Properties

Label 85.4.a.g
Level $85$
Weight $4$
Character orbit 85.a
Self dual yes
Analytic conductor $5.015$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,4,Mod(1,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 85.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.01516235049\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 20x^{3} + 38x^{2} + 69x - 126 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} - \beta_{2} q^{3} + (\beta_{3} - 2 \beta_1 + 6) q^{4} + 5 q^{5} + ( - \beta_{4} - 1) q^{6} + ( - \beta_{4} - \beta_{2} + 4 \beta_1 + 3) q^{7} + (4 \beta_{4} + 9 \beta_{3} - 2 \beta_1 + 2) q^{8} + (\beta_{4} - 2 \beta_{3} + 2 \beta_{2} + \cdots - 5) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{3} q^{2} - \beta_{2} q^{3} + (\beta_{3} - 2 \beta_1 + 6) q^{4} + 5 q^{5} + ( - \beta_{4} - 1) q^{6} + ( - \beta_{4} - \beta_{2} + 4 \beta_1 + 3) q^{7} + (4 \beta_{4} + 9 \beta_{3} - 2 \beta_1 + 2) q^{8} + (\beta_{4} - 2 \beta_{3} + 2 \beta_{2} + \cdots - 5) q^{9}+ \cdots + (35 \beta_{4} + 68 \beta_{3} + \cdots - 192) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} - q^{3} + 34 q^{4} + 25 q^{5} - 5 q^{6} + 10 q^{7} + 30 q^{8} - 30 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + 2 q^{2} - q^{3} + 34 q^{4} + 25 q^{5} - 5 q^{6} + 10 q^{7} + 30 q^{8} - 30 q^{9} + 10 q^{10} + 126 q^{11} + 15 q^{12} + 83 q^{13} + 90 q^{14} - 5 q^{15} + 322 q^{16} + 85 q^{17} - 97 q^{18} + 55 q^{19} + 170 q^{20} + 6 q^{21} - 240 q^{22} - 2 q^{23} + 155 q^{24} + 125 q^{25} - 395 q^{26} - 163 q^{27} - 1062 q^{28} + 195 q^{29} - 25 q^{30} + 97 q^{31} + 182 q^{32} - 352 q^{33} + 34 q^{34} + 50 q^{35} - 1437 q^{36} - 476 q^{37} - 149 q^{38} + 373 q^{39} + 150 q^{40} + 298 q^{41} - 18 q^{42} + 168 q^{43} + 1136 q^{44} - 150 q^{45} - 2106 q^{46} + 1095 q^{47} - 1193 q^{48} + 737 q^{49} + 50 q^{50} - 17 q^{51} + 281 q^{52} - 1035 q^{53} - 291 q^{54} + 630 q^{55} - 350 q^{56} - 15 q^{57} - 2199 q^{58} + 1163 q^{59} + 75 q^{60} - 351 q^{61} - 1241 q^{62} + 1584 q^{63} + 2042 q^{64} + 415 q^{65} + 356 q^{66} + 1064 q^{67} + 578 q^{68} + 1298 q^{69} + 450 q^{70} + 1393 q^{71} - 269 q^{72} - 163 q^{73} + 1530 q^{74} - 25 q^{75} - 393 q^{76} - 732 q^{77} - 67 q^{78} + 750 q^{79} + 1610 q^{80} + 85 q^{81} + 1144 q^{82} + 270 q^{83} + 2422 q^{84} + 425 q^{85} + 3502 q^{86} - 907 q^{87} - 3216 q^{88} + 1179 q^{89} - 485 q^{90} + 282 q^{91} + 758 q^{92} - 3923 q^{93} + 3473 q^{94} + 275 q^{95} - 2045 q^{96} - 2745 q^{97} + 502 q^{98} - 858 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 20x^{3} + 38x^{2} + 69x - 126 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} + \nu^{3} - 17\nu^{2} - 13\nu + 42 ) / 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} + \nu^{3} - 23\nu^{2} - 13\nu + 96 ) / 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -5\nu^{4} + \nu^{3} + 97\nu^{2} - \nu - 300 ) / 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{3} + \beta_{2} + 9 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{4} + 4\beta_{3} + 6\beta_{2} + 11\beta _1 + 5 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{4} - 19\beta_{3} + 20\beta_{2} + \beta _1 + 115 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.90874
2.25811
4.05155
1.68729
−2.08822
−5.14668 −1.13153 18.4883 5.00000 5.82364 −26.5778 −53.9797 −25.7196 −25.7334
1.2 −2.18655 6.08748 −3.21900 5.00000 −13.3106 10.8418 24.5309 10.0574 −10.9327
1.3 0.290753 −7.70584 −7.91546 5.00000 −2.24049 22.4661 −4.62746 32.3800 1.45376
1.4 3.58234 2.57070 4.83317 5.00000 9.20914 25.2782 −11.3447 −20.3915 17.9117
1.5 5.46013 −0.820806 21.8130 5.00000 −4.48171 −22.0083 75.4209 −26.3263 27.3007
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 85.4.a.g 5
3.b odd 2 1 765.4.a.m 5
4.b odd 2 1 1360.4.a.w 5
5.b even 2 1 425.4.a.i 5
5.c odd 4 2 425.4.b.i 10
17.b even 2 1 1445.4.a.l 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.4.a.g 5 1.a even 1 1 trivial
425.4.a.i 5 5.b even 2 1
425.4.b.i 10 5.c odd 4 2
765.4.a.m 5 3.b odd 2 1
1360.4.a.w 5 4.b odd 2 1
1445.4.a.l 5 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(85))\):

\( T_{2}^{5} - 2T_{2}^{4} - 35T_{2}^{3} + 52T_{2}^{2} + 208T_{2} - 64 \) Copy content Toggle raw display
\( T_{3}^{5} + T_{3}^{4} - 52T_{3}^{3} + 20T_{3}^{2} + 188T_{3} + 112 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - 2 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$3$ \( T^{5} + T^{4} + \cdots + 112 \) Copy content Toggle raw display
$5$ \( (T - 5)^{5} \) Copy content Toggle raw display
$7$ \( T^{5} - 10 T^{4} + \cdots - 3601472 \) Copy content Toggle raw display
$11$ \( T^{5} - 126 T^{4} + \cdots - 167488 \) Copy content Toggle raw display
$13$ \( T^{5} - 83 T^{4} + \cdots - 7643696 \) Copy content Toggle raw display
$17$ \( (T - 17)^{5} \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots - 2274428800 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots + 2278533056 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 2844978640 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 73509549120 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 694556688448 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 478624610720 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 1497205751872 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 840515565952 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 474378006640 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 1194050514560 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 37656238184848 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 3947395137728 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 26612610106464 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 61959193488 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 10071329239040 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 968622815428096 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 30709087651760 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 17052960082000 \) Copy content Toggle raw display
show more
show less