Properties

Label 850.2.h.j.251.1
Level $850$
Weight $2$
Character 850.251
Analytic conductor $6.787$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [850,2,Mod(251,850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(850, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("850.251"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.h (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,-4,0,-2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 251.1
Root \(1.65831 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 850.251
Dual form 850.2.h.j.701.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(-1.15831 - 1.15831i) q^{3} -1.00000 q^{4} +(1.15831 - 1.15831i) q^{6} +(-1.15831 + 1.15831i) q^{7} -1.00000i q^{8} -0.316625i q^{9} +(1.00000 - 1.00000i) q^{11} +(1.15831 + 1.15831i) q^{12} -1.00000 q^{13} +(-1.15831 - 1.15831i) q^{14} +1.00000 q^{16} +(-1.00000 + 4.00000i) q^{17} +0.316625 q^{18} +1.68338i q^{19} +2.68338 q^{21} +(1.00000 + 1.00000i) q^{22} +(-1.00000 + 1.00000i) q^{23} +(-1.15831 + 1.15831i) q^{24} -1.00000i q^{26} +(-3.84169 + 3.84169i) q^{27} +(1.15831 - 1.15831i) q^{28} +(4.31662 + 4.31662i) q^{29} +(-0.158312 - 0.158312i) q^{31} +1.00000i q^{32} -2.31662 q^{33} +(-4.00000 - 1.00000i) q^{34} +0.316625i q^{36} +(0.316625 + 0.316625i) q^{37} -1.68338 q^{38} +(1.15831 + 1.15831i) q^{39} +(-1.31662 + 1.31662i) q^{41} +2.68338i q^{42} +6.00000i q^{43} +(-1.00000 + 1.00000i) q^{44} +(-1.00000 - 1.00000i) q^{46} -8.94987 q^{47} +(-1.15831 - 1.15831i) q^{48} +4.31662i q^{49} +(5.79156 - 3.47494i) q^{51} +1.00000 q^{52} +7.94987i q^{53} +(-3.84169 - 3.84169i) q^{54} +(1.15831 + 1.15831i) q^{56} +(1.94987 - 1.94987i) q^{57} +(-4.31662 + 4.31662i) q^{58} +8.63325i q^{59} +(-1.31662 + 1.31662i) q^{61} +(0.158312 - 0.158312i) q^{62} +(0.366750 + 0.366750i) q^{63} -1.00000 q^{64} -2.31662i q^{66} -6.63325 q^{67} +(1.00000 - 4.00000i) q^{68} +2.31662 q^{69} +(-2.84169 - 2.84169i) q^{71} -0.316625 q^{72} +(4.63325 + 4.63325i) q^{73} +(-0.316625 + 0.316625i) q^{74} -1.68338i q^{76} +2.31662i q^{77} +(-1.15831 + 1.15831i) q^{78} +(-5.47494 + 5.47494i) q^{79} +7.94987 q^{81} +(-1.31662 - 1.31662i) q^{82} +0.633250i q^{83} -2.68338 q^{84} -6.00000 q^{86} -10.0000i q^{87} +(-1.00000 - 1.00000i) q^{88} +5.36675 q^{89} +(1.15831 - 1.15831i) q^{91} +(1.00000 - 1.00000i) q^{92} +0.366750i q^{93} -8.94987i q^{94} +(1.15831 - 1.15831i) q^{96} +(-2.00000 - 2.00000i) q^{97} -4.31662 q^{98} +(-0.316625 - 0.316625i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 4 q^{4} - 2 q^{6} + 2 q^{7} + 4 q^{11} - 2 q^{12} - 4 q^{13} + 2 q^{14} + 4 q^{16} - 4 q^{17} - 12 q^{18} + 24 q^{21} + 4 q^{22} - 4 q^{23} + 2 q^{24} - 22 q^{27} - 2 q^{28} + 4 q^{29} + 6 q^{31}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −1.15831 1.15831i −0.668752 0.668752i 0.288675 0.957427i \(-0.406785\pi\)
−0.957427 + 0.288675i \(0.906785\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 1.15831 1.15831i 0.472879 0.472879i
\(7\) −1.15831 + 1.15831i −0.437801 + 0.437801i −0.891271 0.453470i \(-0.850186\pi\)
0.453470 + 0.891271i \(0.350186\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.316625i 0.105542i
\(10\) 0 0
\(11\) 1.00000 1.00000i 0.301511 0.301511i −0.540094 0.841605i \(-0.681611\pi\)
0.841605 + 0.540094i \(0.181611\pi\)
\(12\) 1.15831 + 1.15831i 0.334376 + 0.334376i
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) −1.15831 1.15831i −0.309572 0.309572i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 + 4.00000i −0.242536 + 0.970143i
\(18\) 0.316625 0.0746292
\(19\) 1.68338i 0.386193i 0.981180 + 0.193096i \(0.0618530\pi\)
−0.981180 + 0.193096i \(0.938147\pi\)
\(20\) 0 0
\(21\) 2.68338 0.585560
\(22\) 1.00000 + 1.00000i 0.213201 + 0.213201i
\(23\) −1.00000 + 1.00000i −0.208514 + 0.208514i −0.803636 0.595121i \(-0.797104\pi\)
0.595121 + 0.803636i \(0.297104\pi\)
\(24\) −1.15831 + 1.15831i −0.236440 + 0.236440i
\(25\) 0 0
\(26\) 1.00000i 0.196116i
\(27\) −3.84169 + 3.84169i −0.739333 + 0.739333i
\(28\) 1.15831 1.15831i 0.218900 0.218900i
\(29\) 4.31662 + 4.31662i 0.801577 + 0.801577i 0.983342 0.181765i \(-0.0581810\pi\)
−0.181765 + 0.983342i \(0.558181\pi\)
\(30\) 0 0
\(31\) −0.158312 0.158312i −0.0284337 0.0284337i 0.692747 0.721181i \(-0.256400\pi\)
−0.721181 + 0.692747i \(0.756400\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −2.31662 −0.403273
\(34\) −4.00000 1.00000i −0.685994 0.171499i
\(35\) 0 0
\(36\) 0.316625i 0.0527708i
\(37\) 0.316625 + 0.316625i 0.0520528 + 0.0520528i 0.732654 0.680601i \(-0.238281\pi\)
−0.680601 + 0.732654i \(0.738281\pi\)
\(38\) −1.68338 −0.273080
\(39\) 1.15831 + 1.15831i 0.185478 + 0.185478i
\(40\) 0 0
\(41\) −1.31662 + 1.31662i −0.205622 + 0.205622i −0.802404 0.596782i \(-0.796446\pi\)
0.596782 + 0.802404i \(0.296446\pi\)
\(42\) 2.68338i 0.414054i
\(43\) 6.00000i 0.914991i 0.889212 + 0.457496i \(0.151253\pi\)
−0.889212 + 0.457496i \(0.848747\pi\)
\(44\) −1.00000 + 1.00000i −0.150756 + 0.150756i
\(45\) 0 0
\(46\) −1.00000 1.00000i −0.147442 0.147442i
\(47\) −8.94987 −1.30547 −0.652737 0.757585i \(-0.726379\pi\)
−0.652737 + 0.757585i \(0.726379\pi\)
\(48\) −1.15831 1.15831i −0.167188 0.167188i
\(49\) 4.31662i 0.616661i
\(50\) 0 0
\(51\) 5.79156 3.47494i 0.810981 0.486589i
\(52\) 1.00000 0.138675
\(53\) 7.94987i 1.09200i 0.837785 + 0.546000i \(0.183850\pi\)
−0.837785 + 0.546000i \(0.816150\pi\)
\(54\) −3.84169 3.84169i −0.522787 0.522787i
\(55\) 0 0
\(56\) 1.15831 + 1.15831i 0.154786 + 0.154786i
\(57\) 1.94987 1.94987i 0.258267 0.258267i
\(58\) −4.31662 + 4.31662i −0.566801 + 0.566801i
\(59\) 8.63325i 1.12395i 0.827153 + 0.561977i \(0.189959\pi\)
−0.827153 + 0.561977i \(0.810041\pi\)
\(60\) 0 0
\(61\) −1.31662 + 1.31662i −0.168577 + 0.168577i −0.786353 0.617777i \(-0.788033\pi\)
0.617777 + 0.786353i \(0.288033\pi\)
\(62\) 0.158312 0.158312i 0.0201057 0.0201057i
\(63\) 0.366750 + 0.366750i 0.0462062 + 0.0462062i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 2.31662i 0.285157i
\(67\) −6.63325 −0.810380 −0.405190 0.914232i \(-0.632795\pi\)
−0.405190 + 0.914232i \(0.632795\pi\)
\(68\) 1.00000 4.00000i 0.121268 0.485071i
\(69\) 2.31662 0.278889
\(70\) 0 0
\(71\) −2.84169 2.84169i −0.337246 0.337246i 0.518084 0.855330i \(-0.326646\pi\)
−0.855330 + 0.518084i \(0.826646\pi\)
\(72\) −0.316625 −0.0373146
\(73\) 4.63325 + 4.63325i 0.542281 + 0.542281i 0.924197 0.381916i \(-0.124736\pi\)
−0.381916 + 0.924197i \(0.624736\pi\)
\(74\) −0.316625 + 0.316625i −0.0368069 + 0.0368069i
\(75\) 0 0
\(76\) 1.68338i 0.193096i
\(77\) 2.31662i 0.264004i
\(78\) −1.15831 + 1.15831i −0.131153 + 0.131153i
\(79\) −5.47494 + 5.47494i −0.615979 + 0.615979i −0.944497 0.328519i \(-0.893451\pi\)
0.328519 + 0.944497i \(0.393451\pi\)
\(80\) 0 0
\(81\) 7.94987 0.883319
\(82\) −1.31662 1.31662i −0.145397 0.145397i
\(83\) 0.633250i 0.0695082i 0.999396 + 0.0347541i \(0.0110648\pi\)
−0.999396 + 0.0347541i \(0.988935\pi\)
\(84\) −2.68338 −0.292780
\(85\) 0 0
\(86\) −6.00000 −0.646997
\(87\) 10.0000i 1.07211i
\(88\) −1.00000 1.00000i −0.106600 0.106600i
\(89\) 5.36675 0.568874 0.284437 0.958695i \(-0.408193\pi\)
0.284437 + 0.958695i \(0.408193\pi\)
\(90\) 0 0
\(91\) 1.15831 1.15831i 0.121424 0.121424i
\(92\) 1.00000 1.00000i 0.104257 0.104257i
\(93\) 0.366750i 0.0380302i
\(94\) 8.94987i 0.923109i
\(95\) 0 0
\(96\) 1.15831 1.15831i 0.118220 0.118220i
\(97\) −2.00000 2.00000i −0.203069 0.203069i 0.598244 0.801314i \(-0.295865\pi\)
−0.801314 + 0.598244i \(0.795865\pi\)
\(98\) −4.31662 −0.436045
\(99\) −0.316625 0.316625i −0.0318220 0.0318220i
\(100\) 0 0
\(101\) −7.63325 −0.759537 −0.379768 0.925082i \(-0.623996\pi\)
−0.379768 + 0.925082i \(0.623996\pi\)
\(102\) 3.47494 + 5.79156i 0.344070 + 0.573450i
\(103\) 15.5831 1.53545 0.767725 0.640779i \(-0.221388\pi\)
0.767725 + 0.640779i \(0.221388\pi\)
\(104\) 1.00000i 0.0980581i
\(105\) 0 0
\(106\) −7.94987 −0.772160
\(107\) −5.84169 5.84169i −0.564737 0.564737i 0.365912 0.930649i \(-0.380757\pi\)
−0.930649 + 0.365912i \(0.880757\pi\)
\(108\) 3.84169 3.84169i 0.369667 0.369667i
\(109\) −2.00000 + 2.00000i −0.191565 + 0.191565i −0.796372 0.604807i \(-0.793250\pi\)
0.604807 + 0.796372i \(0.293250\pi\)
\(110\) 0 0
\(111\) 0.733501i 0.0696208i
\(112\) −1.15831 + 1.15831i −0.109450 + 0.109450i
\(113\) 13.2665 13.2665i 1.24801 1.24801i 0.291409 0.956599i \(-0.405876\pi\)
0.956599 0.291409i \(-0.0941239\pi\)
\(114\) 1.94987 + 1.94987i 0.182622 + 0.182622i
\(115\) 0 0
\(116\) −4.31662 4.31662i −0.400789 0.400789i
\(117\) 0.316625i 0.0292720i
\(118\) −8.63325 −0.794755
\(119\) −3.47494 5.79156i −0.318547 0.530912i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) −1.31662 1.31662i −0.119202 0.119202i
\(123\) 3.05013 0.275021
\(124\) 0.158312 + 0.158312i 0.0142169 + 0.0142169i
\(125\) 0 0
\(126\) −0.366750 + 0.366750i −0.0326727 + 0.0326727i
\(127\) 2.00000i 0.177471i −0.996055 0.0887357i \(-0.971717\pi\)
0.996055 0.0887357i \(-0.0282826\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 6.94987 6.94987i 0.611902 0.611902i
\(130\) 0 0
\(131\) −14.7916 14.7916i −1.29234 1.29234i −0.933333 0.359012i \(-0.883114\pi\)
−0.359012 0.933333i \(-0.616886\pi\)
\(132\) 2.31662 0.201636
\(133\) −1.94987 1.94987i −0.169076 0.169076i
\(134\) 6.63325i 0.573025i
\(135\) 0 0
\(136\) 4.00000 + 1.00000i 0.342997 + 0.0857493i
\(137\) 19.9499 1.70443 0.852216 0.523189i \(-0.175258\pi\)
0.852216 + 0.523189i \(0.175258\pi\)
\(138\) 2.31662i 0.197204i
\(139\) −13.7916 13.7916i −1.16979 1.16979i −0.982260 0.187525i \(-0.939953\pi\)
−0.187525 0.982260i \(-0.560047\pi\)
\(140\) 0 0
\(141\) 10.3668 + 10.3668i 0.873038 + 0.873038i
\(142\) 2.84169 2.84169i 0.238469 0.238469i
\(143\) −1.00000 + 1.00000i −0.0836242 + 0.0836242i
\(144\) 0.316625i 0.0263854i
\(145\) 0 0
\(146\) −4.63325 + 4.63325i −0.383450 + 0.383450i
\(147\) 5.00000 5.00000i 0.412393 0.412393i
\(148\) −0.316625 0.316625i −0.0260264 0.0260264i
\(149\) 21.9499 1.79820 0.899102 0.437739i \(-0.144221\pi\)
0.899102 + 0.437739i \(0.144221\pi\)
\(150\) 0 0
\(151\) 7.68338i 0.625264i 0.949874 + 0.312632i \(0.101211\pi\)
−0.949874 + 0.312632i \(0.898789\pi\)
\(152\) 1.68338 0.136540
\(153\) 1.26650 + 0.316625i 0.102390 + 0.0255976i
\(154\) −2.31662 −0.186679
\(155\) 0 0
\(156\) −1.15831 1.15831i −0.0927392 0.0927392i
\(157\) 15.3166 1.22240 0.611200 0.791476i \(-0.290687\pi\)
0.611200 + 0.791476i \(0.290687\pi\)
\(158\) −5.47494 5.47494i −0.435563 0.435563i
\(159\) 9.20844 9.20844i 0.730277 0.730277i
\(160\) 0 0
\(161\) 2.31662i 0.182576i
\(162\) 7.94987i 0.624601i
\(163\) 2.84169 2.84169i 0.222578 0.222578i −0.587005 0.809583i \(-0.699693\pi\)
0.809583 + 0.587005i \(0.199693\pi\)
\(164\) 1.31662 1.31662i 0.102811 0.102811i
\(165\) 0 0
\(166\) −0.633250 −0.0491497
\(167\) −7.00000 7.00000i −0.541676 0.541676i 0.382344 0.924020i \(-0.375117\pi\)
−0.924020 + 0.382344i \(0.875117\pi\)
\(168\) 2.68338i 0.207027i
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0.532998 0.0407594
\(172\) 6.00000i 0.457496i
\(173\) −17.3166 17.3166i −1.31656 1.31656i −0.916481 0.400077i \(-0.868983\pi\)
−0.400077 0.916481i \(-0.631017\pi\)
\(174\) 10.0000 0.758098
\(175\) 0 0
\(176\) 1.00000 1.00000i 0.0753778 0.0753778i
\(177\) 10.0000 10.0000i 0.751646 0.751646i
\(178\) 5.36675i 0.402255i
\(179\) 8.31662i 0.621614i −0.950473 0.310807i \(-0.899401\pi\)
0.950473 0.310807i \(-0.100599\pi\)
\(180\) 0 0
\(181\) −4.36675 + 4.36675i −0.324578 + 0.324578i −0.850520 0.525942i \(-0.823713\pi\)
0.525942 + 0.850520i \(0.323713\pi\)
\(182\) 1.15831 + 1.15831i 0.0858598 + 0.0858598i
\(183\) 3.05013 0.225472
\(184\) 1.00000 + 1.00000i 0.0737210 + 0.0737210i
\(185\) 0 0
\(186\) −0.366750 −0.0268914
\(187\) 3.00000 + 5.00000i 0.219382 + 0.365636i
\(188\) 8.94987 0.652737
\(189\) 8.89975i 0.647361i
\(190\) 0 0
\(191\) 8.94987 0.647590 0.323795 0.946127i \(-0.395041\pi\)
0.323795 + 0.946127i \(0.395041\pi\)
\(192\) 1.15831 + 1.15831i 0.0835940 + 0.0835940i
\(193\) 6.31662 6.31662i 0.454681 0.454681i −0.442224 0.896905i \(-0.645810\pi\)
0.896905 + 0.442224i \(0.145810\pi\)
\(194\) 2.00000 2.00000i 0.143592 0.143592i
\(195\) 0 0
\(196\) 4.31662i 0.308330i
\(197\) −7.31662 + 7.31662i −0.521288 + 0.521288i −0.917960 0.396672i \(-0.870165\pi\)
0.396672 + 0.917960i \(0.370165\pi\)
\(198\) 0.316625 0.316625i 0.0225015 0.0225015i
\(199\) 11.6332 + 11.6332i 0.824659 + 0.824659i 0.986772 0.162113i \(-0.0518309\pi\)
−0.162113 + 0.986772i \(0.551831\pi\)
\(200\) 0 0
\(201\) 7.68338 + 7.68338i 0.541944 + 0.541944i
\(202\) 7.63325i 0.537074i
\(203\) −10.0000 −0.701862
\(204\) −5.79156 + 3.47494i −0.405490 + 0.243294i
\(205\) 0 0
\(206\) 15.5831i 1.08573i
\(207\) 0.316625 + 0.316625i 0.0220069 + 0.0220069i
\(208\) −1.00000 −0.0693375
\(209\) 1.68338 + 1.68338i 0.116441 + 0.116441i
\(210\) 0 0
\(211\) −17.1082 + 17.1082i −1.17778 + 1.17778i −0.197467 + 0.980310i \(0.563271\pi\)
−0.980310 + 0.197467i \(0.936729\pi\)
\(212\) 7.94987i 0.546000i
\(213\) 6.58312i 0.451068i
\(214\) 5.84169 5.84169i 0.399330 0.399330i
\(215\) 0 0
\(216\) 3.84169 + 3.84169i 0.261394 + 0.261394i
\(217\) 0.366750 0.0248966
\(218\) −2.00000 2.00000i −0.135457 0.135457i
\(219\) 10.7335i 0.725303i
\(220\) 0 0
\(221\) 1.00000 4.00000i 0.0672673 0.269069i
\(222\) 0.733501 0.0492294
\(223\) 27.5831i 1.84710i 0.383475 + 0.923551i \(0.374727\pi\)
−0.383475 + 0.923551i \(0.625273\pi\)
\(224\) −1.15831 1.15831i −0.0773930 0.0773930i
\(225\) 0 0
\(226\) 13.2665 + 13.2665i 0.882474 + 0.882474i
\(227\) −1.15831 + 1.15831i −0.0768799 + 0.0768799i −0.744501 0.667621i \(-0.767313\pi\)
0.667621 + 0.744501i \(0.267313\pi\)
\(228\) −1.94987 + 1.94987i −0.129134 + 0.129134i
\(229\) 22.8997i 1.51326i 0.653844 + 0.756629i \(0.273155\pi\)
−0.653844 + 0.756629i \(0.726845\pi\)
\(230\) 0 0
\(231\) 2.68338 2.68338i 0.176553 0.176553i
\(232\) 4.31662 4.31662i 0.283400 0.283400i
\(233\) −16.9499 16.9499i −1.11042 1.11042i −0.993093 0.117330i \(-0.962566\pi\)
−0.117330 0.993093i \(-0.537434\pi\)
\(234\) −0.316625 −0.0206984
\(235\) 0 0
\(236\) 8.63325i 0.561977i
\(237\) 12.6834 0.823874
\(238\) 5.79156 3.47494i 0.375411 0.225247i
\(239\) −4.63325 −0.299700 −0.149850 0.988709i \(-0.547879\pi\)
−0.149850 + 0.988709i \(0.547879\pi\)
\(240\) 0 0
\(241\) 13.3166 + 13.3166i 0.857799 + 0.857799i 0.991079 0.133279i \(-0.0425507\pi\)
−0.133279 + 0.991079i \(0.542551\pi\)
\(242\) −9.00000 −0.578542
\(243\) 2.31662 + 2.31662i 0.148612 + 0.148612i
\(244\) 1.31662 1.31662i 0.0842883 0.0842883i
\(245\) 0 0
\(246\) 3.05013i 0.194469i
\(247\) 1.68338i 0.107111i
\(248\) −0.158312 + 0.158312i −0.0100528 + 0.0100528i
\(249\) 0.733501 0.733501i 0.0464837 0.0464837i
\(250\) 0 0
\(251\) −7.26650 −0.458657 −0.229329 0.973349i \(-0.573653\pi\)
−0.229329 + 0.973349i \(0.573653\pi\)
\(252\) −0.366750 0.366750i −0.0231031 0.0231031i
\(253\) 2.00000i 0.125739i
\(254\) 2.00000 0.125491
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 9.31662i 0.581155i −0.956851 0.290578i \(-0.906153\pi\)
0.956851 0.290578i \(-0.0938474\pi\)
\(258\) 6.94987 + 6.94987i 0.432680 + 0.432680i
\(259\) −0.733501 −0.0455775
\(260\) 0 0
\(261\) 1.36675 1.36675i 0.0845997 0.0845997i
\(262\) 14.7916 14.7916i 0.913826 0.913826i
\(263\) 4.00000i 0.246651i −0.992366 0.123325i \(-0.960644\pi\)
0.992366 0.123325i \(-0.0393559\pi\)
\(264\) 2.31662i 0.142578i
\(265\) 0 0
\(266\) 1.94987 1.94987i 0.119554 0.119554i
\(267\) −6.21637 6.21637i −0.380436 0.380436i
\(268\) 6.63325 0.405190
\(269\) 16.2665 + 16.2665i 0.991786 + 0.991786i 0.999967 0.00818058i \(-0.00260399\pi\)
−0.00818058 + 0.999967i \(0.502604\pi\)
\(270\) 0 0
\(271\) −19.5831 −1.18959 −0.594795 0.803877i \(-0.702767\pi\)
−0.594795 + 0.803877i \(0.702767\pi\)
\(272\) −1.00000 + 4.00000i −0.0606339 + 0.242536i
\(273\) −2.68338 −0.162405
\(274\) 19.9499i 1.20522i
\(275\) 0 0
\(276\) −2.31662 −0.139444
\(277\) 0.683375 + 0.683375i 0.0410600 + 0.0410600i 0.727339 0.686279i \(-0.240757\pi\)
−0.686279 + 0.727339i \(0.740757\pi\)
\(278\) 13.7916 13.7916i 0.827163 0.827163i
\(279\) −0.0501256 + 0.0501256i −0.00300094 + 0.00300094i
\(280\) 0 0
\(281\) 5.00000i 0.298275i −0.988816 0.149137i \(-0.952350\pi\)
0.988816 0.149137i \(-0.0476497\pi\)
\(282\) −10.3668 + 10.3668i −0.617331 + 0.617331i
\(283\) 6.68338 6.68338i 0.397285 0.397285i −0.479989 0.877274i \(-0.659359\pi\)
0.877274 + 0.479989i \(0.159359\pi\)
\(284\) 2.84169 + 2.84169i 0.168623 + 0.168623i
\(285\) 0 0
\(286\) −1.00000 1.00000i −0.0591312 0.0591312i
\(287\) 3.05013i 0.180043i
\(288\) 0.316625 0.0186573
\(289\) −15.0000 8.00000i −0.882353 0.470588i
\(290\) 0 0
\(291\) 4.63325i 0.271606i
\(292\) −4.63325 4.63325i −0.271140 0.271140i
\(293\) −19.8997 −1.16256 −0.581278 0.813705i \(-0.697447\pi\)
−0.581278 + 0.813705i \(0.697447\pi\)
\(294\) 5.00000 + 5.00000i 0.291606 + 0.291606i
\(295\) 0 0
\(296\) 0.316625 0.316625i 0.0184034 0.0184034i
\(297\) 7.68338i 0.445835i
\(298\) 21.9499i 1.27152i
\(299\) 1.00000 1.00000i 0.0578315 0.0578315i
\(300\) 0 0
\(301\) −6.94987 6.94987i −0.400584 0.400584i
\(302\) −7.68338 −0.442129
\(303\) 8.84169 + 8.84169i 0.507942 + 0.507942i
\(304\) 1.68338i 0.0965482i
\(305\) 0 0
\(306\) −0.316625 + 1.26650i −0.0181002 + 0.0724009i
\(307\) 26.5330 1.51432 0.757159 0.653231i \(-0.226587\pi\)
0.757159 + 0.653231i \(0.226587\pi\)
\(308\) 2.31662i 0.132002i
\(309\) −18.0501 18.0501i −1.02684 1.02684i
\(310\) 0 0
\(311\) −10.1583 10.1583i −0.576025 0.576025i 0.357781 0.933806i \(-0.383534\pi\)
−0.933806 + 0.357781i \(0.883534\pi\)
\(312\) 1.15831 1.15831i 0.0655765 0.0655765i
\(313\) 5.94987 5.94987i 0.336307 0.336307i −0.518669 0.854975i \(-0.673572\pi\)
0.854975 + 0.518669i \(0.173572\pi\)
\(314\) 15.3166i 0.864367i
\(315\) 0 0
\(316\) 5.47494 5.47494i 0.307989 0.307989i
\(317\) −5.00000 + 5.00000i −0.280828 + 0.280828i −0.833439 0.552611i \(-0.813631\pi\)
0.552611 + 0.833439i \(0.313631\pi\)
\(318\) 9.20844 + 9.20844i 0.516384 + 0.516384i
\(319\) 8.63325 0.483369
\(320\) 0 0
\(321\) 13.5330i 0.755338i
\(322\) 2.31662 0.129100
\(323\) −6.73350 1.68338i −0.374662 0.0936655i
\(324\) −7.94987 −0.441660
\(325\) 0 0
\(326\) 2.84169 + 2.84169i 0.157387 + 0.157387i
\(327\) 4.63325 0.256219
\(328\) 1.31662 + 1.31662i 0.0726984 + 0.0726984i
\(329\) 10.3668 10.3668i 0.571537 0.571537i
\(330\) 0 0
\(331\) 21.5831i 1.18632i −0.805086 0.593158i \(-0.797881\pi\)
0.805086 0.593158i \(-0.202119\pi\)
\(332\) 0.633250i 0.0347541i
\(333\) 0.100251 0.100251i 0.00549374 0.00549374i
\(334\) 7.00000 7.00000i 0.383023 0.383023i
\(335\) 0 0
\(336\) 2.68338 0.146390
\(337\) −4.31662 4.31662i −0.235142 0.235142i 0.579693 0.814835i \(-0.303172\pi\)
−0.814835 + 0.579693i \(0.803172\pi\)
\(338\) 12.0000i 0.652714i
\(339\) −30.7335 −1.66921
\(340\) 0 0
\(341\) −0.316625 −0.0171462
\(342\) 0.532998i 0.0288212i
\(343\) −13.1082 13.1082i −0.707776 0.707776i
\(344\) 6.00000 0.323498
\(345\) 0 0
\(346\) 17.3166 17.3166i 0.930948 0.930948i
\(347\) −0.791562 + 0.791562i −0.0424933 + 0.0424933i −0.728034 0.685541i \(-0.759566\pi\)
0.685541 + 0.728034i \(0.259566\pi\)
\(348\) 10.0000i 0.536056i
\(349\) 12.0501i 0.645028i 0.946565 + 0.322514i \(0.104528\pi\)
−0.946565 + 0.322514i \(0.895472\pi\)
\(350\) 0 0
\(351\) 3.84169 3.84169i 0.205054 0.205054i
\(352\) 1.00000 + 1.00000i 0.0533002 + 0.0533002i
\(353\) −1.73350 −0.0922649 −0.0461325 0.998935i \(-0.514690\pi\)
−0.0461325 + 0.998935i \(0.514690\pi\)
\(354\) 10.0000 + 10.0000i 0.531494 + 0.531494i
\(355\) 0 0
\(356\) −5.36675 −0.284437
\(357\) −2.68338 + 10.7335i −0.142019 + 0.568077i
\(358\) 8.31662 0.439547
\(359\) 11.6834i 0.616625i 0.951285 + 0.308312i \(0.0997642\pi\)
−0.951285 + 0.308312i \(0.900236\pi\)
\(360\) 0 0
\(361\) 16.1662 0.850855
\(362\) −4.36675 4.36675i −0.229511 0.229511i
\(363\) 10.4248 10.4248i 0.547161 0.547161i
\(364\) −1.15831 + 1.15831i −0.0607121 + 0.0607121i
\(365\) 0 0
\(366\) 3.05013i 0.159433i
\(367\) −26.1583 + 26.1583i −1.36545 + 1.36545i −0.498649 + 0.866804i \(0.666170\pi\)
−0.866804 + 0.498649i \(0.833830\pi\)
\(368\) −1.00000 + 1.00000i −0.0521286 + 0.0521286i
\(369\) 0.416876 + 0.416876i 0.0217017 + 0.0217017i
\(370\) 0 0
\(371\) −9.20844 9.20844i −0.478078 0.478078i
\(372\) 0.366750i 0.0190151i
\(373\) −19.5330 −1.01138 −0.505690 0.862715i \(-0.668762\pi\)
−0.505690 + 0.862715i \(0.668762\pi\)
\(374\) −5.00000 + 3.00000i −0.258544 + 0.155126i
\(375\) 0 0
\(376\) 8.94987i 0.461555i
\(377\) −4.31662 4.31662i −0.222317 0.222317i
\(378\) 8.89975 0.457754
\(379\) −16.4749 16.4749i −0.846261 0.846261i 0.143404 0.989664i \(-0.454195\pi\)
−0.989664 + 0.143404i \(0.954195\pi\)
\(380\) 0 0
\(381\) −2.31662 + 2.31662i −0.118684 + 0.118684i
\(382\) 8.94987i 0.457915i
\(383\) 2.94987i 0.150732i 0.997156 + 0.0753658i \(0.0240124\pi\)
−0.997156 + 0.0753658i \(0.975988\pi\)
\(384\) −1.15831 + 1.15831i −0.0591099 + 0.0591099i
\(385\) 0 0
\(386\) 6.31662 + 6.31662i 0.321508 + 0.321508i
\(387\) 1.89975 0.0965697
\(388\) 2.00000 + 2.00000i 0.101535 + 0.101535i
\(389\) 25.2665i 1.28106i −0.767932 0.640531i \(-0.778714\pi\)
0.767932 0.640531i \(-0.221286\pi\)
\(390\) 0 0
\(391\) −3.00000 5.00000i −0.151717 0.252861i
\(392\) 4.31662 0.218022
\(393\) 34.2665i 1.72852i
\(394\) −7.31662 7.31662i −0.368606 0.368606i
\(395\) 0 0
\(396\) 0.316625 + 0.316625i 0.0159110 + 0.0159110i
\(397\) −23.8997 + 23.8997i −1.19949 + 1.19949i −0.225176 + 0.974318i \(0.572296\pi\)
−0.974318 + 0.225176i \(0.927704\pi\)
\(398\) −11.6332 + 11.6332i −0.583122 + 0.583122i
\(399\) 4.51713i 0.226139i
\(400\) 0 0
\(401\) 22.5831 22.5831i 1.12775 1.12775i 0.137205 0.990543i \(-0.456188\pi\)
0.990543 0.137205i \(-0.0438118\pi\)
\(402\) −7.68338 + 7.68338i −0.383212 + 0.383212i
\(403\) 0.158312 + 0.158312i 0.00788610 + 0.00788610i
\(404\) 7.63325 0.379768
\(405\) 0 0
\(406\) 10.0000i 0.496292i
\(407\) 0.633250 0.0313890
\(408\) −3.47494 5.79156i −0.172035 0.286725i
\(409\) −28.8997 −1.42900 −0.714500 0.699635i \(-0.753346\pi\)
−0.714500 + 0.699635i \(0.753346\pi\)
\(410\) 0 0
\(411\) −23.1082 23.1082i −1.13984 1.13984i
\(412\) −15.5831 −0.767725
\(413\) −10.0000 10.0000i −0.492068 0.492068i
\(414\) −0.316625 + 0.316625i −0.0155613 + 0.0155613i
\(415\) 0 0
\(416\) 1.00000i 0.0490290i
\(417\) 31.9499i 1.56459i
\(418\) −1.68338 + 1.68338i −0.0823366 + 0.0823366i
\(419\) −7.00000 + 7.00000i −0.341972 + 0.341972i −0.857108 0.515136i \(-0.827741\pi\)
0.515136 + 0.857108i \(0.327741\pi\)
\(420\) 0 0
\(421\) 2.36675 0.115348 0.0576742 0.998335i \(-0.481632\pi\)
0.0576742 + 0.998335i \(0.481632\pi\)
\(422\) −17.1082 17.1082i −0.832814 0.832814i
\(423\) 2.83375i 0.137782i
\(424\) 7.94987 0.386080
\(425\) 0 0
\(426\) −6.58312 −0.318953
\(427\) 3.05013i 0.147606i
\(428\) 5.84169 + 5.84169i 0.282369 + 0.282369i
\(429\) 2.31662 0.111848
\(430\) 0 0
\(431\) 11.4248 11.4248i 0.550314 0.550314i −0.376218 0.926531i \(-0.622775\pi\)
0.926531 + 0.376218i \(0.122775\pi\)
\(432\) −3.84169 + 3.84169i −0.184833 + 0.184833i
\(433\) 1.36675i 0.0656818i 0.999461 + 0.0328409i \(0.0104555\pi\)
−0.999461 + 0.0328409i \(0.989545\pi\)
\(434\) 0.366750i 0.0176046i
\(435\) 0 0
\(436\) 2.00000 2.00000i 0.0957826 0.0957826i
\(437\) −1.68338 1.68338i −0.0805268 0.0805268i
\(438\) 10.7335 0.512867
\(439\) 3.15831 + 3.15831i 0.150738 + 0.150738i 0.778448 0.627710i \(-0.216007\pi\)
−0.627710 + 0.778448i \(0.716007\pi\)
\(440\) 0 0
\(441\) 1.36675 0.0650834
\(442\) 4.00000 + 1.00000i 0.190261 + 0.0475651i
\(443\) −22.9499 −1.09038 −0.545191 0.838312i \(-0.683543\pi\)
−0.545191 + 0.838312i \(0.683543\pi\)
\(444\) 0.733501i 0.0348104i
\(445\) 0 0
\(446\) −27.5831 −1.30610
\(447\) −25.4248 25.4248i −1.20255 1.20255i
\(448\) 1.15831 1.15831i 0.0547251 0.0547251i
\(449\) −14.3166 + 14.3166i −0.675643 + 0.675643i −0.959011 0.283368i \(-0.908548\pi\)
0.283368 + 0.959011i \(0.408548\pi\)
\(450\) 0 0
\(451\) 2.63325i 0.123995i
\(452\) −13.2665 + 13.2665i −0.624004 + 0.624004i
\(453\) 8.89975 8.89975i 0.418147 0.418147i
\(454\) −1.15831 1.15831i −0.0543623 0.0543623i
\(455\) 0 0
\(456\) −1.94987 1.94987i −0.0913112 0.0913112i
\(457\) 20.6834i 0.967527i 0.875199 + 0.483764i \(0.160731\pi\)
−0.875199 + 0.483764i \(0.839269\pi\)
\(458\) −22.8997 −1.07003
\(459\) −11.5251 19.2084i −0.537944 0.896573i
\(460\) 0 0
\(461\) 3.89975i 0.181629i −0.995868 0.0908147i \(-0.971053\pi\)
0.995868 0.0908147i \(-0.0289471\pi\)
\(462\) 2.68338 + 2.68338i 0.124842 + 0.124842i
\(463\) 38.6332 1.79544 0.897720 0.440567i \(-0.145223\pi\)
0.897720 + 0.440567i \(0.145223\pi\)
\(464\) 4.31662 + 4.31662i 0.200394 + 0.200394i
\(465\) 0 0
\(466\) 16.9499 16.9499i 0.785188 0.785188i
\(467\) 14.9499i 0.691798i 0.938272 + 0.345899i \(0.112426\pi\)
−0.938272 + 0.345899i \(0.887574\pi\)
\(468\) 0.316625i 0.0146360i
\(469\) 7.68338 7.68338i 0.354785 0.354785i
\(470\) 0 0
\(471\) −17.7414 17.7414i −0.817482 0.817482i
\(472\) 8.63325 0.397378
\(473\) 6.00000 + 6.00000i 0.275880 + 0.275880i
\(474\) 12.6834i 0.582567i
\(475\) 0 0
\(476\) 3.47494 + 5.79156i 0.159273 + 0.265456i
\(477\) 2.51713 0.115251
\(478\) 4.63325i 0.211920i
\(479\) −10.6834 10.6834i −0.488136 0.488136i 0.419582 0.907718i \(-0.362177\pi\)
−0.907718 + 0.419582i \(0.862177\pi\)
\(480\) 0 0
\(481\) −0.316625 0.316625i −0.0144368 0.0144368i
\(482\) −13.3166 + 13.3166i −0.606556 + 0.606556i
\(483\) −2.68338 + 2.68338i −0.122098 + 0.122098i
\(484\) 9.00000i 0.409091i
\(485\) 0 0
\(486\) −2.31662 + 2.31662i −0.105084 + 0.105084i
\(487\) 6.58312 6.58312i 0.298310 0.298310i −0.542042 0.840352i \(-0.682349\pi\)
0.840352 + 0.542042i \(0.182349\pi\)
\(488\) 1.31662 + 1.31662i 0.0596008 + 0.0596008i
\(489\) −6.58312 −0.297699
\(490\) 0 0
\(491\) 13.8997i 0.627287i 0.949541 + 0.313643i \(0.101550\pi\)
−0.949541 + 0.313643i \(0.898450\pi\)
\(492\) −3.05013 −0.137510
\(493\) −21.5831 + 12.9499i −0.972055 + 0.583233i
\(494\) 1.68338 0.0757386
\(495\) 0 0
\(496\) −0.158312 0.158312i −0.00710844 0.00710844i
\(497\) 6.58312 0.295293
\(498\) 0.733501 + 0.733501i 0.0328690 + 0.0328690i
\(499\) 28.4248 28.4248i 1.27247 1.27247i 0.327681 0.944788i \(-0.393733\pi\)
0.944788 0.327681i \(-0.106267\pi\)
\(500\) 0 0
\(501\) 16.2164i 0.724494i
\(502\) 7.26650i 0.324320i
\(503\) 3.63325 3.63325i 0.161999 0.161999i −0.621453 0.783452i \(-0.713457\pi\)
0.783452 + 0.621453i \(0.213457\pi\)
\(504\) 0.366750 0.366750i 0.0163364 0.0163364i
\(505\) 0 0
\(506\) −2.00000 −0.0889108
\(507\) 13.8997 + 13.8997i 0.617310 + 0.617310i
\(508\) 2.00000i 0.0887357i
\(509\) −31.9499 −1.41615 −0.708077 0.706136i \(-0.750437\pi\)
−0.708077 + 0.706136i \(0.750437\pi\)
\(510\) 0 0
\(511\) −10.7335 −0.474822
\(512\) 1.00000i 0.0441942i
\(513\) −6.46700 6.46700i −0.285525 0.285525i
\(514\) 9.31662 0.410939
\(515\) 0 0
\(516\) −6.94987 + 6.94987i −0.305951 + 0.305951i
\(517\) −8.94987 + 8.94987i −0.393615 + 0.393615i
\(518\) 0.733501i 0.0322282i
\(519\) 40.1161i 1.76090i
\(520\) 0 0
\(521\) 13.3166 13.3166i 0.583412 0.583412i −0.352427 0.935839i \(-0.614644\pi\)
0.935839 + 0.352427i \(0.114644\pi\)
\(522\) 1.36675 + 1.36675i 0.0598210 + 0.0598210i
\(523\) 9.36675 0.409579 0.204790 0.978806i \(-0.434349\pi\)
0.204790 + 0.978806i \(0.434349\pi\)
\(524\) 14.7916 + 14.7916i 0.646172 + 0.646172i
\(525\) 0 0
\(526\) 4.00000 0.174408
\(527\) 0.791562 0.474937i 0.0344810 0.0206886i
\(528\) −2.31662 −0.100818
\(529\) 21.0000i 0.913043i
\(530\) 0 0
\(531\) 2.73350 0.118624
\(532\) 1.94987 + 1.94987i 0.0845378 + 0.0845378i
\(533\) 1.31662 1.31662i 0.0570294 0.0570294i
\(534\) 6.21637 6.21637i 0.269009 0.269009i
\(535\) 0 0
\(536\) 6.63325i 0.286513i
\(537\) −9.63325 + 9.63325i −0.415705 + 0.415705i
\(538\) −16.2665 + 16.2665i −0.701299 + 0.701299i
\(539\) 4.31662 + 4.31662i 0.185930 + 0.185930i
\(540\) 0 0
\(541\) 25.2665 + 25.2665i 1.08629 + 1.08629i 0.995907 + 0.0903847i \(0.0288097\pi\)
0.0903847 + 0.995907i \(0.471190\pi\)
\(542\) 19.5831i 0.841167i
\(543\) 10.1161 0.434124
\(544\) −4.00000 1.00000i −0.171499 0.0428746i
\(545\) 0 0
\(546\) 2.68338i 0.114838i
\(547\) 18.7916 + 18.7916i 0.803469 + 0.803469i 0.983636 0.180167i \(-0.0576638\pi\)
−0.180167 + 0.983636i \(0.557664\pi\)
\(548\) −19.9499 −0.852216
\(549\) 0.416876 + 0.416876i 0.0177918 + 0.0177918i
\(550\) 0 0
\(551\) −7.26650 + 7.26650i −0.309563 + 0.309563i
\(552\) 2.31662i 0.0986021i
\(553\) 12.6834i 0.539352i
\(554\) −0.683375 + 0.683375i −0.0290338 + 0.0290338i
\(555\) 0 0
\(556\) 13.7916 + 13.7916i 0.584893 + 0.584893i
\(557\) 2.26650 0.0960347 0.0480173 0.998847i \(-0.484710\pi\)
0.0480173 + 0.998847i \(0.484710\pi\)
\(558\) −0.0501256 0.0501256i −0.00212199 0.00212199i
\(559\) 6.00000i 0.253773i
\(560\) 0 0
\(561\) 2.31662 9.26650i 0.0978080 0.391232i
\(562\) 5.00000 0.210912
\(563\) 18.3166i 0.771954i 0.922508 + 0.385977i \(0.126136\pi\)
−0.922508 + 0.385977i \(0.873864\pi\)
\(564\) −10.3668 10.3668i −0.436519 0.436519i
\(565\) 0 0
\(566\) 6.68338 + 6.68338i 0.280923 + 0.280923i
\(567\) −9.20844 + 9.20844i −0.386718 + 0.386718i
\(568\) −2.84169 + 2.84169i −0.119235 + 0.119235i
\(569\) 37.8997i 1.58884i 0.607369 + 0.794420i \(0.292225\pi\)
−0.607369 + 0.794420i \(0.707775\pi\)
\(570\) 0 0
\(571\) 17.1583 17.1583i 0.718053 0.718053i −0.250153 0.968206i \(-0.580481\pi\)
0.968206 + 0.250153i \(0.0804810\pi\)
\(572\) 1.00000 1.00000i 0.0418121 0.0418121i
\(573\) −10.3668 10.3668i −0.433077 0.433077i
\(574\) 3.05013 0.127310
\(575\) 0 0
\(576\) 0.316625i 0.0131927i
\(577\) 37.2665 1.55142 0.775712 0.631087i \(-0.217391\pi\)
0.775712 + 0.631087i \(0.217391\pi\)
\(578\) 8.00000 15.0000i 0.332756 0.623918i
\(579\) −14.6332 −0.608137
\(580\) 0 0
\(581\) −0.733501 0.733501i −0.0304307 0.0304307i
\(582\) −4.63325 −0.192054
\(583\) 7.94987 + 7.94987i 0.329250 + 0.329250i
\(584\) 4.63325 4.63325i 0.191725 0.191725i
\(585\) 0 0
\(586\) 19.8997i 0.822051i
\(587\) 20.5330i 0.847488i −0.905782 0.423744i \(-0.860716\pi\)
0.905782 0.423744i \(-0.139284\pi\)
\(588\) −5.00000 + 5.00000i −0.206197 + 0.206197i
\(589\) 0.266499 0.266499i 0.0109809 0.0109809i
\(590\) 0 0
\(591\) 16.9499 0.697225
\(592\) 0.316625 + 0.316625i 0.0130132 + 0.0130132i
\(593\) 4.36675i 0.179321i −0.995972 0.0896605i \(-0.971422\pi\)
0.995972 0.0896605i \(-0.0285782\pi\)
\(594\) −7.68338 −0.315253
\(595\) 0 0
\(596\) −21.9499 −0.899102
\(597\) 26.9499i 1.10298i
\(598\) 1.00000 + 1.00000i 0.0408930 + 0.0408930i
\(599\) 38.5330 1.57442 0.787208 0.616688i \(-0.211526\pi\)
0.787208 + 0.616688i \(0.211526\pi\)
\(600\) 0 0
\(601\) −1.68338 + 1.68338i −0.0686663 + 0.0686663i −0.740606 0.671940i \(-0.765461\pi\)
0.671940 + 0.740606i \(0.265461\pi\)
\(602\) 6.94987 6.94987i 0.283256 0.283256i
\(603\) 2.10025i 0.0855288i
\(604\) 7.68338i 0.312632i
\(605\) 0 0
\(606\) −8.84169 + 8.84169i −0.359169 + 0.359169i
\(607\) −5.84169 5.84169i −0.237107 0.237107i 0.578544 0.815651i \(-0.303621\pi\)
−0.815651 + 0.578544i \(0.803621\pi\)
\(608\) −1.68338 −0.0682699
\(609\) 11.5831 + 11.5831i 0.469372 + 0.469372i
\(610\) 0 0
\(611\) 8.94987 0.362073
\(612\) −1.26650 0.316625i −0.0511952 0.0127988i
\(613\) −7.21637 −0.291467 −0.145733 0.989324i \(-0.546554\pi\)
−0.145733 + 0.989324i \(0.546554\pi\)
\(614\) 26.5330i 1.07078i
\(615\) 0 0
\(616\) 2.31662 0.0933395
\(617\) −14.3166 14.3166i −0.576366 0.576366i 0.357534 0.933900i \(-0.383617\pi\)
−0.933900 + 0.357534i \(0.883617\pi\)
\(618\) 18.0501 18.0501i 0.726083 0.726083i
\(619\) −10.8997 + 10.8997i −0.438098 + 0.438098i −0.891371 0.453274i \(-0.850256\pi\)
0.453274 + 0.891371i \(0.350256\pi\)
\(620\) 0 0
\(621\) 7.68338i 0.308323i
\(622\) 10.1583 10.1583i 0.407311 0.407311i
\(623\) −6.21637 + 6.21637i −0.249054 + 0.249054i
\(624\) 1.15831 + 1.15831i 0.0463696 + 0.0463696i
\(625\) 0 0
\(626\) 5.94987 + 5.94987i 0.237805 + 0.237805i
\(627\) 3.89975i 0.155741i
\(628\) −15.3166 −0.611200
\(629\) −1.58312 + 0.949874i −0.0631233 + 0.0378740i
\(630\) 0 0
\(631\) 25.3668i 1.00983i 0.863168 + 0.504917i \(0.168477\pi\)
−0.863168 + 0.504917i \(0.831523\pi\)
\(632\) 5.47494 + 5.47494i 0.217781 + 0.217781i
\(633\) 39.6332 1.57528
\(634\) −5.00000 5.00000i −0.198575 0.198575i
\(635\) 0 0
\(636\) −9.20844 + 9.20844i −0.365138 + 0.365138i
\(637\) 4.31662i 0.171031i
\(638\) 8.63325i 0.341794i
\(639\) −0.899749 + 0.899749i −0.0355935 + 0.0355935i
\(640\) 0 0
\(641\) 22.2164 + 22.2164i 0.877494 + 0.877494i 0.993275 0.115781i \(-0.0369370\pi\)
−0.115781 + 0.993275i \(0.536937\pi\)
\(642\) −13.5330 −0.534105
\(643\) 7.74144 + 7.74144i 0.305292 + 0.305292i 0.843080 0.537788i \(-0.180740\pi\)
−0.537788 + 0.843080i \(0.680740\pi\)
\(644\) 2.31662i 0.0912878i
\(645\) 0 0
\(646\) 1.68338 6.73350i 0.0662315 0.264926i
\(647\) 31.8997 1.25411 0.627054 0.778976i \(-0.284260\pi\)
0.627054 + 0.778976i \(0.284260\pi\)
\(648\) 7.94987i 0.312301i
\(649\) 8.63325 + 8.63325i 0.338885 + 0.338885i
\(650\) 0 0
\(651\) −0.424812 0.424812i −0.0166497 0.0166497i
\(652\) −2.84169 + 2.84169i −0.111289 + 0.111289i
\(653\) −6.00000 + 6.00000i −0.234798 + 0.234798i −0.814692 0.579894i \(-0.803094\pi\)
0.579894 + 0.814692i \(0.303094\pi\)
\(654\) 4.63325i 0.181174i
\(655\) 0 0
\(656\) −1.31662 + 1.31662i −0.0514056 + 0.0514056i
\(657\) 1.46700 1.46700i 0.0572332 0.0572332i
\(658\) 10.3668 + 10.3668i 0.404138 + 0.404138i
\(659\) −6.94987 −0.270729 −0.135364 0.990796i \(-0.543220\pi\)
−0.135364 + 0.990796i \(0.543220\pi\)
\(660\) 0 0
\(661\) 13.4169i 0.521856i 0.965358 + 0.260928i \(0.0840285\pi\)
−0.965358 + 0.260928i \(0.915971\pi\)
\(662\) 21.5831 0.838852
\(663\) −5.79156 + 3.47494i −0.224926 + 0.134955i
\(664\) 0.633250 0.0245748
\(665\) 0 0
\(666\) 0.100251 + 0.100251i 0.00388466 + 0.00388466i
\(667\) −8.63325 −0.334281
\(668\) 7.00000 + 7.00000i 0.270838 + 0.270838i
\(669\) 31.9499 31.9499i 1.23525 1.23525i
\(670\) 0 0
\(671\) 2.63325i 0.101655i
\(672\) 2.68338i 0.103513i
\(673\) 10.5831 10.5831i 0.407949 0.407949i −0.473074 0.881023i \(-0.656856\pi\)
0.881023 + 0.473074i \(0.156856\pi\)
\(674\) 4.31662 4.31662i 0.166270 0.166270i
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) −18.2164 18.2164i −0.700112 0.700112i 0.264322 0.964434i \(-0.414852\pi\)
−0.964434 + 0.264322i \(0.914852\pi\)
\(678\) 30.7335i 1.18031i
\(679\) 4.63325 0.177808
\(680\) 0 0
\(681\) 2.68338 0.102827
\(682\) 0.316625i 0.0121242i
\(683\) −33.1082 33.1082i −1.26685 1.26685i −0.947707 0.319143i \(-0.896605\pi\)
−0.319143 0.947707i \(-0.603395\pi\)
\(684\) −0.532998 −0.0203797
\(685\) 0 0
\(686\) 13.1082 13.1082i 0.500473 0.500473i
\(687\) 26.5251 26.5251i 1.01199 1.01199i
\(688\) 6.00000i 0.228748i
\(689\) 7.94987i 0.302866i
\(690\) 0 0
\(691\) −14.0581 + 14.0581i −0.534794 + 0.534794i −0.921995 0.387201i \(-0.873442\pi\)
0.387201 + 0.921995i \(0.373442\pi\)
\(692\) 17.3166 + 17.3166i 0.658279 + 0.658279i
\(693\) 0.733501 0.0278634
\(694\) −0.791562 0.791562i −0.0300473 0.0300473i
\(695\) 0 0
\(696\) −10.0000 −0.379049
\(697\) −3.94987 6.58312i −0.149612 0.249354i
\(698\) −12.0501 −0.456104
\(699\) 39.2665i 1.48520i
\(700\) 0 0
\(701\) 22.0000 0.830929 0.415464 0.909610i \(-0.363619\pi\)
0.415464 + 0.909610i \(0.363619\pi\)
\(702\) 3.84169 + 3.84169i 0.144995 + 0.144995i
\(703\) −0.532998 + 0.532998i −0.0201024 + 0.0201024i
\(704\) −1.00000 + 1.00000i −0.0376889 + 0.0376889i
\(705\) 0 0
\(706\) 1.73350i 0.0652412i
\(707\) 8.84169 8.84169i 0.332526 0.332526i
\(708\) −10.0000 + 10.0000i −0.375823 + 0.375823i
\(709\) 1.63325 + 1.63325i 0.0613380 + 0.0613380i 0.737110 0.675772i \(-0.236190\pi\)
−0.675772 + 0.737110i \(0.736190\pi\)
\(710\) 0 0
\(711\) 1.73350 + 1.73350i 0.0650114 + 0.0650114i
\(712\) 5.36675i 0.201127i
\(713\) 0.316625 0.0118577
\(714\) −10.7335 2.68338i −0.401691 0.100423i
\(715\) 0 0
\(716\) 8.31662i 0.310807i
\(717\) 5.36675 + 5.36675i 0.200425 + 0.200425i
\(718\) −11.6834 −0.436020
\(719\) 25.8417 + 25.8417i 0.963732 + 0.963732i 0.999365 0.0356326i \(-0.0113446\pi\)
−0.0356326 + 0.999365i \(0.511345\pi\)
\(720\) 0 0
\(721\) −18.0501 + 18.0501i −0.672222 + 0.672222i
\(722\) 16.1662i 0.601645i
\(723\) 30.8496i 1.14731i
\(724\) 4.36675 4.36675i 0.162289 0.162289i
\(725\) 0 0
\(726\) 10.4248 + 10.4248i 0.386901 + 0.386901i
\(727\) −25.0501 −0.929058 −0.464529 0.885558i \(-0.653776\pi\)
−0.464529 + 0.885558i \(0.653776\pi\)
\(728\) −1.15831 1.15831i −0.0429299 0.0429299i
\(729\) 29.2164i 1.08209i
\(730\) 0 0
\(731\) −24.0000 6.00000i −0.887672 0.221918i
\(732\) −3.05013 −0.112736
\(733\) 15.2164i 0.562030i −0.959703 0.281015i \(-0.909329\pi\)
0.959703 0.281015i \(-0.0906710\pi\)
\(734\) −26.1583 26.1583i −0.965521 0.965521i
\(735\) 0 0
\(736\) −1.00000 1.00000i −0.0368605 0.0368605i
\(737\) −6.63325 + 6.63325i −0.244339 + 0.244339i
\(738\) −0.416876 + 0.416876i −0.0153454 + 0.0153454i
\(739\) 37.5831i 1.38252i −0.722607 0.691259i \(-0.757056\pi\)
0.722607 0.691259i \(-0.242944\pi\)
\(740\) 0 0
\(741\) −1.94987 + 1.94987i −0.0716304 + 0.0716304i
\(742\) 9.20844 9.20844i 0.338052 0.338052i
\(743\) 27.7414 + 27.7414i 1.01773 + 1.01773i 0.999840 + 0.0178947i \(0.00569637\pi\)
0.0178947 + 0.999840i \(0.494304\pi\)
\(744\) 0.366750 0.0134457
\(745\) 0 0
\(746\) 19.5330i 0.715154i
\(747\) 0.200503 0.00733600
\(748\) −3.00000 5.00000i −0.109691 0.182818i
\(749\) 13.5330 0.494485
\(750\) 0 0
\(751\) 14.8997 + 14.8997i 0.543700 + 0.543700i 0.924611 0.380912i \(-0.124390\pi\)
−0.380912 + 0.924611i \(0.624390\pi\)
\(752\) −8.94987 −0.326368
\(753\) 8.41688 + 8.41688i 0.306728 + 0.306728i
\(754\) 4.31662 4.31662i 0.157202 0.157202i
\(755\) 0 0
\(756\) 8.89975i 0.323681i
\(757\) 16.6332i 0.604546i −0.953221 0.302273i \(-0.902255\pi\)
0.953221 0.302273i \(-0.0977454\pi\)
\(758\) 16.4749 16.4749i 0.598397 0.598397i
\(759\) 2.31662 2.31662i 0.0840882 0.0840882i
\(760\) 0 0
\(761\) −34.5831 −1.25364 −0.626819 0.779165i \(-0.715643\pi\)
−0.626819 + 0.779165i \(0.715643\pi\)
\(762\) −2.31662 2.31662i −0.0839225 0.0839225i
\(763\) 4.63325i 0.167735i
\(764\) −8.94987 −0.323795
\(765\) 0 0
\(766\) −2.94987 −0.106583
\(767\) 8.63325i 0.311729i
\(768\) −1.15831 1.15831i −0.0417970 0.0417970i
\(769\) −16.5831 −0.598003 −0.299001 0.954253i \(-0.596654\pi\)
−0.299001 + 0.954253i \(0.596654\pi\)
\(770\) 0 0
\(771\) −10.7916 + 10.7916i −0.388649 + 0.388649i
\(772\) −6.31662 + 6.31662i −0.227340 + 0.227340i
\(773\) 24.8997i 0.895582i 0.894138 + 0.447791i \(0.147789\pi\)
−0.894138 + 0.447791i \(0.852211\pi\)
\(774\) 1.89975i 0.0682851i
\(775\) 0 0
\(776\) −2.00000 + 2.00000i −0.0717958 + 0.0717958i
\(777\) 0.849623 + 0.849623i 0.0304801 + 0.0304801i
\(778\) 25.2665 0.905848
\(779\) −2.21637 2.21637i −0.0794098 0.0794098i
\(780\) 0 0
\(781\) −5.68338 −0.203367
\(782\) 5.00000 3.00000i 0.178800 0.107280i
\(783\) −33.1662 −1.18527
\(784\) 4.31662i 0.154165i
\(785\) 0 0
\(786\) −34.2665 −1.22225
\(787\) 11.4749 + 11.4749i 0.409037 + 0.409037i 0.881403 0.472365i \(-0.156600\pi\)
−0.472365 + 0.881403i \(0.656600\pi\)
\(788\) 7.31662 7.31662i 0.260644 0.260644i
\(789\) −4.63325 + 4.63325i −0.164948 + 0.164948i
\(790\) 0 0
\(791\) 30.7335i 1.09276i
\(792\) −0.316625 + 0.316625i −0.0112508 + 0.0112508i
\(793\) 1.31662 1.31662i 0.0467547 0.0467547i
\(794\) −23.8997 23.8997i −0.848170 0.848170i
\(795\) 0 0
\(796\) −11.6332 11.6332i −0.412330 0.412330i
\(797\) 5.41688i 0.191876i −0.995387 0.0959378i \(-0.969415\pi\)
0.995387 0.0959378i \(-0.0305850\pi\)
\(798\) −4.51713 −0.159905
\(799\) 8.94987 35.7995i 0.316624 1.26650i
\(800\) 0 0
\(801\) 1.69925i 0.0600399i
\(802\) 22.5831 + 22.5831i 0.797438 + 0.797438i
\(803\) 9.26650 0.327008
\(804\) −7.68338 7.68338i −0.270972 0.270972i
\(805\) 0 0
\(806\) −0.158312 + 0.158312i −0.00557632 + 0.00557632i
\(807\) 37.6834i 1.32652i
\(808\) 7.63325i 0.268537i
\(809\) 24.5831 24.5831i 0.864297 0.864297i −0.127537 0.991834i \(-0.540707\pi\)
0.991834 + 0.127537i \(0.0407072\pi\)
\(810\) 0 0
\(811\) −5.89181 5.89181i −0.206890 0.206890i 0.596054 0.802944i \(-0.296734\pi\)
−0.802944 + 0.596054i \(0.796734\pi\)
\(812\) 10.0000 0.350931
\(813\) 22.6834 + 22.6834i 0.795541 + 0.795541i
\(814\) 0.633250i 0.0221954i
\(815\) 0 0
\(816\) 5.79156 3.47494i 0.202745 0.121647i
\(817\) −10.1003 −0.353363
\(818\) 28.8997i 1.01046i
\(819\) −0.366750 0.366750i −0.0128153 0.0128153i
\(820\) 0 0
\(821\) −33.6332 33.6332i −1.17381 1.17381i −0.981294 0.192514i \(-0.938336\pi\)
−0.192514 0.981294i \(-0.561664\pi\)
\(822\) 23.1082 23.1082i 0.805991 0.805991i
\(823\) 22.8417 22.8417i 0.796211 0.796211i −0.186285 0.982496i \(-0.559645\pi\)
0.982496 + 0.186285i \(0.0596447\pi\)
\(824\) 15.5831i 0.542864i
\(825\) 0 0
\(826\) 10.0000 10.0000i 0.347945 0.347945i
\(827\) 19.6332 19.6332i 0.682715 0.682715i −0.277896 0.960611i \(-0.589637\pi\)
0.960611 + 0.277896i \(0.0896371\pi\)
\(828\) −0.316625 0.316625i −0.0110035 0.0110035i
\(829\) 41.2164 1.43150 0.715752 0.698355i \(-0.246084\pi\)
0.715752 + 0.698355i \(0.246084\pi\)
\(830\) 0 0
\(831\) 1.58312i 0.0549180i
\(832\) 1.00000 0.0346688
\(833\) −17.2665 4.31662i −0.598249 0.149562i
\(834\) −31.9499 −1.10633
\(835\) 0 0
\(836\) −1.68338 1.68338i −0.0582207 0.0582207i
\(837\) 1.21637 0.0420440
\(838\) −7.00000 7.00000i −0.241811 0.241811i
\(839\) 23.4248 23.4248i 0.808714 0.808714i −0.175725 0.984439i \(-0.556227\pi\)
0.984439 + 0.175725i \(0.0562269\pi\)
\(840\) 0 0
\(841\) 8.26650i 0.285052i
\(842\) 2.36675i 0.0815636i
\(843\) −5.79156 + 5.79156i −0.199472 + 0.199472i
\(844\) 17.1082 17.1082i 0.588888 0.588888i
\(845\) 0 0
\(846\) −2.83375 −0.0974264
\(847\) −10.4248 10.4248i −0.358201 0.358201i
\(848\) 7.94987i 0.273000i
\(849\) −15.4829 −0.531371
\(850\) 0 0
\(851\) −0.633250 −0.0217075
\(852\) 6.58312i 0.225534i
\(853\) −15.0000 15.0000i −0.513590 0.513590i 0.402034 0.915625i \(-0.368303\pi\)
−0.915625 + 0.402034i \(0.868303\pi\)
\(854\) 3.05013 0.104373
\(855\) 0 0
\(856\) −5.84169 + 5.84169i −0.199665 + 0.199665i
\(857\) 0.733501 0.733501i 0.0250559 0.0250559i −0.694468 0.719524i \(-0.744360\pi\)
0.719524 + 0.694468i \(0.244360\pi\)
\(858\) 2.31662i 0.0790883i
\(859\) 18.3166i 0.624955i −0.949925 0.312478i \(-0.898841\pi\)
0.949925 0.312478i \(-0.101159\pi\)
\(860\) 0 0
\(861\) −3.53300 + 3.53300i −0.120404 + 0.120404i
\(862\) 11.4248 + 11.4248i 0.389131 + 0.389131i
\(863\) −6.00000 −0.204242 −0.102121 0.994772i \(-0.532563\pi\)
−0.102121 + 0.994772i \(0.532563\pi\)
\(864\) −3.84169 3.84169i −0.130697 0.130697i
\(865\) 0 0
\(866\) −1.36675 −0.0464441
\(867\) 8.10819 + 26.6412i 0.275368 + 0.904782i
\(868\) −0.366750 −0.0124483
\(869\) 10.9499i 0.371449i
\(870\) 0 0
\(871\) 6.63325 0.224759
\(872\) 2.00000 + 2.00000i 0.0677285 + 0.0677285i
\(873\) −0.633250 + 0.633250i −0.0214323 + 0.0214323i
\(874\) 1.68338 1.68338i 0.0569410 0.0569410i
\(875\) 0 0
\(876\) 10.7335i 0.362651i
\(877\) 16.9499 16.9499i 0.572357 0.572357i −0.360430 0.932786i \(-0.617370\pi\)
0.932786 + 0.360430i \(0.117370\pi\)
\(878\) −3.15831 + 3.15831i −0.106588 + 0.106588i
\(879\) 23.0501 + 23.0501i 0.777461 + 0.777461i
\(880\) 0 0
\(881\) 18.6834 + 18.6834i 0.629459 + 0.629459i 0.947932 0.318473i \(-0.103170\pi\)
−0.318473 + 0.947932i \(0.603170\pi\)
\(882\) 1.36675i 0.0460209i
\(883\) 25.5831 0.860941 0.430470 0.902605i \(-0.358348\pi\)
0.430470 + 0.902605i \(0.358348\pi\)
\(884\) −1.00000 + 4.00000i −0.0336336 + 0.134535i
\(885\) 0 0
\(886\) 22.9499i 0.771016i
\(887\) −5.84169 5.84169i −0.196145 0.196145i 0.602200 0.798345i \(-0.294291\pi\)
−0.798345 + 0.602200i \(0.794291\pi\)
\(888\) −0.733501 −0.0246147
\(889\) 2.31662 + 2.31662i 0.0776971 + 0.0776971i
\(890\) 0 0
\(891\) 7.94987 7.94987i 0.266331 0.266331i
\(892\) 27.5831i 0.923551i
\(893\) 15.0660i 0.504164i
\(894\) 25.4248 25.4248i 0.850333 0.850333i
\(895\) 0 0
\(896\) 1.15831 + 1.15831i 0.0386965 + 0.0386965i
\(897\) −2.31662 −0.0773499
\(898\) −14.3166 14.3166i −0.477752 0.477752i
\(899\) 1.36675i 0.0455837i
\(900\) 0 0
\(901\) −31.7995 7.94987i −1.05939 0.264849i
\(902\) −2.63325 −0.0876776
\(903\) 16.1003i 0.535783i
\(904\) −13.2665 13.2665i −0.441237 0.441237i
\(905\) 0 0
\(906\) 8.89975 + 8.89975i 0.295674 + 0.295674i
\(907\) −39.6332 + 39.6332i −1.31600 + 1.31600i −0.399088 + 0.916913i \(0.630673\pi\)
−0.916913 + 0.399088i \(0.869327\pi\)
\(908\) 1.15831 1.15831i 0.0384399 0.0384399i
\(909\) 2.41688i 0.0801627i
\(910\) 0 0
\(911\) 4.84169 4.84169i 0.160412 0.160412i −0.622337 0.782749i \(-0.713817\pi\)
0.782749 + 0.622337i \(0.213817\pi\)
\(912\) 1.94987 1.94987i 0.0645668 0.0645668i
\(913\) 0.633250 + 0.633250i 0.0209575 + 0.0209575i
\(914\) −20.6834 −0.684145
\(915\) 0 0
\(916\) 22.8997i 0.756629i
\(917\) 34.2665 1.13158
\(918\) 19.2084 11.5251i 0.633973 0.380384i
\(919\) 43.1662 1.42392 0.711962 0.702218i \(-0.247807\pi\)
0.711962 + 0.702218i \(0.247807\pi\)
\(920\) 0 0
\(921\) −30.7335 30.7335i −1.01270 1.01270i
\(922\) 3.89975 0.128431
\(923\) 2.84169 + 2.84169i 0.0935353 + 0.0935353i
\(924\) −2.68338 + 2.68338i −0.0882766 + 0.0882766i
\(925\) 0 0
\(926\) 38.6332i 1.26957i
\(927\) 4.93400i 0.162054i
\(928\) −4.31662 + 4.31662i −0.141700 + 0.141700i
\(929\) 21.8997 21.8997i 0.718507 0.718507i −0.249792 0.968300i \(-0.580362\pi\)
0.968300 + 0.249792i \(0.0803623\pi\)
\(930\) 0 0
\(931\) −7.26650 −0.238150
\(932\) 16.9499 + 16.9499i 0.555212 + 0.555212i
\(933\) 23.5330i 0.770436i
\(934\) −14.9499 −0.489175
\(935\) 0 0
\(936\) 0.316625 0.0103492
\(937\) 50.1662i 1.63886i −0.573179 0.819430i \(-0.694290\pi\)
0.573179 0.819430i \(-0.305710\pi\)
\(938\) 7.68338 + 7.68338i 0.250871 + 0.250871i
\(939\) −13.7836 −0.449812
\(940\) 0 0
\(941\) −16.6834 + 16.6834i −0.543862 + 0.543862i −0.924659 0.380796i \(-0.875650\pi\)
0.380796 + 0.924659i \(0.375650\pi\)
\(942\) 17.7414 17.7414i 0.578047 0.578047i
\(943\) 2.63325i 0.0857504i
\(944\) 8.63325i 0.280988i
\(945\) 0 0
\(946\) −6.00000 + 6.00000i −0.195077 + 0.195077i
\(947\) 2.26650 + 2.26650i 0.0736513 + 0.0736513i 0.742973 0.669322i \(-0.233415\pi\)
−0.669322 + 0.742973i \(0.733415\pi\)
\(948\) −12.6834 −0.411937
\(949\) −4.63325 4.63325i −0.150402 0.150402i
\(950\) 0 0
\(951\) 11.5831 0.375609
\(952\) −5.79156 + 3.47494i −0.187706 + 0.112623i
\(953\) −7.21637 −0.233761 −0.116881 0.993146i \(-0.537289\pi\)
−0.116881 + 0.993146i \(0.537289\pi\)
\(954\) 2.51713i 0.0814950i
\(955\) 0 0
\(956\) 4.63325 0.149850
\(957\) −10.0000 10.0000i −0.323254 0.323254i
\(958\) 10.6834 10.6834i 0.345164 0.345164i
\(959\) −23.1082 + 23.1082i −0.746202 + 0.746202i
\(960\) 0 0
\(961\) 30.9499i 0.998383i
\(962\) 0.316625 0.316625i 0.0102084 0.0102084i
\(963\) −1.84962 + 1.84962i −0.0596033 + 0.0596033i
\(964\) −13.3166 13.3166i −0.428900 0.428900i
\(965\) 0 0
\(966\) −2.68338 2.68338i −0.0863362 0.0863362i
\(967\) 23.3668i 0.751424i 0.926736 + 0.375712i \(0.122602\pi\)
−0.926736 + 0.375712i \(0.877398\pi\)
\(968\) 9.00000 0.289271
\(969\) 5.84962 + 9.74937i 0.187917 + 0.313195i
\(970\) 0 0
\(971\) 0.733501i 0.0235392i −0.999931 0.0117696i \(-0.996254\pi\)
0.999931 0.0117696i \(-0.00374646\pi\)
\(972\) −2.31662 2.31662i −0.0743058 0.0743058i
\(973\) 31.9499 1.02427
\(974\) 6.58312 + 6.58312i 0.210937 + 0.210937i
\(975\) 0 0
\(976\) −1.31662 + 1.31662i −0.0421441 + 0.0421441i
\(977\) 10.8997i 0.348714i −0.984683 0.174357i \(-0.944215\pi\)
0.984683 0.174357i \(-0.0557847\pi\)
\(978\) 6.58312i 0.210505i
\(979\) 5.36675 5.36675i 0.171522 0.171522i
\(980\) 0 0
\(981\) 0.633250 + 0.633250i 0.0202181 + 0.0202181i
\(982\) −13.8997 −0.443559
\(983\) 31.1583 + 31.1583i 0.993796 + 0.993796i 0.999981 0.00618505i \(-0.00196877\pi\)
−0.00618505 + 0.999981i \(0.501969\pi\)
\(984\) 3.05013i 0.0972345i
\(985\) 0 0
\(986\) −12.9499 21.5831i −0.412408 0.687347i
\(987\) −24.0159 −0.764434
\(988\) 1.68338i 0.0535553i
\(989\) −6.00000 6.00000i −0.190789 0.190789i
\(990\) 0 0
\(991\) 31.4248 + 31.4248i 0.998242 + 0.998242i 0.999998 0.00175642i \(-0.000559086\pi\)
−0.00175642 + 0.999998i \(0.500559\pi\)
\(992\) 0.158312 0.158312i 0.00502642 0.00502642i
\(993\) −25.0000 + 25.0000i −0.793351 + 0.793351i
\(994\) 6.58312i 0.208804i
\(995\) 0 0
\(996\) −0.733501 + 0.733501i −0.0232419 + 0.0232419i
\(997\) −21.5831 + 21.5831i −0.683544 + 0.683544i −0.960797 0.277253i \(-0.910576\pi\)
0.277253 + 0.960797i \(0.410576\pi\)
\(998\) 28.4248 + 28.4248i 0.899772 + 0.899772i
\(999\) −2.43275 −0.0769687
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.h.j.251.1 yes 4
5.2 odd 4 850.2.g.f.149.1 4
5.3 odd 4 850.2.g.g.149.2 4
5.4 even 2 850.2.h.i.251.2 4
17.4 even 4 inner 850.2.h.j.701.1 yes 4
85.4 even 4 850.2.h.i.701.2 yes 4
85.38 odd 4 850.2.g.f.599.1 4
85.72 odd 4 850.2.g.g.599.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
850.2.g.f.149.1 4 5.2 odd 4
850.2.g.f.599.1 4 85.38 odd 4
850.2.g.g.149.2 4 5.3 odd 4
850.2.g.g.599.2 4 85.72 odd 4
850.2.h.i.251.2 4 5.4 even 2
850.2.h.i.701.2 yes 4 85.4 even 4
850.2.h.j.251.1 yes 4 1.1 even 1 trivial
850.2.h.j.701.1 yes 4 17.4 even 4 inner