Properties

Label 855.1.u
Level $855$
Weight $1$
Character orbit 855.u
Rep. character $\chi_{855}(539,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $8$
Newform subspaces $1$
Sturm bound $120$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 855.u (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 285 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(120\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(855, [\chi])\).

Total New Old
Modular forms 32 8 24
Cusp forms 16 8 8
Eisenstein series 16 0 16

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 8 0

Trace form

\( 8 q - 4 q^{4} - 4 q^{10} + 4 q^{16} - 8 q^{19} - 8 q^{31} + 8 q^{34} - 4 q^{55} + 4 q^{61} - 8 q^{64} - 4 q^{70} + 4 q^{76} + 4 q^{79} + 4 q^{85} + 4 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(855, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
855.1.u.a 855.u 285.n $8$ $0.427$ \(\Q(\zeta_{24})\) $S_{4}$ None None 855.1.u.a \(0\) \(0\) \(0\) \(0\) \(q+(-\zeta_{24}^{5}-\zeta_{24}^{11})q^{2}-\zeta_{24}^{4}q^{4}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(855, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(855, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 2}\)