Properties

Label 8512.2.a.bg.1.2
Level $8512$
Weight $2$
Character 8512.1
Self dual yes
Analytic conductor $67.969$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8512,2,Mod(1,8512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8512, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8512.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8512 = 2^{6} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8512.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.9686622005\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 532)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 8512.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.61803 q^{3} +1.00000 q^{5} +1.00000 q^{7} +3.85410 q^{9} -6.09017 q^{11} +2.23607 q^{13} +2.61803 q^{15} -7.61803 q^{17} +1.00000 q^{19} +2.61803 q^{21} -8.70820 q^{23} -4.00000 q^{25} +2.23607 q^{27} -0.854102 q^{29} -2.38197 q^{31} -15.9443 q^{33} +1.00000 q^{35} +6.70820 q^{37} +5.85410 q^{39} +0.0901699 q^{41} -8.47214 q^{43} +3.85410 q^{45} +4.70820 q^{47} +1.00000 q^{49} -19.9443 q^{51} +14.3262 q^{53} -6.09017 q^{55} +2.61803 q^{57} +10.7082 q^{59} -5.47214 q^{61} +3.85410 q^{63} +2.23607 q^{65} +2.09017 q^{67} -22.7984 q^{69} -11.1803 q^{71} -0.909830 q^{73} -10.4721 q^{75} -6.09017 q^{77} -6.94427 q^{79} -5.70820 q^{81} -14.6180 q^{83} -7.61803 q^{85} -2.23607 q^{87} -12.1803 q^{89} +2.23607 q^{91} -6.23607 q^{93} +1.00000 q^{95} +8.70820 q^{97} -23.4721 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} + 2 q^{5} + 2 q^{7} + q^{9} - q^{11} + 3 q^{15} - 13 q^{17} + 2 q^{19} + 3 q^{21} - 4 q^{23} - 8 q^{25} + 5 q^{29} - 7 q^{31} - 14 q^{33} + 2 q^{35} + 5 q^{39} - 11 q^{41} - 8 q^{43} + q^{45}+ \cdots - 38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.61803 1.51152 0.755761 0.654847i \(-0.227267\pi\)
0.755761 + 0.654847i \(0.227267\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 3.85410 1.28470
\(10\) 0 0
\(11\) −6.09017 −1.83626 −0.918128 0.396285i \(-0.870299\pi\)
−0.918128 + 0.396285i \(0.870299\pi\)
\(12\) 0 0
\(13\) 2.23607 0.620174 0.310087 0.950708i \(-0.399642\pi\)
0.310087 + 0.950708i \(0.399642\pi\)
\(14\) 0 0
\(15\) 2.61803 0.675973
\(16\) 0 0
\(17\) −7.61803 −1.84764 −0.923822 0.382822i \(-0.874952\pi\)
−0.923822 + 0.382822i \(0.874952\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 2.61803 0.571302
\(22\) 0 0
\(23\) −8.70820 −1.81579 −0.907893 0.419202i \(-0.862310\pi\)
−0.907893 + 0.419202i \(0.862310\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 2.23607 0.430331
\(28\) 0 0
\(29\) −0.854102 −0.158603 −0.0793014 0.996851i \(-0.525269\pi\)
−0.0793014 + 0.996851i \(0.525269\pi\)
\(30\) 0 0
\(31\) −2.38197 −0.427814 −0.213907 0.976854i \(-0.568619\pi\)
−0.213907 + 0.976854i \(0.568619\pi\)
\(32\) 0 0
\(33\) −15.9443 −2.77554
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) 6.70820 1.10282 0.551411 0.834234i \(-0.314090\pi\)
0.551411 + 0.834234i \(0.314090\pi\)
\(38\) 0 0
\(39\) 5.85410 0.937407
\(40\) 0 0
\(41\) 0.0901699 0.0140822 0.00704109 0.999975i \(-0.497759\pi\)
0.00704109 + 0.999975i \(0.497759\pi\)
\(42\) 0 0
\(43\) −8.47214 −1.29199 −0.645994 0.763342i \(-0.723557\pi\)
−0.645994 + 0.763342i \(0.723557\pi\)
\(44\) 0 0
\(45\) 3.85410 0.574536
\(46\) 0 0
\(47\) 4.70820 0.686762 0.343381 0.939196i \(-0.388428\pi\)
0.343381 + 0.939196i \(0.388428\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −19.9443 −2.79276
\(52\) 0 0
\(53\) 14.3262 1.96786 0.983930 0.178554i \(-0.0571420\pi\)
0.983930 + 0.178554i \(0.0571420\pi\)
\(54\) 0 0
\(55\) −6.09017 −0.821198
\(56\) 0 0
\(57\) 2.61803 0.346767
\(58\) 0 0
\(59\) 10.7082 1.39409 0.697045 0.717028i \(-0.254498\pi\)
0.697045 + 0.717028i \(0.254498\pi\)
\(60\) 0 0
\(61\) −5.47214 −0.700635 −0.350318 0.936631i \(-0.613926\pi\)
−0.350318 + 0.936631i \(0.613926\pi\)
\(62\) 0 0
\(63\) 3.85410 0.485571
\(64\) 0 0
\(65\) 2.23607 0.277350
\(66\) 0 0
\(67\) 2.09017 0.255355 0.127677 0.991816i \(-0.459248\pi\)
0.127677 + 0.991816i \(0.459248\pi\)
\(68\) 0 0
\(69\) −22.7984 −2.74460
\(70\) 0 0
\(71\) −11.1803 −1.32686 −0.663431 0.748237i \(-0.730900\pi\)
−0.663431 + 0.748237i \(0.730900\pi\)
\(72\) 0 0
\(73\) −0.909830 −0.106488 −0.0532438 0.998582i \(-0.516956\pi\)
−0.0532438 + 0.998582i \(0.516956\pi\)
\(74\) 0 0
\(75\) −10.4721 −1.20922
\(76\) 0 0
\(77\) −6.09017 −0.694039
\(78\) 0 0
\(79\) −6.94427 −0.781292 −0.390646 0.920541i \(-0.627748\pi\)
−0.390646 + 0.920541i \(0.627748\pi\)
\(80\) 0 0
\(81\) −5.70820 −0.634245
\(82\) 0 0
\(83\) −14.6180 −1.60454 −0.802269 0.596963i \(-0.796374\pi\)
−0.802269 + 0.596963i \(0.796374\pi\)
\(84\) 0 0
\(85\) −7.61803 −0.826292
\(86\) 0 0
\(87\) −2.23607 −0.239732
\(88\) 0 0
\(89\) −12.1803 −1.29111 −0.645557 0.763712i \(-0.723375\pi\)
−0.645557 + 0.763712i \(0.723375\pi\)
\(90\) 0 0
\(91\) 2.23607 0.234404
\(92\) 0 0
\(93\) −6.23607 −0.646650
\(94\) 0 0
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) 8.70820 0.884184 0.442092 0.896970i \(-0.354236\pi\)
0.442092 + 0.896970i \(0.354236\pi\)
\(98\) 0 0
\(99\) −23.4721 −2.35904
\(100\) 0 0
\(101\) 8.23607 0.819519 0.409760 0.912194i \(-0.365613\pi\)
0.409760 + 0.912194i \(0.365613\pi\)
\(102\) 0 0
\(103\) −7.76393 −0.765003 −0.382501 0.923955i \(-0.624937\pi\)
−0.382501 + 0.923955i \(0.624937\pi\)
\(104\) 0 0
\(105\) 2.61803 0.255494
\(106\) 0 0
\(107\) −3.76393 −0.363873 −0.181937 0.983310i \(-0.558237\pi\)
−0.181937 + 0.983310i \(0.558237\pi\)
\(108\) 0 0
\(109\) −18.8885 −1.80919 −0.904597 0.426267i \(-0.859828\pi\)
−0.904597 + 0.426267i \(0.859828\pi\)
\(110\) 0 0
\(111\) 17.5623 1.66694
\(112\) 0 0
\(113\) −14.6180 −1.37515 −0.687574 0.726114i \(-0.741325\pi\)
−0.687574 + 0.726114i \(0.741325\pi\)
\(114\) 0 0
\(115\) −8.70820 −0.812044
\(116\) 0 0
\(117\) 8.61803 0.796738
\(118\) 0 0
\(119\) −7.61803 −0.698344
\(120\) 0 0
\(121\) 26.0902 2.37183
\(122\) 0 0
\(123\) 0.236068 0.0212855
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 15.2361 1.35198 0.675991 0.736910i \(-0.263716\pi\)
0.675991 + 0.736910i \(0.263716\pi\)
\(128\) 0 0
\(129\) −22.1803 −1.95287
\(130\) 0 0
\(131\) 4.38197 0.382854 0.191427 0.981507i \(-0.438688\pi\)
0.191427 + 0.981507i \(0.438688\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 2.23607 0.192450
\(136\) 0 0
\(137\) 3.52786 0.301406 0.150703 0.988579i \(-0.451846\pi\)
0.150703 + 0.988579i \(0.451846\pi\)
\(138\) 0 0
\(139\) 5.18034 0.439391 0.219695 0.975569i \(-0.429494\pi\)
0.219695 + 0.975569i \(0.429494\pi\)
\(140\) 0 0
\(141\) 12.3262 1.03806
\(142\) 0 0
\(143\) −13.6180 −1.13880
\(144\) 0 0
\(145\) −0.854102 −0.0709293
\(146\) 0 0
\(147\) 2.61803 0.215932
\(148\) 0 0
\(149\) −7.00000 −0.573462 −0.286731 0.958011i \(-0.592569\pi\)
−0.286731 + 0.958011i \(0.592569\pi\)
\(150\) 0 0
\(151\) −4.38197 −0.356599 −0.178300 0.983976i \(-0.557060\pi\)
−0.178300 + 0.983976i \(0.557060\pi\)
\(152\) 0 0
\(153\) −29.3607 −2.37367
\(154\) 0 0
\(155\) −2.38197 −0.191324
\(156\) 0 0
\(157\) −13.6180 −1.08684 −0.543419 0.839462i \(-0.682870\pi\)
−0.543419 + 0.839462i \(0.682870\pi\)
\(158\) 0 0
\(159\) 37.5066 2.97447
\(160\) 0 0
\(161\) −8.70820 −0.686303
\(162\) 0 0
\(163\) 10.7984 0.845794 0.422897 0.906178i \(-0.361013\pi\)
0.422897 + 0.906178i \(0.361013\pi\)
\(164\) 0 0
\(165\) −15.9443 −1.24126
\(166\) 0 0
\(167\) 1.47214 0.113917 0.0569587 0.998377i \(-0.481860\pi\)
0.0569587 + 0.998377i \(0.481860\pi\)
\(168\) 0 0
\(169\) −8.00000 −0.615385
\(170\) 0 0
\(171\) 3.85410 0.294731
\(172\) 0 0
\(173\) 10.2918 0.782471 0.391235 0.920291i \(-0.372048\pi\)
0.391235 + 0.920291i \(0.372048\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) 28.0344 2.10720
\(178\) 0 0
\(179\) 10.3820 0.775985 0.387992 0.921663i \(-0.373169\pi\)
0.387992 + 0.921663i \(0.373169\pi\)
\(180\) 0 0
\(181\) 13.5066 1.00394 0.501968 0.864886i \(-0.332610\pi\)
0.501968 + 0.864886i \(0.332610\pi\)
\(182\) 0 0
\(183\) −14.3262 −1.05903
\(184\) 0 0
\(185\) 6.70820 0.493197
\(186\) 0 0
\(187\) 46.3951 3.39275
\(188\) 0 0
\(189\) 2.23607 0.162650
\(190\) 0 0
\(191\) 8.03444 0.581352 0.290676 0.956822i \(-0.406120\pi\)
0.290676 + 0.956822i \(0.406120\pi\)
\(192\) 0 0
\(193\) −1.43769 −0.103487 −0.0517437 0.998660i \(-0.516478\pi\)
−0.0517437 + 0.998660i \(0.516478\pi\)
\(194\) 0 0
\(195\) 5.85410 0.419221
\(196\) 0 0
\(197\) −8.79837 −0.626858 −0.313429 0.949612i \(-0.601478\pi\)
−0.313429 + 0.949612i \(0.601478\pi\)
\(198\) 0 0
\(199\) 2.23607 0.158511 0.0792553 0.996854i \(-0.474746\pi\)
0.0792553 + 0.996854i \(0.474746\pi\)
\(200\) 0 0
\(201\) 5.47214 0.385975
\(202\) 0 0
\(203\) −0.854102 −0.0599462
\(204\) 0 0
\(205\) 0.0901699 0.00629774
\(206\) 0 0
\(207\) −33.5623 −2.33274
\(208\) 0 0
\(209\) −6.09017 −0.421266
\(210\) 0 0
\(211\) −26.9787 −1.85729 −0.928646 0.370968i \(-0.879026\pi\)
−0.928646 + 0.370968i \(0.879026\pi\)
\(212\) 0 0
\(213\) −29.2705 −2.00558
\(214\) 0 0
\(215\) −8.47214 −0.577795
\(216\) 0 0
\(217\) −2.38197 −0.161698
\(218\) 0 0
\(219\) −2.38197 −0.160958
\(220\) 0 0
\(221\) −17.0344 −1.14586
\(222\) 0 0
\(223\) 5.94427 0.398058 0.199029 0.979994i \(-0.436221\pi\)
0.199029 + 0.979994i \(0.436221\pi\)
\(224\) 0 0
\(225\) −15.4164 −1.02776
\(226\) 0 0
\(227\) −16.0902 −1.06794 −0.533971 0.845503i \(-0.679301\pi\)
−0.533971 + 0.845503i \(0.679301\pi\)
\(228\) 0 0
\(229\) 12.4721 0.824182 0.412091 0.911143i \(-0.364799\pi\)
0.412091 + 0.911143i \(0.364799\pi\)
\(230\) 0 0
\(231\) −15.9443 −1.04906
\(232\) 0 0
\(233\) −7.32624 −0.479958 −0.239979 0.970778i \(-0.577141\pi\)
−0.239979 + 0.970778i \(0.577141\pi\)
\(234\) 0 0
\(235\) 4.70820 0.307129
\(236\) 0 0
\(237\) −18.1803 −1.18094
\(238\) 0 0
\(239\) −18.1246 −1.17238 −0.586192 0.810172i \(-0.699374\pi\)
−0.586192 + 0.810172i \(0.699374\pi\)
\(240\) 0 0
\(241\) 23.7082 1.52718 0.763590 0.645702i \(-0.223435\pi\)
0.763590 + 0.645702i \(0.223435\pi\)
\(242\) 0 0
\(243\) −21.6525 −1.38901
\(244\) 0 0
\(245\) 1.00000 0.0638877
\(246\) 0 0
\(247\) 2.23607 0.142278
\(248\) 0 0
\(249\) −38.2705 −2.42530
\(250\) 0 0
\(251\) 0.673762 0.0425275 0.0212637 0.999774i \(-0.493231\pi\)
0.0212637 + 0.999774i \(0.493231\pi\)
\(252\) 0 0
\(253\) 53.0344 3.33425
\(254\) 0 0
\(255\) −19.9443 −1.24896
\(256\) 0 0
\(257\) 13.2705 0.827792 0.413896 0.910324i \(-0.364168\pi\)
0.413896 + 0.910324i \(0.364168\pi\)
\(258\) 0 0
\(259\) 6.70820 0.416828
\(260\) 0 0
\(261\) −3.29180 −0.203757
\(262\) 0 0
\(263\) 18.7984 1.15916 0.579579 0.814916i \(-0.303217\pi\)
0.579579 + 0.814916i \(0.303217\pi\)
\(264\) 0 0
\(265\) 14.3262 0.880054
\(266\) 0 0
\(267\) −31.8885 −1.95155
\(268\) 0 0
\(269\) −4.79837 −0.292562 −0.146281 0.989243i \(-0.546730\pi\)
−0.146281 + 0.989243i \(0.546730\pi\)
\(270\) 0 0
\(271\) 0.562306 0.0341577 0.0170788 0.999854i \(-0.494563\pi\)
0.0170788 + 0.999854i \(0.494563\pi\)
\(272\) 0 0
\(273\) 5.85410 0.354306
\(274\) 0 0
\(275\) 24.3607 1.46900
\(276\) 0 0
\(277\) 8.65248 0.519877 0.259938 0.965625i \(-0.416298\pi\)
0.259938 + 0.965625i \(0.416298\pi\)
\(278\) 0 0
\(279\) −9.18034 −0.549613
\(280\) 0 0
\(281\) −11.0000 −0.656205 −0.328102 0.944642i \(-0.606409\pi\)
−0.328102 + 0.944642i \(0.606409\pi\)
\(282\) 0 0
\(283\) 18.6180 1.10673 0.553364 0.832940i \(-0.313344\pi\)
0.553364 + 0.832940i \(0.313344\pi\)
\(284\) 0 0
\(285\) 2.61803 0.155079
\(286\) 0 0
\(287\) 0.0901699 0.00532256
\(288\) 0 0
\(289\) 41.0344 2.41379
\(290\) 0 0
\(291\) 22.7984 1.33646
\(292\) 0 0
\(293\) 19.4721 1.13757 0.568787 0.822485i \(-0.307413\pi\)
0.568787 + 0.822485i \(0.307413\pi\)
\(294\) 0 0
\(295\) 10.7082 0.623456
\(296\) 0 0
\(297\) −13.6180 −0.790198
\(298\) 0 0
\(299\) −19.4721 −1.12610
\(300\) 0 0
\(301\) −8.47214 −0.488326
\(302\) 0 0
\(303\) 21.5623 1.23872
\(304\) 0 0
\(305\) −5.47214 −0.313334
\(306\) 0 0
\(307\) −22.7426 −1.29799 −0.648996 0.760792i \(-0.724811\pi\)
−0.648996 + 0.760792i \(0.724811\pi\)
\(308\) 0 0
\(309\) −20.3262 −1.15632
\(310\) 0 0
\(311\) −3.32624 −0.188614 −0.0943068 0.995543i \(-0.530063\pi\)
−0.0943068 + 0.995543i \(0.530063\pi\)
\(312\) 0 0
\(313\) 14.1803 0.801520 0.400760 0.916183i \(-0.368746\pi\)
0.400760 + 0.916183i \(0.368746\pi\)
\(314\) 0 0
\(315\) 3.85410 0.217154
\(316\) 0 0
\(317\) −4.47214 −0.251180 −0.125590 0.992082i \(-0.540082\pi\)
−0.125590 + 0.992082i \(0.540082\pi\)
\(318\) 0 0
\(319\) 5.20163 0.291235
\(320\) 0 0
\(321\) −9.85410 −0.550002
\(322\) 0 0
\(323\) −7.61803 −0.423879
\(324\) 0 0
\(325\) −8.94427 −0.496139
\(326\) 0 0
\(327\) −49.4508 −2.73464
\(328\) 0 0
\(329\) 4.70820 0.259572
\(330\) 0 0
\(331\) 0.729490 0.0400964 0.0200482 0.999799i \(-0.493618\pi\)
0.0200482 + 0.999799i \(0.493618\pi\)
\(332\) 0 0
\(333\) 25.8541 1.41680
\(334\) 0 0
\(335\) 2.09017 0.114198
\(336\) 0 0
\(337\) −9.32624 −0.508033 −0.254016 0.967200i \(-0.581752\pi\)
−0.254016 + 0.967200i \(0.581752\pi\)
\(338\) 0 0
\(339\) −38.2705 −2.07857
\(340\) 0 0
\(341\) 14.5066 0.785575
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −22.7984 −1.22742
\(346\) 0 0
\(347\) 11.5623 0.620697 0.310349 0.950623i \(-0.399554\pi\)
0.310349 + 0.950623i \(0.399554\pi\)
\(348\) 0 0
\(349\) 3.27051 0.175066 0.0875332 0.996162i \(-0.472102\pi\)
0.0875332 + 0.996162i \(0.472102\pi\)
\(350\) 0 0
\(351\) 5.00000 0.266880
\(352\) 0 0
\(353\) −21.6180 −1.15061 −0.575306 0.817938i \(-0.695117\pi\)
−0.575306 + 0.817938i \(0.695117\pi\)
\(354\) 0 0
\(355\) −11.1803 −0.593391
\(356\) 0 0
\(357\) −19.9443 −1.05556
\(358\) 0 0
\(359\) −3.43769 −0.181435 −0.0907173 0.995877i \(-0.528916\pi\)
−0.0907173 + 0.995877i \(0.528916\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 68.3050 3.58508
\(364\) 0 0
\(365\) −0.909830 −0.0476227
\(366\) 0 0
\(367\) 12.8885 0.672777 0.336388 0.941723i \(-0.390795\pi\)
0.336388 + 0.941723i \(0.390795\pi\)
\(368\) 0 0
\(369\) 0.347524 0.0180914
\(370\) 0 0
\(371\) 14.3262 0.743781
\(372\) 0 0
\(373\) 16.5066 0.854678 0.427339 0.904091i \(-0.359451\pi\)
0.427339 + 0.904091i \(0.359451\pi\)
\(374\) 0 0
\(375\) −23.5623 −1.21675
\(376\) 0 0
\(377\) −1.90983 −0.0983613
\(378\) 0 0
\(379\) −6.52786 −0.335314 −0.167657 0.985845i \(-0.553620\pi\)
−0.167657 + 0.985845i \(0.553620\pi\)
\(380\) 0 0
\(381\) 39.8885 2.04355
\(382\) 0 0
\(383\) −16.2361 −0.829624 −0.414812 0.909907i \(-0.636153\pi\)
−0.414812 + 0.909907i \(0.636153\pi\)
\(384\) 0 0
\(385\) −6.09017 −0.310384
\(386\) 0 0
\(387\) −32.6525 −1.65982
\(388\) 0 0
\(389\) −5.61803 −0.284846 −0.142423 0.989806i \(-0.545489\pi\)
−0.142423 + 0.989806i \(0.545489\pi\)
\(390\) 0 0
\(391\) 66.3394 3.35493
\(392\) 0 0
\(393\) 11.4721 0.578693
\(394\) 0 0
\(395\) −6.94427 −0.349404
\(396\) 0 0
\(397\) 15.2361 0.764676 0.382338 0.924022i \(-0.375119\pi\)
0.382338 + 0.924022i \(0.375119\pi\)
\(398\) 0 0
\(399\) 2.61803 0.131066
\(400\) 0 0
\(401\) −26.7426 −1.33546 −0.667732 0.744402i \(-0.732735\pi\)
−0.667732 + 0.744402i \(0.732735\pi\)
\(402\) 0 0
\(403\) −5.32624 −0.265319
\(404\) 0 0
\(405\) −5.70820 −0.283643
\(406\) 0 0
\(407\) −40.8541 −2.02506
\(408\) 0 0
\(409\) −1.27051 −0.0628227 −0.0314113 0.999507i \(-0.510000\pi\)
−0.0314113 + 0.999507i \(0.510000\pi\)
\(410\) 0 0
\(411\) 9.23607 0.455582
\(412\) 0 0
\(413\) 10.7082 0.526916
\(414\) 0 0
\(415\) −14.6180 −0.717571
\(416\) 0 0
\(417\) 13.5623 0.664149
\(418\) 0 0
\(419\) 8.70820 0.425424 0.212712 0.977115i \(-0.431770\pi\)
0.212712 + 0.977115i \(0.431770\pi\)
\(420\) 0 0
\(421\) 9.18034 0.447422 0.223711 0.974655i \(-0.428183\pi\)
0.223711 + 0.974655i \(0.428183\pi\)
\(422\) 0 0
\(423\) 18.1459 0.882284
\(424\) 0 0
\(425\) 30.4721 1.47812
\(426\) 0 0
\(427\) −5.47214 −0.264815
\(428\) 0 0
\(429\) −35.6525 −1.72132
\(430\) 0 0
\(431\) 2.00000 0.0963366 0.0481683 0.998839i \(-0.484662\pi\)
0.0481683 + 0.998839i \(0.484662\pi\)
\(432\) 0 0
\(433\) 31.4721 1.51245 0.756227 0.654309i \(-0.227040\pi\)
0.756227 + 0.654309i \(0.227040\pi\)
\(434\) 0 0
\(435\) −2.23607 −0.107211
\(436\) 0 0
\(437\) −8.70820 −0.416570
\(438\) 0 0
\(439\) 28.3607 1.35358 0.676791 0.736175i \(-0.263370\pi\)
0.676791 + 0.736175i \(0.263370\pi\)
\(440\) 0 0
\(441\) 3.85410 0.183529
\(442\) 0 0
\(443\) −34.7984 −1.65332 −0.826660 0.562701i \(-0.809762\pi\)
−0.826660 + 0.562701i \(0.809762\pi\)
\(444\) 0 0
\(445\) −12.1803 −0.577403
\(446\) 0 0
\(447\) −18.3262 −0.866801
\(448\) 0 0
\(449\) −1.38197 −0.0652190 −0.0326095 0.999468i \(-0.510382\pi\)
−0.0326095 + 0.999468i \(0.510382\pi\)
\(450\) 0 0
\(451\) −0.549150 −0.0258585
\(452\) 0 0
\(453\) −11.4721 −0.539008
\(454\) 0 0
\(455\) 2.23607 0.104828
\(456\) 0 0
\(457\) 16.2148 0.758495 0.379248 0.925295i \(-0.376183\pi\)
0.379248 + 0.925295i \(0.376183\pi\)
\(458\) 0 0
\(459\) −17.0344 −0.795100
\(460\) 0 0
\(461\) 24.0344 1.11940 0.559698 0.828697i \(-0.310917\pi\)
0.559698 + 0.828697i \(0.310917\pi\)
\(462\) 0 0
\(463\) −40.7771 −1.89507 −0.947536 0.319649i \(-0.896435\pi\)
−0.947536 + 0.319649i \(0.896435\pi\)
\(464\) 0 0
\(465\) −6.23607 −0.289191
\(466\) 0 0
\(467\) −19.8541 −0.918738 −0.459369 0.888245i \(-0.651924\pi\)
−0.459369 + 0.888245i \(0.651924\pi\)
\(468\) 0 0
\(469\) 2.09017 0.0965151
\(470\) 0 0
\(471\) −35.6525 −1.64278
\(472\) 0 0
\(473\) 51.5967 2.37242
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) 55.2148 2.52811
\(478\) 0 0
\(479\) −15.9787 −0.730086 −0.365043 0.930991i \(-0.618946\pi\)
−0.365043 + 0.930991i \(0.618946\pi\)
\(480\) 0 0
\(481\) 15.0000 0.683941
\(482\) 0 0
\(483\) −22.7984 −1.03736
\(484\) 0 0
\(485\) 8.70820 0.395419
\(486\) 0 0
\(487\) −20.7082 −0.938378 −0.469189 0.883098i \(-0.655454\pi\)
−0.469189 + 0.883098i \(0.655454\pi\)
\(488\) 0 0
\(489\) 28.2705 1.27844
\(490\) 0 0
\(491\) −23.0557 −1.04049 −0.520245 0.854017i \(-0.674159\pi\)
−0.520245 + 0.854017i \(0.674159\pi\)
\(492\) 0 0
\(493\) 6.50658 0.293042
\(494\) 0 0
\(495\) −23.4721 −1.05499
\(496\) 0 0
\(497\) −11.1803 −0.501507
\(498\) 0 0
\(499\) −6.90983 −0.309326 −0.154663 0.987967i \(-0.549429\pi\)
−0.154663 + 0.987967i \(0.549429\pi\)
\(500\) 0 0
\(501\) 3.85410 0.172189
\(502\) 0 0
\(503\) 0.944272 0.0421030 0.0210515 0.999778i \(-0.493299\pi\)
0.0210515 + 0.999778i \(0.493299\pi\)
\(504\) 0 0
\(505\) 8.23607 0.366500
\(506\) 0 0
\(507\) −20.9443 −0.930168
\(508\) 0 0
\(509\) −33.4164 −1.48116 −0.740578 0.671970i \(-0.765448\pi\)
−0.740578 + 0.671970i \(0.765448\pi\)
\(510\) 0 0
\(511\) −0.909830 −0.0402485
\(512\) 0 0
\(513\) 2.23607 0.0987248
\(514\) 0 0
\(515\) −7.76393 −0.342120
\(516\) 0 0
\(517\) −28.6738 −1.26107
\(518\) 0 0
\(519\) 26.9443 1.18272
\(520\) 0 0
\(521\) 6.88854 0.301793 0.150896 0.988550i \(-0.451784\pi\)
0.150896 + 0.988550i \(0.451784\pi\)
\(522\) 0 0
\(523\) −4.41641 −0.193116 −0.0965580 0.995327i \(-0.530783\pi\)
−0.0965580 + 0.995327i \(0.530783\pi\)
\(524\) 0 0
\(525\) −10.4721 −0.457041
\(526\) 0 0
\(527\) 18.1459 0.790448
\(528\) 0 0
\(529\) 52.8328 2.29708
\(530\) 0 0
\(531\) 41.2705 1.79099
\(532\) 0 0
\(533\) 0.201626 0.00873340
\(534\) 0 0
\(535\) −3.76393 −0.162729
\(536\) 0 0
\(537\) 27.1803 1.17292
\(538\) 0 0
\(539\) −6.09017 −0.262322
\(540\) 0 0
\(541\) 10.5836 0.455024 0.227512 0.973775i \(-0.426941\pi\)
0.227512 + 0.973775i \(0.426941\pi\)
\(542\) 0 0
\(543\) 35.3607 1.51747
\(544\) 0 0
\(545\) −18.8885 −0.809096
\(546\) 0 0
\(547\) −10.6180 −0.453994 −0.226997 0.973895i \(-0.572891\pi\)
−0.226997 + 0.973895i \(0.572891\pi\)
\(548\) 0 0
\(549\) −21.0902 −0.900107
\(550\) 0 0
\(551\) −0.854102 −0.0363860
\(552\) 0 0
\(553\) −6.94427 −0.295300
\(554\) 0 0
\(555\) 17.5623 0.745478
\(556\) 0 0
\(557\) 15.0344 0.637030 0.318515 0.947918i \(-0.396816\pi\)
0.318515 + 0.947918i \(0.396816\pi\)
\(558\) 0 0
\(559\) −18.9443 −0.801257
\(560\) 0 0
\(561\) 121.464 5.12821
\(562\) 0 0
\(563\) −37.5410 −1.58217 −0.791083 0.611709i \(-0.790482\pi\)
−0.791083 + 0.611709i \(0.790482\pi\)
\(564\) 0 0
\(565\) −14.6180 −0.614985
\(566\) 0 0
\(567\) −5.70820 −0.239722
\(568\) 0 0
\(569\) −13.2918 −0.557221 −0.278611 0.960404i \(-0.589874\pi\)
−0.278611 + 0.960404i \(0.589874\pi\)
\(570\) 0 0
\(571\) 5.94427 0.248760 0.124380 0.992235i \(-0.460306\pi\)
0.124380 + 0.992235i \(0.460306\pi\)
\(572\) 0 0
\(573\) 21.0344 0.878726
\(574\) 0 0
\(575\) 34.8328 1.45263
\(576\) 0 0
\(577\) 9.67376 0.402724 0.201362 0.979517i \(-0.435463\pi\)
0.201362 + 0.979517i \(0.435463\pi\)
\(578\) 0 0
\(579\) −3.76393 −0.156424
\(580\) 0 0
\(581\) −14.6180 −0.606458
\(582\) 0 0
\(583\) −87.2492 −3.61349
\(584\) 0 0
\(585\) 8.61803 0.356312
\(586\) 0 0
\(587\) 34.3607 1.41822 0.709109 0.705099i \(-0.249098\pi\)
0.709109 + 0.705099i \(0.249098\pi\)
\(588\) 0 0
\(589\) −2.38197 −0.0981472
\(590\) 0 0
\(591\) −23.0344 −0.947510
\(592\) 0 0
\(593\) 27.2918 1.12074 0.560370 0.828242i \(-0.310659\pi\)
0.560370 + 0.828242i \(0.310659\pi\)
\(594\) 0 0
\(595\) −7.61803 −0.312309
\(596\) 0 0
\(597\) 5.85410 0.239592
\(598\) 0 0
\(599\) 40.1459 1.64032 0.820158 0.572136i \(-0.193885\pi\)
0.820158 + 0.572136i \(0.193885\pi\)
\(600\) 0 0
\(601\) 18.9787 0.774158 0.387079 0.922047i \(-0.373484\pi\)
0.387079 + 0.922047i \(0.373484\pi\)
\(602\) 0 0
\(603\) 8.05573 0.328055
\(604\) 0 0
\(605\) 26.0902 1.06072
\(606\) 0 0
\(607\) −36.5967 −1.48542 −0.742708 0.669615i \(-0.766459\pi\)
−0.742708 + 0.669615i \(0.766459\pi\)
\(608\) 0 0
\(609\) −2.23607 −0.0906100
\(610\) 0 0
\(611\) 10.5279 0.425912
\(612\) 0 0
\(613\) −2.03444 −0.0821703 −0.0410852 0.999156i \(-0.513081\pi\)
−0.0410852 + 0.999156i \(0.513081\pi\)
\(614\) 0 0
\(615\) 0.236068 0.00951918
\(616\) 0 0
\(617\) −26.8541 −1.08111 −0.540553 0.841310i \(-0.681785\pi\)
−0.540553 + 0.841310i \(0.681785\pi\)
\(618\) 0 0
\(619\) 46.7984 1.88099 0.940493 0.339814i \(-0.110364\pi\)
0.940493 + 0.339814i \(0.110364\pi\)
\(620\) 0 0
\(621\) −19.4721 −0.781390
\(622\) 0 0
\(623\) −12.1803 −0.487995
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) −15.9443 −0.636753
\(628\) 0 0
\(629\) −51.1033 −2.03762
\(630\) 0 0
\(631\) 0.888544 0.0353724 0.0176862 0.999844i \(-0.494370\pi\)
0.0176862 + 0.999844i \(0.494370\pi\)
\(632\) 0 0
\(633\) −70.6312 −2.80734
\(634\) 0 0
\(635\) 15.2361 0.604625
\(636\) 0 0
\(637\) 2.23607 0.0885962
\(638\) 0 0
\(639\) −43.0902 −1.70462
\(640\) 0 0
\(641\) 6.38197 0.252073 0.126036 0.992026i \(-0.459774\pi\)
0.126036 + 0.992026i \(0.459774\pi\)
\(642\) 0 0
\(643\) 7.47214 0.294672 0.147336 0.989086i \(-0.452930\pi\)
0.147336 + 0.989086i \(0.452930\pi\)
\(644\) 0 0
\(645\) −22.1803 −0.873350
\(646\) 0 0
\(647\) −27.6525 −1.08713 −0.543566 0.839367i \(-0.682926\pi\)
−0.543566 + 0.839367i \(0.682926\pi\)
\(648\) 0 0
\(649\) −65.2148 −2.55990
\(650\) 0 0
\(651\) −6.23607 −0.244411
\(652\) 0 0
\(653\) 22.1246 0.865803 0.432901 0.901441i \(-0.357490\pi\)
0.432901 + 0.901441i \(0.357490\pi\)
\(654\) 0 0
\(655\) 4.38197 0.171218
\(656\) 0 0
\(657\) −3.50658 −0.136805
\(658\) 0 0
\(659\) −22.0902 −0.860511 −0.430255 0.902707i \(-0.641577\pi\)
−0.430255 + 0.902707i \(0.641577\pi\)
\(660\) 0 0
\(661\) −12.4721 −0.485110 −0.242555 0.970138i \(-0.577985\pi\)
−0.242555 + 0.970138i \(0.577985\pi\)
\(662\) 0 0
\(663\) −44.5967 −1.73199
\(664\) 0 0
\(665\) 1.00000 0.0387783
\(666\) 0 0
\(667\) 7.43769 0.287989
\(668\) 0 0
\(669\) 15.5623 0.601674
\(670\) 0 0
\(671\) 33.3262 1.28655
\(672\) 0 0
\(673\) −44.5066 −1.71560 −0.857801 0.513982i \(-0.828170\pi\)
−0.857801 + 0.513982i \(0.828170\pi\)
\(674\) 0 0
\(675\) −8.94427 −0.344265
\(676\) 0 0
\(677\) 47.9230 1.84183 0.920915 0.389764i \(-0.127443\pi\)
0.920915 + 0.389764i \(0.127443\pi\)
\(678\) 0 0
\(679\) 8.70820 0.334190
\(680\) 0 0
\(681\) −42.1246 −1.61422
\(682\) 0 0
\(683\) −7.29180 −0.279013 −0.139506 0.990221i \(-0.544552\pi\)
−0.139506 + 0.990221i \(0.544552\pi\)
\(684\) 0 0
\(685\) 3.52786 0.134793
\(686\) 0 0
\(687\) 32.6525 1.24577
\(688\) 0 0
\(689\) 32.0344 1.22042
\(690\) 0 0
\(691\) 39.1246 1.48837 0.744185 0.667973i \(-0.232838\pi\)
0.744185 + 0.667973i \(0.232838\pi\)
\(692\) 0 0
\(693\) −23.4721 −0.891633
\(694\) 0 0
\(695\) 5.18034 0.196501
\(696\) 0 0
\(697\) −0.686918 −0.0260189
\(698\) 0 0
\(699\) −19.1803 −0.725467
\(700\) 0 0
\(701\) 6.47214 0.244449 0.122225 0.992502i \(-0.460997\pi\)
0.122225 + 0.992502i \(0.460997\pi\)
\(702\) 0 0
\(703\) 6.70820 0.253005
\(704\) 0 0
\(705\) 12.3262 0.464233
\(706\) 0 0
\(707\) 8.23607 0.309749
\(708\) 0 0
\(709\) 22.7082 0.852824 0.426412 0.904529i \(-0.359777\pi\)
0.426412 + 0.904529i \(0.359777\pi\)
\(710\) 0 0
\(711\) −26.7639 −1.00373
\(712\) 0 0
\(713\) 20.7426 0.776818
\(714\) 0 0
\(715\) −13.6180 −0.509286
\(716\) 0 0
\(717\) −47.4508 −1.77208
\(718\) 0 0
\(719\) 28.3607 1.05767 0.528837 0.848723i \(-0.322628\pi\)
0.528837 + 0.848723i \(0.322628\pi\)
\(720\) 0 0
\(721\) −7.76393 −0.289144
\(722\) 0 0
\(723\) 62.0689 2.30837
\(724\) 0 0
\(725\) 3.41641 0.126882
\(726\) 0 0
\(727\) −18.5279 −0.687160 −0.343580 0.939123i \(-0.611640\pi\)
−0.343580 + 0.939123i \(0.611640\pi\)
\(728\) 0 0
\(729\) −39.5623 −1.46527
\(730\) 0 0
\(731\) 64.5410 2.38714
\(732\) 0 0
\(733\) −38.8328 −1.43432 −0.717161 0.696907i \(-0.754559\pi\)
−0.717161 + 0.696907i \(0.754559\pi\)
\(734\) 0 0
\(735\) 2.61803 0.0965676
\(736\) 0 0
\(737\) −12.7295 −0.468897
\(738\) 0 0
\(739\) −3.18034 −0.116991 −0.0584953 0.998288i \(-0.518630\pi\)
−0.0584953 + 0.998288i \(0.518630\pi\)
\(740\) 0 0
\(741\) 5.85410 0.215056
\(742\) 0 0
\(743\) −8.34752 −0.306241 −0.153120 0.988208i \(-0.548932\pi\)
−0.153120 + 0.988208i \(0.548932\pi\)
\(744\) 0 0
\(745\) −7.00000 −0.256460
\(746\) 0 0
\(747\) −56.3394 −2.06135
\(748\) 0 0
\(749\) −3.76393 −0.137531
\(750\) 0 0
\(751\) −33.3820 −1.21813 −0.609063 0.793122i \(-0.708454\pi\)
−0.609063 + 0.793122i \(0.708454\pi\)
\(752\) 0 0
\(753\) 1.76393 0.0642813
\(754\) 0 0
\(755\) −4.38197 −0.159476
\(756\) 0 0
\(757\) −28.8328 −1.04795 −0.523973 0.851735i \(-0.675551\pi\)
−0.523973 + 0.851735i \(0.675551\pi\)
\(758\) 0 0
\(759\) 138.846 5.03979
\(760\) 0 0
\(761\) −5.94427 −0.215480 −0.107740 0.994179i \(-0.534361\pi\)
−0.107740 + 0.994179i \(0.534361\pi\)
\(762\) 0 0
\(763\) −18.8885 −0.683811
\(764\) 0 0
\(765\) −29.3607 −1.06154
\(766\) 0 0
\(767\) 23.9443 0.864578
\(768\) 0 0
\(769\) −28.3607 −1.02271 −0.511356 0.859369i \(-0.670857\pi\)
−0.511356 + 0.859369i \(0.670857\pi\)
\(770\) 0 0
\(771\) 34.7426 1.25123
\(772\) 0 0
\(773\) 43.1246 1.55108 0.775542 0.631296i \(-0.217477\pi\)
0.775542 + 0.631296i \(0.217477\pi\)
\(774\) 0 0
\(775\) 9.52786 0.342251
\(776\) 0 0
\(777\) 17.5623 0.630044
\(778\) 0 0
\(779\) 0.0901699 0.00323067
\(780\) 0 0
\(781\) 68.0902 2.43646
\(782\) 0 0
\(783\) −1.90983 −0.0682518
\(784\) 0 0
\(785\) −13.6180 −0.486048
\(786\) 0 0
\(787\) 0.360680 0.0128568 0.00642842 0.999979i \(-0.497954\pi\)
0.00642842 + 0.999979i \(0.497954\pi\)
\(788\) 0 0
\(789\) 49.2148 1.75209
\(790\) 0 0
\(791\) −14.6180 −0.519757
\(792\) 0 0
\(793\) −12.2361 −0.434516
\(794\) 0 0
\(795\) 37.5066 1.33022
\(796\) 0 0
\(797\) 19.7295 0.698854 0.349427 0.936964i \(-0.386376\pi\)
0.349427 + 0.936964i \(0.386376\pi\)
\(798\) 0 0
\(799\) −35.8673 −1.26889
\(800\) 0 0
\(801\) −46.9443 −1.65869
\(802\) 0 0
\(803\) 5.54102 0.195538
\(804\) 0 0
\(805\) −8.70820 −0.306924
\(806\) 0 0
\(807\) −12.5623 −0.442214
\(808\) 0 0
\(809\) −15.0689 −0.529794 −0.264897 0.964277i \(-0.585338\pi\)
−0.264897 + 0.964277i \(0.585338\pi\)
\(810\) 0 0
\(811\) −7.88854 −0.277004 −0.138502 0.990362i \(-0.544229\pi\)
−0.138502 + 0.990362i \(0.544229\pi\)
\(812\) 0 0
\(813\) 1.47214 0.0516301
\(814\) 0 0
\(815\) 10.7984 0.378251
\(816\) 0 0
\(817\) −8.47214 −0.296403
\(818\) 0 0
\(819\) 8.61803 0.301138
\(820\) 0 0
\(821\) −23.4164 −0.817238 −0.408619 0.912705i \(-0.633990\pi\)
−0.408619 + 0.912705i \(0.633990\pi\)
\(822\) 0 0
\(823\) −33.2361 −1.15854 −0.579268 0.815137i \(-0.696662\pi\)
−0.579268 + 0.815137i \(0.696662\pi\)
\(824\) 0 0
\(825\) 63.7771 2.22043
\(826\) 0 0
\(827\) −24.8197 −0.863064 −0.431532 0.902098i \(-0.642027\pi\)
−0.431532 + 0.902098i \(0.642027\pi\)
\(828\) 0 0
\(829\) 38.2492 1.32845 0.664225 0.747533i \(-0.268762\pi\)
0.664225 + 0.747533i \(0.268762\pi\)
\(830\) 0 0
\(831\) 22.6525 0.785806
\(832\) 0 0
\(833\) −7.61803 −0.263949
\(834\) 0 0
\(835\) 1.47214 0.0509454
\(836\) 0 0
\(837\) −5.32624 −0.184102
\(838\) 0 0
\(839\) −36.3607 −1.25531 −0.627655 0.778492i \(-0.715985\pi\)
−0.627655 + 0.778492i \(0.715985\pi\)
\(840\) 0 0
\(841\) −28.2705 −0.974845
\(842\) 0 0
\(843\) −28.7984 −0.991869
\(844\) 0 0
\(845\) −8.00000 −0.275208
\(846\) 0 0
\(847\) 26.0902 0.896469
\(848\) 0 0
\(849\) 48.7426 1.67284
\(850\) 0 0
\(851\) −58.4164 −2.00249
\(852\) 0 0
\(853\) −38.2148 −1.30845 −0.654225 0.756300i \(-0.727005\pi\)
−0.654225 + 0.756300i \(0.727005\pi\)
\(854\) 0 0
\(855\) 3.85410 0.131808
\(856\) 0 0
\(857\) 24.3820 0.832872 0.416436 0.909165i \(-0.363279\pi\)
0.416436 + 0.909165i \(0.363279\pi\)
\(858\) 0 0
\(859\) −31.9787 −1.09110 −0.545550 0.838078i \(-0.683679\pi\)
−0.545550 + 0.838078i \(0.683679\pi\)
\(860\) 0 0
\(861\) 0.236068 0.00804518
\(862\) 0 0
\(863\) 22.0344 0.750061 0.375031 0.927012i \(-0.377632\pi\)
0.375031 + 0.927012i \(0.377632\pi\)
\(864\) 0 0
\(865\) 10.2918 0.349932
\(866\) 0 0
\(867\) 107.430 3.64850
\(868\) 0 0
\(869\) 42.2918 1.43465
\(870\) 0 0
\(871\) 4.67376 0.158364
\(872\) 0 0
\(873\) 33.5623 1.13591
\(874\) 0 0
\(875\) −9.00000 −0.304256
\(876\) 0 0
\(877\) 37.7082 1.27332 0.636658 0.771146i \(-0.280316\pi\)
0.636658 + 0.771146i \(0.280316\pi\)
\(878\) 0 0
\(879\) 50.9787 1.71947
\(880\) 0 0
\(881\) 16.5066 0.556121 0.278060 0.960564i \(-0.410308\pi\)
0.278060 + 0.960564i \(0.410308\pi\)
\(882\) 0 0
\(883\) 38.1246 1.28300 0.641498 0.767125i \(-0.278313\pi\)
0.641498 + 0.767125i \(0.278313\pi\)
\(884\) 0 0
\(885\) 28.0344 0.942367
\(886\) 0 0
\(887\) −55.8328 −1.87468 −0.937341 0.348413i \(-0.886721\pi\)
−0.937341 + 0.348413i \(0.886721\pi\)
\(888\) 0 0
\(889\) 15.2361 0.511001
\(890\) 0 0
\(891\) 34.7639 1.16464
\(892\) 0 0
\(893\) 4.70820 0.157554
\(894\) 0 0
\(895\) 10.3820 0.347031
\(896\) 0 0
\(897\) −50.9787 −1.70213
\(898\) 0 0
\(899\) 2.03444 0.0678524
\(900\) 0 0
\(901\) −109.138 −3.63591
\(902\) 0 0
\(903\) −22.1803 −0.738115
\(904\) 0 0
\(905\) 13.5066 0.448974
\(906\) 0 0
\(907\) −34.3050 −1.13908 −0.569539 0.821965i \(-0.692878\pi\)
−0.569539 + 0.821965i \(0.692878\pi\)
\(908\) 0 0
\(909\) 31.7426 1.05284
\(910\) 0 0
\(911\) 0.472136 0.0156426 0.00782128 0.999969i \(-0.497510\pi\)
0.00782128 + 0.999969i \(0.497510\pi\)
\(912\) 0 0
\(913\) 89.0263 2.94634
\(914\) 0 0
\(915\) −14.3262 −0.473611
\(916\) 0 0
\(917\) 4.38197 0.144705
\(918\) 0 0
\(919\) 31.3607 1.03449 0.517247 0.855836i \(-0.326957\pi\)
0.517247 + 0.855836i \(0.326957\pi\)
\(920\) 0 0
\(921\) −59.5410 −1.96194
\(922\) 0 0
\(923\) −25.0000 −0.822885
\(924\) 0 0
\(925\) −26.8328 −0.882258
\(926\) 0 0
\(927\) −29.9230 −0.982800
\(928\) 0 0
\(929\) −11.2705 −0.369773 −0.184887 0.982760i \(-0.559192\pi\)
−0.184887 + 0.982760i \(0.559192\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) −8.70820 −0.285094
\(934\) 0 0
\(935\) 46.3951 1.51728
\(936\) 0 0
\(937\) −17.1459 −0.560132 −0.280066 0.959981i \(-0.590356\pi\)
−0.280066 + 0.959981i \(0.590356\pi\)
\(938\) 0 0
\(939\) 37.1246 1.21152
\(940\) 0 0
\(941\) −47.8885 −1.56112 −0.780561 0.625080i \(-0.785066\pi\)
−0.780561 + 0.625080i \(0.785066\pi\)
\(942\) 0 0
\(943\) −0.785218 −0.0255702
\(944\) 0 0
\(945\) 2.23607 0.0727393
\(946\) 0 0
\(947\) −26.0344 −0.846006 −0.423003 0.906128i \(-0.639024\pi\)
−0.423003 + 0.906128i \(0.639024\pi\)
\(948\) 0 0
\(949\) −2.03444 −0.0660408
\(950\) 0 0
\(951\) −11.7082 −0.379665
\(952\) 0 0
\(953\) 13.2148 0.428069 0.214034 0.976826i \(-0.431340\pi\)
0.214034 + 0.976826i \(0.431340\pi\)
\(954\) 0 0
\(955\) 8.03444 0.259988
\(956\) 0 0
\(957\) 13.6180 0.440209
\(958\) 0 0
\(959\) 3.52786 0.113921
\(960\) 0 0
\(961\) −25.3262 −0.816975
\(962\) 0 0
\(963\) −14.5066 −0.467468
\(964\) 0 0
\(965\) −1.43769 −0.0462810
\(966\) 0 0
\(967\) 35.9098 1.15478 0.577391 0.816468i \(-0.304071\pi\)
0.577391 + 0.816468i \(0.304071\pi\)
\(968\) 0 0
\(969\) −19.9443 −0.640702
\(970\) 0 0
\(971\) −21.7639 −0.698438 −0.349219 0.937041i \(-0.613553\pi\)
−0.349219 + 0.937041i \(0.613553\pi\)
\(972\) 0 0
\(973\) 5.18034 0.166074
\(974\) 0 0
\(975\) −23.4164 −0.749925
\(976\) 0 0
\(977\) 21.2361 0.679402 0.339701 0.940533i \(-0.389674\pi\)
0.339701 + 0.940533i \(0.389674\pi\)
\(978\) 0 0
\(979\) 74.1803 2.37081
\(980\) 0 0
\(981\) −72.7984 −2.32427
\(982\) 0 0
\(983\) 45.1803 1.44103 0.720515 0.693440i \(-0.243906\pi\)
0.720515 + 0.693440i \(0.243906\pi\)
\(984\) 0 0
\(985\) −8.79837 −0.280340
\(986\) 0 0
\(987\) 12.3262 0.392348
\(988\) 0 0
\(989\) 73.7771 2.34597
\(990\) 0 0
\(991\) −11.1246 −0.353385 −0.176692 0.984266i \(-0.556540\pi\)
−0.176692 + 0.984266i \(0.556540\pi\)
\(992\) 0 0
\(993\) 1.90983 0.0606066
\(994\) 0 0
\(995\) 2.23607 0.0708881
\(996\) 0 0
\(997\) 33.2016 1.05151 0.525753 0.850637i \(-0.323784\pi\)
0.525753 + 0.850637i \(0.323784\pi\)
\(998\) 0 0
\(999\) 15.0000 0.474579
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8512.2.a.bg.1.2 2
4.3 odd 2 8512.2.a.k.1.1 2
8.3 odd 2 2128.2.a.m.1.2 2
8.5 even 2 532.2.a.b.1.1 2
24.5 odd 2 4788.2.a.l.1.1 2
56.13 odd 2 3724.2.a.g.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.2.a.b.1.1 2 8.5 even 2
2128.2.a.m.1.2 2 8.3 odd 2
3724.2.a.g.1.2 2 56.13 odd 2
4788.2.a.l.1.1 2 24.5 odd 2
8512.2.a.k.1.1 2 4.3 odd 2
8512.2.a.bg.1.2 2 1.1 even 1 trivial