# Properties

 Label 855.1.g.a Level $855$ Weight $1$ Character orbit 855.g Self dual yes Analytic conductor $0.427$ Analytic rank $0$ Dimension $1$ Projective image $D_{2}$ CM/RM discs -19, -95, 5 Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [855,1,Mod(379,855)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(855, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1, 1]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("855.379");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$855 = 3^{2} \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 855.g (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$0.426700585801$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 95) Projective image: $$D_{2}$$ Projective field: Galois closure of $$\Q(\sqrt{5}, \sqrt{-19})$$ Artin image: $D_4$ Artin field: Galois closure of 4.2.4275.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{4} - q^{5}+O(q^{10})$$ q - q^4 - q^5 $$q - q^{4} - q^{5} + 2 q^{11} + q^{16} + q^{19} + q^{20} + q^{25} - 2 q^{44} + q^{49} - 2 q^{55} - 2 q^{61} - q^{64} - q^{76} - q^{80} - q^{95}+O(q^{100})$$ q - q^4 - q^5 + 2 * q^11 + q^16 + q^19 + q^20 + q^25 - 2 * q^44 + q^49 - 2 * q^55 - 2 * q^61 - q^64 - q^76 - q^80 - q^95

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/855\mathbb{Z}\right)^\times$$.

 $$n$$ $$172$$ $$191$$ $$496$$ $$\chi(n)$$ $$1$$ $$0$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
379.1
 0
0 0 −1.00000 −1.00000 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 RM by $$\Q(\sqrt{5})$$
19.b odd 2 1 CM by $$\Q(\sqrt{-19})$$
95.d odd 2 1 CM by $$\Q(\sqrt{-95})$$

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 855.1.g.a 1
3.b odd 2 1 95.1.d.a 1
5.b even 2 1 RM 855.1.g.a 1
12.b even 2 1 1520.1.m.a 1
15.d odd 2 1 95.1.d.a 1
15.e even 4 2 475.1.c.a 1
19.b odd 2 1 CM 855.1.g.a 1
57.d even 2 1 95.1.d.a 1
57.f even 6 2 1805.1.h.a 2
57.h odd 6 2 1805.1.h.a 2
57.j even 18 6 1805.1.o.a 6
57.l odd 18 6 1805.1.o.a 6
60.h even 2 1 1520.1.m.a 1
95.d odd 2 1 CM 855.1.g.a 1
228.b odd 2 1 1520.1.m.a 1
285.b even 2 1 95.1.d.a 1
285.j odd 4 2 475.1.c.a 1
285.n odd 6 2 1805.1.h.a 2
285.q even 6 2 1805.1.h.a 2
285.bd odd 18 6 1805.1.o.a 6
285.bf even 18 6 1805.1.o.a 6
1140.p odd 2 1 1520.1.m.a 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.1.d.a 1 3.b odd 2 1
95.1.d.a 1 15.d odd 2 1
95.1.d.a 1 57.d even 2 1
95.1.d.a 1 285.b even 2 1
475.1.c.a 1 15.e even 4 2
475.1.c.a 1 285.j odd 4 2
855.1.g.a 1 1.a even 1 1 trivial
855.1.g.a 1 5.b even 2 1 RM
855.1.g.a 1 19.b odd 2 1 CM
855.1.g.a 1 95.d odd 2 1 CM
1520.1.m.a 1 12.b even 2 1
1520.1.m.a 1 60.h even 2 1
1520.1.m.a 1 228.b odd 2 1
1520.1.m.a 1 1140.p odd 2 1
1805.1.h.a 2 57.f even 6 2
1805.1.h.a 2 57.h odd 6 2
1805.1.h.a 2 285.n odd 6 2
1805.1.h.a 2 285.q even 6 2
1805.1.o.a 6 57.j even 18 6
1805.1.o.a 6 57.l odd 18 6
1805.1.o.a 6 285.bd odd 18 6
1805.1.o.a 6 285.bf even 18 6

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{1}^{\mathrm{new}}(855, [\chi])$$:

 $$T_{2}$$ T2 $$T_{11} - 2$$ T11 - 2

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T + 1$$
$7$ $$T$$
$11$ $$T - 2$$
$13$ $$T$$
$17$ $$T$$
$19$ $$T - 1$$
$23$ $$T$$
$29$ $$T$$
$31$ $$T$$
$37$ $$T$$
$41$ $$T$$
$43$ $$T$$
$47$ $$T$$
$53$ $$T$$
$59$ $$T$$
$61$ $$T + 2$$
$67$ $$T$$
$71$ $$T$$
$73$ $$T$$
$79$ $$T$$
$83$ $$T$$
$89$ $$T$$
$97$ $$T$$