395\) −16.0000 −0.805047
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) 6.00000 0.299626 0.149813 0.988714i \(-0.452133\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −10.0000 −0.497519
\(405\) 0 0
\(406\) −8.00000 −0.397033
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 6.00000 0.296319
\(411\) 0 0
\(412\) −16.0000 −0.788263
\(413\) −16.0000 −0.787309
\(414\) 0 0
\(415\) 0 0
\(416\) −10.0000 −0.490290
\(417\) 0 0
\(418\) −4.00000 −0.195646
\(419\) −28.0000 −1.36789 −0.683945 0.729534i \(-0.739737\pi\)
−0.683945 + 0.729534i \(0.739737\pi\)
\(420\) 0 0
\(421\) 14.0000 0.682318 0.341159 0.940006i \(-0.389181\pi\)
0.341159 + 0.940006i \(0.389181\pi\)
\(422\) −12.0000 −0.584151
\(423\) 0 0
\(424\) 42.0000 2.03970
\(425\) −2.00000 −0.0970143
\(426\) 0 0
\(427\) 56.0000 2.71003
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) 8.00000 0.385794
\(431\) −32.0000 −1.54139 −0.770693 0.637207i \(-0.780090\pi\)
−0.770693 + 0.637207i \(0.780090\pi\)
\(432\) 0 0
\(433\) 6.00000 0.288342 0.144171 0.989553i \(-0.453949\pi\)
0.144171 + 0.989553i \(0.453949\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.00000 0.0957826
\(437\) −4.00000 −0.191346
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 12.0000 0.572078
\(441\) 0 0
\(442\) 4.00000 0.190261
\(443\) −40.0000 −1.90046 −0.950229 0.311553i \(-0.899151\pi\)
−0.950229 + 0.311553i \(0.899151\pi\)
\(444\) 0 0
\(445\) −6.00000 −0.284427
\(446\) 24.0000 1.13643
\(447\) 0 0
\(448\) 28.0000 1.32288
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) −10.0000 −0.470360
\(453\) 0 0
\(454\) −12.0000 −0.563188
\(455\) −8.00000 −0.375046
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 26.0000 1.21490
\(459\) 0 0
\(460\) 4.00000 0.186501
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) −2.00000 −0.0928477
\(465\) 0 0
\(466\) 18.0000 0.833834
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) 12.0000 0.553519
\(471\) 0 0
\(472\) −12.0000 −0.552345
\(473\) −32.0000 −1.47136
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 8.00000 0.366679
\(477\) 0 0
\(478\) −24.0000 −1.09773
\(479\) 16.0000 0.731059 0.365529 0.930800i \(-0.380888\pi\)
0.365529 + 0.930800i \(0.380888\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) 22.0000 1.00207
\(483\) 0 0
\(484\) −5.00000 −0.227273
\(485\) 10.0000 0.454077
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 42.0000 1.90125
\(489\) 0 0
\(490\) 9.00000 0.406579
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) −4.00000 −0.180151
\(494\) 2.00000 0.0899843
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) 28.0000 1.24970
\(503\) 20.0000 0.891756 0.445878 0.895094i \(-0.352892\pi\)
0.445878 + 0.895094i \(0.352892\pi\)
\(504\) 0 0
\(505\) −10.0000 −0.444994
\(506\) 16.0000 0.711287
\(507\) 0 0
\(508\) 8.00000 0.354943
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) −56.0000 −2.47729
\(512\) 11.0000 0.486136
\(513\) 0 0
\(514\) −2.00000 −0.0882162
\(515\) −16.0000 −0.705044
\(516\) 0 0
\(517\) −48.0000 −2.11104
\(518\) 24.0000 1.05450
\(519\) 0 0
\(520\) −6.00000 −0.263117
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) 0 0
\(523\) −4.00000 −0.174908 −0.0874539 0.996169i \(-0.527873\pi\)
−0.0874539 + 0.996169i \(0.527873\pi\)
\(524\) 4.00000 0.174741
\(525\) 0 0
\(526\) −4.00000 −0.174408
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 14.0000 0.608121
\(531\) 0 0
\(532\) 4.00000 0.173422
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) 12.0000 0.518805
\(536\) −12.0000 −0.518321
\(537\) 0 0
\(538\) −26.0000 −1.12094
\(539\) −36.0000 −1.55063
\(540\) 0 0
\(541\) 30.0000 1.28980 0.644900 0.764267i \(-0.276899\pi\)
0.644900 + 0.764267i \(0.276899\pi\)
\(542\) −24.0000 −1.03089
\(543\) 0 0
\(544\) 10.0000 0.428746
\(545\) 2.00000 0.0856706
\(546\) 0 0
\(547\) 4.00000 0.171028 0.0855138 0.996337i \(-0.472747\pi\)
0.0855138 + 0.996337i \(0.472747\pi\)
\(548\) −6.00000 −0.256307
\(549\) 0 0
\(550\) 4.00000 0.170561
\(551\) −2.00000 −0.0852029
\(552\) 0 0
\(553\) 64.0000 2.72156
\(554\) −22.0000 −0.934690
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) 26.0000 1.10166 0.550828 0.834619i \(-0.314312\pi\)
0.550828 + 0.834619i \(0.314312\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 4.00000 0.169031
\(561\) 0 0
\(562\) 10.0000 0.421825
\(563\) −36.0000 −1.51722 −0.758610 0.651546i \(-0.774121\pi\)
−0.758610 + 0.651546i \(0.774121\pi\)
\(564\) 0 0
\(565\) −10.0000 −0.420703
\(566\) 16.0000 0.672530
\(567\) 0 0
\(568\) 0 0
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 8.00000 0.334497
\(573\) 0 0
\(574\) −24.0000 −1.00174
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 13.0000 0.540729
\(579\) 0 0
\(580\) 2.00000 0.0830455
\(581\) 0 0
\(582\) 0 0
\(583\) −56.0000 −2.31928
\(584\) −42.0000 −1.73797
\(585\) 0 0
\(586\) 2.00000 0.0826192
\(587\) −16.0000 −0.660391 −0.330195 0.943913i \(-0.607115\pi\)
−0.330195 + 0.943913i \(0.607115\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −4.00000 −0.164677
\(591\) 0 0
\(592\) 6.00000 0.246598
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) 8.00000 0.327968
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) −8.00000 −0.327144
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 18.0000 0.734235 0.367118 0.930175i \(-0.380345\pi\)
0.367118 + 0.930175i \(0.380345\pi\)
\(602\) −32.0000 −1.30422
\(603\) 0 0
\(604\) 0 0
\(605\) −5.00000 −0.203279
\(606\) 0 0
\(607\) −16.0000 −0.649420 −0.324710 0.945814i \(-0.605267\pi\)
−0.324710 + 0.945814i \(0.605267\pi\)
\(608\) 5.00000 0.202777
\(609\) 0 0
\(610\) 14.0000 0.566843
\(611\) 24.0000 0.970936
\(612\) 0 0
\(613\) −42.0000 −1.69636 −0.848182 0.529705i \(-0.822303\pi\)
−0.848182 + 0.529705i \(0.822303\pi\)
\(614\) 12.0000 0.484281
\(615\) 0 0
\(616\) −48.0000 −1.93398
\(617\) −42.0000 −1.69086 −0.845428 0.534089i \(-0.820655\pi\)
−0.845428 + 0.534089i \(0.820655\pi\)
\(618\) 0 0
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 24.0000 0.961540
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −10.0000 −0.399680
\(627\) 0 0
\(628\) 18.0000 0.718278
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 48.0000 1.90934
\(633\) 0 0
\(634\) 2.00000 0.0794301
\(635\) 8.00000 0.317470
\(636\) 0 0
\(637\) 18.0000 0.713186
\(638\) 8.00000 0.316723
\(639\) 0 0
\(640\) −3.00000 −0.118585
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) −40.0000 −1.57745 −0.788723 0.614749i \(-0.789257\pi\)
−0.788723 + 0.614749i \(0.789257\pi\)
\(644\) −16.0000 −0.630488
\(645\) 0 0
\(646\) −2.00000 −0.0786889
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 0 0
\(649\) 16.0000 0.628055
\(650\) −2.00000 −0.0784465
\(651\) 0 0
\(652\) 0 0
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) 0 0
\(655\) 4.00000 0.156293
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) −48.0000 −1.87123
\(659\) −28.0000 −1.09073 −0.545363 0.838200i \(-0.683608\pi\)
−0.545363 + 0.838200i \(0.683608\pi\)
\(660\) 0 0
\(661\) −18.0000 −0.700119 −0.350059 0.936727i \(-0.613839\pi\)
−0.350059 + 0.936727i \(0.613839\pi\)
\(662\) 28.0000 1.08825
\(663\) 0 0
\(664\) 0 0
\(665\) 4.00000 0.155113
\(666\) 0 0
\(667\) 8.00000 0.309761
\(668\) −8.00000 −0.309529
\(669\) 0 0
\(670\) −4.00000 −0.154533
\(671\) −56.0000 −2.16186
\(672\) 0 0
\(673\) 30.0000 1.15642 0.578208 0.815890i \(-0.303752\pi\)
0.578208 + 0.815890i \(0.303752\pi\)
\(674\) −22.0000 −0.847408
\(675\) 0 0
\(676\) 9.00000 0.346154
\(677\) 14.0000 0.538064 0.269032 0.963131i \(-0.413296\pi\)
0.269032 + 0.963131i \(0.413296\pi\)
\(678\) 0 0
\(679\) −40.0000 −1.53506
\(680\) 6.00000 0.230089
\(681\) 0 0
\(682\) 0 0
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) −8.00000 −0.305441
\(687\) 0 0
\(688\) −8.00000 −0.304997
\(689\) 28.0000 1.06672
\(690\) 0 0
\(691\) −4.00000 −0.152167 −0.0760836 0.997101i \(-0.524242\pi\)
−0.0760836 + 0.997101i \(0.524242\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) 32.0000 1.21470
\(695\) 4.00000 0.151729
\(696\) 0 0
\(697\) −12.0000 −0.454532
\(698\) −30.0000 −1.13552
\(699\) 0 0
\(700\) −4.00000 −0.151186
\(701\) 34.0000 1.28416 0.642081 0.766637i \(-0.278071\pi\)
0.642081 + 0.766637i \(0.278071\pi\)
\(702\) 0 0
\(703\) 6.00000 0.226294
\(704\) −28.0000 −1.05529
\(705\) 0 0
\(706\) −14.0000 −0.526897
\(707\) 40.0000 1.50435
\(708\) 0 0
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 18.0000 0.674579
\(713\) 0 0
\(714\) 0 0
\(715\) 8.00000 0.299183
\(716\) 12.0000 0.448461
\(717\) 0 0
\(718\) −8.00000 −0.298557
\(719\) −48.0000 −1.79010 −0.895049 0.445968i \(-0.852860\pi\)
−0.895049 + 0.445968i \(0.852860\pi\)
\(720\) 0 0
\(721\) 64.0000 2.38348
\(722\) −1.00000 −0.0372161
\(723\) 0 0
\(724\) −22.0000 −0.817624
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) 4.00000 0.148352 0.0741759 0.997245i \(-0.476367\pi\)
0.0741759 + 0.997245i \(0.476367\pi\)
\(728\) 24.0000 0.889499
\(729\) 0 0
\(730\) −14.0000 −0.518163
\(731\) −16.0000 −0.591781
\(732\) 0 0
\(733\) −26.0000 −0.960332 −0.480166 0.877178i \(-0.659424\pi\)
−0.480166 + 0.877178i \(0.659424\pi\)
\(734\) 20.0000 0.738213
\(735\) 0 0
\(736\) −20.0000 −0.737210
\(737\) 16.0000 0.589368
\(738\) 0 0
\(739\) 28.0000 1.03000 0.514998 0.857191i \(-0.327793\pi\)
0.514998 + 0.857191i \(0.327793\pi\)
\(740\) −6.00000 −0.220564
\(741\) 0 0
\(742\) −56.0000 −2.05582
\(743\) −40.0000 −1.46746 −0.733729 0.679442i \(-0.762222\pi\)
−0.733729 + 0.679442i \(0.762222\pi\)
\(744\) 0 0
\(745\) 6.00000 0.219823
\(746\) −34.0000 −1.24483
\(747\) 0 0
\(748\) −8.00000 −0.292509
\(749\) −48.0000 −1.75388
\(750\) 0 0
\(751\) −24.0000 −0.875772 −0.437886 0.899030i \(-0.644273\pi\)
−0.437886 + 0.899030i \(0.644273\pi\)
\(752\) −12.0000 −0.437595
\(753\) 0 0
\(754\) −4.00000 −0.145671
\(755\) 0 0
\(756\) 0 0
\(757\) −50.0000 −1.81728 −0.908640 0.417579i \(-0.862879\pi\)
−0.908640 + 0.417579i \(0.862879\pi\)
\(758\) −4.00000 −0.145287
\(759\) 0 0
\(760\) 3.00000 0.108821
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) −8.00000 −0.289619
\(764\) 0 0
\(765\) 0 0
\(766\) 32.0000 1.15621
\(767\) −8.00000 −0.288863
\(768\) 0 0
\(769\) 50.0000 1.80305 0.901523 0.432731i \(-0.142450\pi\)
0.901523 + 0.432731i \(0.142450\pi\)
\(770\) −16.0000 −0.576600
\(771\) 0 0
\(772\) −22.0000 −0.791797
\(773\) −26.0000 −0.935155 −0.467578 0.883952i \(-0.654873\pi\)
−0.467578 + 0.883952i \(0.654873\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −30.0000 −1.07694
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) −6.00000 −0.214972
\(780\) 0 0
\(781\) 0 0
\(782\) 8.00000 0.286079
\(783\) 0 0
\(784\) −9.00000 −0.321429
\(785\) 18.0000 0.642448
\(786\) 0 0
\(787\) −44.0000 −1.56843 −0.784215 0.620489i \(-0.786934\pi\)
−0.784215 + 0.620489i \(0.786934\pi\)
\(788\) 22.0000 0.783718
\(789\) 0 0
\(790\) 16.0000 0.569254
\(791\) 40.0000 1.42224
\(792\) 0 0
\(793\) 28.0000 0.994309
\(794\) 2.00000 0.0709773
\(795\) 0 0
\(796\) 0 0
\(797\) 38.0000 1.34603 0.673015 0.739629i \(-0.264999\pi\)
0.673015 + 0.739629i \(0.264999\pi\)
\(798\) 0 0
\(799\) −24.0000 −0.849059
\(800\) −5.00000 −0.176777
\(801\) 0 0
\(802\) −6.00000 −0.211867
\(803\) 56.0000 1.97620
\(804\) 0 0
\(805\) −16.0000 −0.563926
\(806\) 0 0
\(807\) 0 0
\(808\) 30.0000 1.05540
\(809\) −26.0000 −0.914111 −0.457056 0.889438i \(-0.651096\pi\)
−0.457056 + 0.889438i \(0.651096\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) −8.00000 −0.280745
\(813\) 0 0
\(814\) −24.0000 −0.841200
\(815\) 0 0
\(816\) 0 0
\(817\) −8.00000 −0.279885
\(818\) −10.0000 −0.349642
\(819\) 0 0
\(820\) 6.00000 0.209529
\(821\) −54.0000 −1.88461 −0.942306 0.334751i \(-0.891348\pi\)
−0.942306 + 0.334751i \(0.891348\pi\)
\(822\) 0 0
\(823\) −20.0000 −0.697156 −0.348578 0.937280i \(-0.613335\pi\)
−0.348578 + 0.937280i \(0.613335\pi\)
\(824\) 48.0000 1.67216
\(825\) 0 0
\(826\) 16.0000 0.556711
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 14.0000 0.485363
\(833\) −18.0000 −0.623663
\(834\) 0 0
\(835\) −8.00000 −0.276851
\(836\) −4.00000 −0.138343
\(837\) 0 0
\(838\) 28.0000 0.967244
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −14.0000 −0.482472
\(843\) 0 0
\(844\) −12.0000 −0.413057
\(845\) 9.00000 0.309609
\(846\) 0 0
\(847\) 20.0000 0.687208
\(848\) −14.0000 −0.480762
\(849\) 0 0
\(850\) 2.00000 0.0685994
\(851\) −24.0000 −0.822709
\(852\) 0 0
\(853\) −2.00000 −0.0684787 −0.0342393 0.999414i \(-0.510901\pi\)
−0.0342393 + 0.999414i \(0.510901\pi\)
\(854\) −56.0000 −1.91628
\(855\) 0 0
\(856\) −36.0000 −1.23045
\(857\) 26.0000 0.888143 0.444072 0.895991i \(-0.353534\pi\)
0.444072 + 0.895991i \(0.353534\pi\)
\(858\) 0 0
\(859\) 36.0000 1.22830 0.614152 0.789188i \(-0.289498\pi\)
0.614152 + 0.789188i \(0.289498\pi\)
\(860\) 8.00000 0.272798
\(861\) 0 0
\(862\) 32.0000 1.08992
\(863\) 32.0000 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(864\) 0 0
\(865\) −6.00000 −0.204006
\(866\) −6.00000 −0.203888
\(867\) 0 0
\(868\) 0 0
\(869\) −64.0000 −2.17105
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) −6.00000 −0.203186
\(873\) 0 0
\(874\) 4.00000 0.135302
\(875\) −4.00000 −0.135225
\(876\) 0 0
\(877\) 42.0000 1.41824 0.709120 0.705088i \(-0.249093\pi\)
0.709120 + 0.705088i \(0.249093\pi\)
\(878\) −8.00000 −0.269987
\(879\) 0 0
\(880\) −4.00000 −0.134840
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 0 0
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) 4.00000 0.134535
\(885\) 0 0
\(886\) 40.0000 1.34383
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) −32.0000 −1.07325
\(890\) 6.00000 0.201120
\(891\) 0 0
\(892\) 24.0000 0.803579
\(893\) −12.0000 −0.401565
\(894\) 0 0
\(895\) 12.0000 0.401116
\(896\) 12.0000 0.400892
\(897\) 0 0
\(898\) −6.00000 −0.200223
\(899\) 0 0
\(900\) 0 0
\(901\) −28.0000 −0.932815
\(902\) 24.0000 0.799113
\(903\) 0 0
\(904\) 30.0000 0.997785
\(905\) −22.0000 −0.731305
\(906\) 0 0
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) −12.0000 −0.398234
\(909\) 0 0
\(910\) 8.00000 0.265197
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −10.0000 −0.330771
\(915\) 0 0
\(916\) 26.0000 0.859064
\(917\) −16.0000 −0.528367
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) −12.0000 −0.395628
\(921\) 0 0
\(922\) 30.0000 0.987997
\(923\) 0 0
\(924\) 0 0
\(925\) −6.00000 −0.197279
\(926\) 4.00000 0.131448
\(927\) 0 0
\(928\) −10.0000 −0.328266
\(929\) 14.0000 0.459325 0.229663 0.973270i \(-0.426238\pi\)
0.229663 + 0.973270i \(0.426238\pi\)
\(930\) 0 0
\(931\) −9.00000 −0.294963
\(932\) 18.0000 0.589610
\(933\) 0 0
\(934\) −8.00000 −0.261768
\(935\) −8.00000 −0.261628
\(936\) 0 0
\(937\) 18.0000 0.588034 0.294017 0.955800i \(-0.405008\pi\)
0.294017 + 0.955800i \(0.405008\pi\)
\(938\) 16.0000 0.522419
\(939\) 0 0
\(940\) 12.0000 0.391397
\(941\) 42.0000 1.36916 0.684580 0.728937i \(-0.259985\pi\)
0.684580 + 0.728937i \(0.259985\pi\)
\(942\) 0 0
\(943\) 24.0000 0.781548
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) 32.0000 1.04041
\(947\) 40.0000 1.29983 0.649913 0.760009i \(-0.274805\pi\)
0.649913 + 0.760009i \(0.274805\pi\)
\(948\) 0 0
\(949\) −28.0000 −0.908918
\(950\) 1.00000 0.0324443
\(951\) 0 0
\(952\) −24.0000 −0.777844
\(953\) 26.0000 0.842223 0.421111 0.907009i \(-0.361640\pi\)
0.421111 + 0.907009i \(0.361640\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −24.0000 −0.776215
\(957\) 0 0
\(958\) −16.0000 −0.516937
\(959\) 24.0000 0.775000
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 12.0000 0.386896
\(963\) 0 0
\(964\) 22.0000 0.708572
\(965\) −22.0000 −0.708205
\(966\) 0 0
\(967\) −20.0000 −0.643157 −0.321578 0.946883i \(-0.604213\pi\)
−0.321578 + 0.946883i \(0.604213\pi\)
\(968\) 15.0000 0.482118
\(969\) 0 0
\(970\) −10.0000 −0.321081
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 0 0
\(973\) −16.0000 −0.512936
\(974\) −8.00000 −0.256337
\(975\) 0 0
\(976\) −14.0000 −0.448129
\(977\) −30.0000 −0.959785 −0.479893 0.877327i \(-0.659324\pi\)
−0.479893 + 0.877327i \(0.659324\pi\)
\(978\) 0 0
\(979\) −24.0000 −0.767043
\(980\) 9.00000 0.287494
\(981\) 0 0
\(982\) 12.0000 0.382935
\(983\) 56.0000 1.78612 0.893061 0.449935i \(-0.148553\pi\)
0.893061 + 0.449935i \(0.148553\pi\)
\(984\) 0 0
\(985\) 22.0000 0.700978
\(986\) 4.00000 0.127386
\(987\) 0 0
\(988\) 2.00000 0.0636285
\(989\) 32.0000 1.01754
\(990\) 0 0
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −26.0000 −0.823428 −0.411714 0.911313i \(-0.635070\pi\)
−0.411714 + 0.911313i \(0.635070\pi\)
\(998\) −20.0000 −0.633089
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.a.a.1.1 1
3.2 odd 2 285.2.a.c.1.1 1
5.4 even 2 4275.2.a.j.1.1 1
12.11 even 2 4560.2.a.w.1.1 1
15.2 even 4 1425.2.c.f.799.2 2
15.8 even 4 1425.2.c.f.799.1 2
15.14 odd 2 1425.2.a.c.1.1 1
57.56 even 2 5415.2.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.a.c.1.1 1 3.2 odd 2
855.2.a.a.1.1 1 1.1 even 1 trivial
1425.2.a.c.1.1 1 15.14 odd 2
1425.2.c.f.799.1 2 15.8 even 4
1425.2.c.f.799.2 2 15.2 even 4
4275.2.a.j.1.1 1 5.4 even 2
4560.2.a.w.1.1 1 12.11 even 2
5415.2.a.e.1.1 1 57.56 even 2