Properties

Label 85.4.a.f
Level $85$
Weight $4$
Character orbit 85.a
Self dual yes
Analytic conductor $5.015$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,4,Mod(1,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 85.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.01516235049\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.568.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - \beta_1 + 1) q^{2} + ( - 3 \beta_1 + 4) q^{3} + ( - 4 \beta_{2} - 2 \beta_1 - 1) q^{4} - 5 q^{5} + ( - 4 \beta_{2} - \beta_1 + 10) q^{6} + (5 \beta_{2} - 3 \beta_1 + 14) q^{7} + ( - 3 \beta_{2} + 3 \beta_1 + 11) q^{8} + (9 \beta_{2} - 6 \beta_1 + 25) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{2} - \beta_1 + 1) q^{2} + ( - 3 \beta_1 + 4) q^{3} + ( - 4 \beta_{2} - 2 \beta_1 - 1) q^{4} - 5 q^{5} + ( - 4 \beta_{2} - \beta_1 + 10) q^{6} + (5 \beta_{2} - 3 \beta_1 + 14) q^{7} + ( - 3 \beta_{2} + 3 \beta_1 + 11) q^{8} + (9 \beta_{2} - 6 \beta_1 + 25) q^{9} + (5 \beta_{2} + 5 \beta_1 - 5) q^{10} + (9 \beta_{2} + \beta_1 + 20) q^{11} + ( - 22 \beta_{2} + 7 \beta_1 - 4) q^{12} + ( - 5 \beta_{2} + 20 \beta_1 - 2) q^{13} + (\beta_{2} - \beta_1) q^{14} + (15 \beta_1 - 20) q^{15} + (12 \beta_{2} - 4 \beta_1 + 25) q^{16} - 17 q^{17} + (2 \beta_{2} - \beta_1 + 1) q^{18} + ( - 21 \beta_{2} - 58) q^{19} + (20 \beta_{2} + 10 \beta_1 + 5) q^{20} + (44 \beta_{2} - 36 \beta_1 + 122) q^{21} + (7 \beta_{2} - 3 \beta_1 - 18) q^{22} + ( - 13 \beta_{2} + 35 \beta_1 + 38) q^{23} + ( - 30 \beta_{2} - 39 \beta_1 - 10) q^{24} + 25 q^{25} + ( - 13 \beta_{2} - 28 \beta_1 - 22) q^{26} + (81 \beta_{2} + 18 \beta_1 + 118) q^{27} + ( - 37 \beta_{2} + 27 \beta_1 - 114) q^{28} + ( - 65 \beta_{2} - 32 \beta_1 + 4) q^{29} + (20 \beta_{2} + 5 \beta_1 - 50) q^{30} + ( - 6 \beta_{2} - 7 \beta_1 - 22) q^{31} + (35 \beta_{2} - 21 \beta_1 - 103) q^{32} + (60 \beta_{2} - 62 \beta_1 + 122) q^{33} + (17 \beta_{2} + 17 \beta_1 - 17) q^{34} + ( - 25 \beta_{2} + 15 \beta_1 - 70) q^{35} + ( - 67 \beta_{2} + 52 \beta_1 - 205) q^{36} + (28 \beta_{2} + 50 \beta_1 - 110) q^{37} + ( - 5 \beta_{2} + 16 \beta_1 + 26) q^{38} + ( - 95 \beta_{2} - 34 \beta_1 - 278) q^{39} + (15 \beta_{2} - 15 \beta_1 - 55) q^{40} + ( - 66 \beta_{2} - 6 \beta_1 + 146) q^{41} + (10 \beta_{2} + 2 \beta_1 + 18) q^{42} + ( - 100 \beta_{2} - 16 \beta_1 - 110) q^{43} + ( - 33 \beta_{2} + 27 \beta_1 - 200) q^{44} + ( - 45 \beta_{2} + 30 \beta_1 - 125) q^{45} + ( - 77 \beta_{2} - 99 \beta_1 + 20) q^{46} + (75 \beta_{2} + 212 \beta_1 - 12) q^{47} + (96 \beta_{2} - 67 \beta_1 + 220) q^{48} + (154 \beta_{2} - 116 \beta_1 + 99) q^{49} + ( - 25 \beta_{2} - 25 \beta_1 + 25) q^{50} + (51 \beta_1 - 68) q^{51} + (23 \beta_{2} - 136 \beta_1 + 102) q^{52} + (37 \beta_{2} + 6 \beta_1 + 308) q^{53} + (125 \beta_{2} + 26 \beta_1 - 242) q^{54} + ( - 45 \beta_{2} - 5 \beta_1 - 100) q^{55} + ( - 5 \beta_{2} + 21 \beta_1 - 20) q^{56} + ( - 147 \beta_{2} + 174 \beta_1 - 358) q^{57} + ( - 199 \beta_{2} - 102 \beta_1 + 328) q^{58} + (119 \beta_{2} + 60 \beta_1 + 138) q^{59} + (110 \beta_{2} - 35 \beta_1 + 20) q^{60} + (19 \beta_{2} + 66 \beta_1 + 324) q^{61} + (4 \beta_{2} + 17 \beta_1 + 16) q^{62} + (281 \beta_{2} - 213 \beta_1 + 806) q^{63} + (112 \beta_{2} + 226 \beta_1 - 401) q^{64} + (25 \beta_{2} - 100 \beta_1 + 10) q^{65} + (58 \beta_{2} + 60 \beta_1 + 6) q^{66} + (62 \beta_{2} + 6 \beta_1 + 130) q^{67} + (68 \beta_{2} + 34 \beta_1 + 17) q^{68} + ( - 196 \beta_{2} - 184 \beta_1 - 346) q^{69} + ( - 5 \beta_{2} + 5 \beta_1) q^{70} + ( - 8 \beta_{2} + 371 \beta_1 - 22) q^{71} + ( - 12 \beta_{2} + 27 \beta_1 - 49) q^{72} + ( - 315 \beta_{2} - 108 \beta_1 + 144) q^{73} + (194 \beta_{2} + 116 \beta_1 - 322) q^{74} + ( - 75 \beta_1 + 100) q^{75} + (127 \beta_{2} - 52 \beta_1 + 478) q^{76} + (200 \beta_{2} - 142 \beta_1 + 582) q^{77} + ( - 7 \beta_{2} + 122 \beta_1 + 170) q^{78} + ( - 295 \beta_{2} + 129 \beta_1 - 172) q^{79} + ( - 60 \beta_{2} + 20 \beta_1 - 125) q^{80} + (270 \beta_{2} - 228 \beta_1 + 67) q^{81} + ( - 344 \beta_{2} - 272 \beta_1 + 422) q^{82} + ( - 26 \beta_{2} - 32 \beta_1 + 914) q^{83} + ( - 340 \beta_{2} + 288 \beta_1 - 1002) q^{84} + 85 q^{85} + ( - 190 \beta_{2} - 74 \beta_1 + 322) q^{86} + ( - 359 \beta_{2} + 52 \beta_1 + 10) q^{87} + (45 \beta_{2} + 131 \beta_1 + 22) q^{88} + ( - 115 \beta_{2} - 214 \beta_1 + 574) q^{89} + ( - 10 \beta_{2} + 5 \beta_1 - 5) q^{90} + ( - 230 \beta_{2} + 216 \beta_1 - 648) q^{91} + ( - 147 \beta_{2} - 355 \beta_1 + 222) q^{92} + ( - 21 \beta_{2} + 80 \beta_1 - 40) q^{93} + (237 \beta_{2} - 50 \beta_1 - 736) q^{94} + (105 \beta_{2} + 290) q^{95} + (308 \beta_{2} + 351 \beta_1 + 50) q^{96} + ( - 331 \beta_{2} - 290 \beta_1 - 172) q^{97} + (363 \beta_{2} + 325 \beta_1 - 285) q^{98} + (363 \beta_{2} - 269 \beta_1 + 1052) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 9 q^{3} - q^{4} - 15 q^{5} + 33 q^{6} + 34 q^{7} + 39 q^{8} + 60 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{2} + 9 q^{3} - q^{4} - 15 q^{5} + 33 q^{6} + 34 q^{7} + 39 q^{8} + 60 q^{9} - 15 q^{10} + 52 q^{11} + 17 q^{12} + 19 q^{13} - 2 q^{14} - 45 q^{15} + 59 q^{16} - 51 q^{17} - 153 q^{19} + 5 q^{20} + 286 q^{21} - 64 q^{22} + 162 q^{23} - 39 q^{24} + 75 q^{25} - 81 q^{26} + 291 q^{27} - 278 q^{28} + 45 q^{29} - 165 q^{30} - 67 q^{31} - 365 q^{32} + 244 q^{33} - 51 q^{34} - 170 q^{35} - 496 q^{36} - 308 q^{37} + 99 q^{38} - 773 q^{39} - 195 q^{40} + 498 q^{41} + 46 q^{42} - 246 q^{43} - 540 q^{44} - 300 q^{45} + 38 q^{46} + 101 q^{47} + 497 q^{48} + 27 q^{49} + 75 q^{50} - 153 q^{51} + 147 q^{52} + 893 q^{53} - 825 q^{54} - 260 q^{55} - 34 q^{56} - 753 q^{57} + 1081 q^{58} + 355 q^{59} - 85 q^{60} + 1019 q^{61} + 61 q^{62} + 1924 q^{63} - 1089 q^{64} - 95 q^{65} + 20 q^{66} + 334 q^{67} + 17 q^{68} - 1026 q^{69} + 10 q^{70} + 313 q^{71} - 108 q^{72} + 639 q^{73} - 1044 q^{74} + 225 q^{75} + 1255 q^{76} + 1404 q^{77} + 639 q^{78} - 92 q^{79} - 295 q^{80} - 297 q^{81} + 1338 q^{82} + 2736 q^{83} - 2378 q^{84} + 255 q^{85} + 1082 q^{86} + 441 q^{87} + 152 q^{88} + 1623 q^{89} - 1498 q^{91} + 458 q^{92} - 19 q^{93} - 2495 q^{94} + 765 q^{95} + 193 q^{96} - 475 q^{97} - 893 q^{98} + 2524 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 6x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.12489
−1.76156
−0.363328
−1.64002 −5.37466 −5.31032 −5.00000 8.81456 2.20103 21.8292 1.88693 8.20012
1.2 0.135359 9.28467 −7.98168 −5.00000 1.25676 32.4157 −2.16327 59.2051 −0.676796
1.3 4.50466 5.08998 12.2920 −5.00000 22.9287 −0.616696 19.3340 −1.09206 −22.5233
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 85.4.a.f 3
3.b odd 2 1 765.4.a.k 3
4.b odd 2 1 1360.4.a.p 3
5.b even 2 1 425.4.a.f 3
5.c odd 4 2 425.4.b.h 6
17.b even 2 1 1445.4.a.k 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.4.a.f 3 1.a even 1 1 trivial
425.4.a.f 3 5.b even 2 1
425.4.b.h 6 5.c odd 4 2
765.4.a.k 3 3.b odd 2 1
1360.4.a.p 3 4.b odd 2 1
1445.4.a.k 3 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(85))\):

\( T_{2}^{3} - 3T_{2}^{2} - 7T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{3} - 9T_{3}^{2} - 30T_{3} + 254 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 3 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{3} - 9 T^{2} + \cdots + 254 \) Copy content Toggle raw display
$5$ \( (T + 5)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 34 T^{2} + \cdots + 44 \) Copy content Toggle raw display
$11$ \( T^{3} - 52 T^{2} + \cdots + 6784 \) Copy content Toggle raw display
$13$ \( T^{3} - 19 T^{2} + \cdots + 20408 \) Copy content Toggle raw display
$17$ \( (T + 17)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} + 153 T^{2} + \cdots - 43112 \) Copy content Toggle raw display
$23$ \( T^{3} - 162 T^{2} + \cdots + 587260 \) Copy content Toggle raw display
$29$ \( T^{3} - 45 T^{2} + \cdots - 1563820 \) Copy content Toggle raw display
$31$ \( T^{3} + 67 T^{2} + \cdots + 634 \) Copy content Toggle raw display
$37$ \( T^{3} + 308 T^{2} + \cdots - 879328 \) Copy content Toggle raw display
$41$ \( T^{3} - 498 T^{2} + \cdots + 948856 \) Copy content Toggle raw display
$43$ \( T^{3} + 246 T^{2} + \cdots - 8063768 \) Copy content Toggle raw display
$47$ \( T^{3} - 101 T^{2} + \cdots - 37575724 \) Copy content Toggle raw display
$53$ \( T^{3} - 893 T^{2} + \cdots - 23102788 \) Copy content Toggle raw display
$59$ \( T^{3} - 355 T^{2} + \cdots + 23789032 \) Copy content Toggle raw display
$61$ \( T^{3} - 1019 T^{2} + \cdots - 32261500 \) Copy content Toggle raw display
$67$ \( T^{3} - 334 T^{2} + \cdots + 2242600 \) Copy content Toggle raw display
$71$ \( T^{3} - 313 T^{2} + \cdots - 104660798 \) Copy content Toggle raw display
$73$ \( T^{3} - 639 T^{2} + \cdots - 23564196 \) Copy content Toggle raw display
$79$ \( T^{3} + 92 T^{2} + \cdots + 310900832 \) Copy content Toggle raw display
$83$ \( T^{3} - 2736 T^{2} + \cdots - 751119952 \) Copy content Toggle raw display
$89$ \( T^{3} - 1623 T^{2} + \cdots + 25616512 \) Copy content Toggle raw display
$97$ \( T^{3} + 475 T^{2} + \cdots - 473709668 \) Copy content Toggle raw display
show more
show less