Properties

Label 85.4.a.e
Level $85$
Weight $4$
Character orbit 85.a
Self dual yes
Analytic conductor $5.015$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,4,Mod(1,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 85.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.01516235049\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.1304.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 11x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 2) q^{2} + ( - \beta_{2} - \beta_1 - 1) q^{3} + (\beta_{2} + 4 \beta_1 + 3) q^{4} - 5 q^{5} + (3 \beta_{2} + 7 \beta_1 + 11) q^{6} + (5 \beta_{2} + \beta_1 + 1) q^{7} + ( - 6 \beta_{2} - 7 \beta_1 - 20) q^{8} + (12 \beta_1 + 13) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 - 2) q^{2} + ( - \beta_{2} - \beta_1 - 1) q^{3} + (\beta_{2} + 4 \beta_1 + 3) q^{4} - 5 q^{5} + (3 \beta_{2} + 7 \beta_1 + 11) q^{6} + (5 \beta_{2} + \beta_1 + 1) q^{7} + ( - 6 \beta_{2} - 7 \beta_1 - 20) q^{8} + (12 \beta_1 + 13) q^{9} + (5 \beta_1 + 10) q^{10} + ( - \beta_{2} + 9 \beta_1 - 39) q^{11} + ( - 5 \beta_{2} - 29 \beta_1 - 69) q^{12} + ( - 4 \beta_{2} + 4 \beta_1 - 2) q^{13} + ( - 11 \beta_{2} - 23 \beta_1 - 19) q^{14} + (5 \beta_{2} + 5 \beta_1 + 5) q^{15} + (11 \beta_{2} + 26 \beta_1 + 77) q^{16} + 17 q^{17} + ( - 12 \beta_{2} - 37 \beta_1 - 110) q^{18} + (14 \beta_{2} - 30 \beta_1 - 58) q^{19} + ( - 5 \beta_{2} - 20 \beta_1 - 15) q^{20} + (8 \beta_{2} - 36 \beta_1 - 160) q^{21} + ( - 7 \beta_{2} + 25 \beta_1 + 17) q^{22} + (13 \beta_{2} + 5 \beta_1 - 35) q^{23} + (15 \beta_{2} + 91 \beta_1 + 263) q^{24} + 25 q^{25} + (4 \beta_{2} + 10 \beta_1 - 16) q^{26} + (2 \beta_{2} - 46 \beta_1 - 94) q^{27} + (5 \beta_{2} + 101 \beta_1 + 213) q^{28} + ( - 16 \beta_{2} + 32 \beta_1 + 130) q^{29} + ( - 15 \beta_{2} - 35 \beta_1 - 55) q^{30} + ( - 35 \beta_{2} - 21 \beta_1 + 35) q^{31} + ( - 117 \beta_1 - 198) q^{32} + (28 \beta_{2} - 12) q^{33} + ( - 17 \beta_1 - 34) q^{34} + ( - 25 \beta_{2} - 5 \beta_1 - 5) q^{35} + (61 \beta_{2} + 136 \beta_1 + 399) q^{36} + ( - 12 \beta_{2} - 16 \beta_1 - 78) q^{37} + (2 \beta_{2} + 62 \beta_1 + 298) q^{38} + ( - 10 \beta_{2} + 6 \beta_1 + 86) q^{39} + (30 \beta_{2} + 35 \beta_1 + 100) q^{40} + ( - 12 \beta_{2} - 36 \beta_1 - 114) q^{41} + (20 \beta_{2} + 200 \beta_1 + 556) q^{42} + ( - 28 \beta_{2} + 22 \beta_1 - 86) q^{43} + ( - 3 \beta_{2} - 111 \beta_1 + 117) q^{44} + ( - 60 \beta_1 - 65) q^{45} + ( - 31 \beta_{2} - 27 \beta_1 + 9) q^{46} + ( - 6 \beta_{2} - 64 \beta_1 - 128) q^{47} + ( - 81 \beta_{2} - 273 \beta_1 - 641) q^{48} + ( - 64 \beta_{2} + 92 \beta_1 + 385) q^{49} + ( - 25 \beta_1 - 50) q^{50} + ( - 17 \beta_{2} - 17 \beta_1 - 17) q^{51} + (14 \beta_{2} - 52 \beta_1 - 30) q^{52} + (32 \beta_{2} + 108 \beta_1 - 438) q^{53} + (42 \beta_{2} + 178 \beta_1 + 506) q^{54} + (5 \beta_{2} - 45 \beta_1 + 195) q^{55} + ( - 23 \beta_{2} - 251 \beta_1 - 991) q^{56} + (116 \beta_{2} + 124 \beta_1 - 92) q^{57} + ( - 130 \beta_1 - 452) q^{58} + (50 \beta_{2} - 170 \beta_1 - 118) q^{59} + (25 \beta_{2} + 145 \beta_1 + 345) q^{60} + ( - 36 \beta_{2} - 116 \beta_1 + 94) q^{61} + (91 \beta_{2} + 147 \beta_1 + 147) q^{62} + (77 \beta_{2} + 265 \beta_1 + 217) q^{63} + (29 \beta_{2} + 224 \beta_1 + 599) q^{64} + (20 \beta_{2} - 20 \beta_1 + 10) q^{65} + ( - 56 \beta_{2} - 100 \beta_1 - 32) q^{66} + ( - 82 \beta_{2} + 112 \beta_1 - 212) q^{67} + (17 \beta_{2} + 68 \beta_1 + 51) q^{68} + (56 \beta_{2} - 68 \beta_1 - 400) q^{69} + (55 \beta_{2} + 115 \beta_1 + 95) q^{70} + ( - 23 \beta_{2} + 199 \beta_1 - 193) q^{71} + ( - 162 \beta_{2} - 619 \beta_1 - 992) q^{72} + (120 \beta_{2} - 76 \beta_1 + 54) q^{73} + (40 \beta_{2} + 158 \beta_1 + 292) q^{74} + ( - 25 \beta_{2} - 25 \beta_1 - 25) q^{75} + ( - 178 \beta_{2} - 190 \beta_1 - 570) q^{76} + ( - 172 \beta_{2} + 136 \beta_1 - 28) q^{77} + (14 \beta_{2} - 58 \beta_1 - 194) q^{78} + ( - 37 \beta_{2} - 31 \beta_1 + 81) q^{79} + ( - 55 \beta_{2} - 130 \beta_1 - 385) q^{80} + (144 \beta_{2} - 12 \beta_1 + 97) q^{81} + (60 \beta_{2} + 234 \beta_1 + 504) q^{82} + ( - 80 \beta_{2} + 58 \beta_1 - 778) q^{83} + ( - 304 \beta_{2} - 748 \beta_1 - 1272) q^{84} - 85 q^{85} + (34 \beta_{2} + 154 \beta_1 + 74) q^{86} + ( - 194 \beta_{2} - 194 \beta_1 + 62) q^{87} + (173 \beta_{2} - 83 \beta_1 + 413) q^{88} + (84 \beta_{2} + 12 \beta_1 - 318) q^{89} + (60 \beta_{2} + 185 \beta_1 + 550) q^{90} + (50 \beta_{2} + 26 \beta_1 - 502) q^{91} + ( - 15 \beta_{2} + 129 \beta_1 + 513) q^{92} + ( - 84 \beta_{2} + 280 \beta_1 + 1204) q^{93} + (76 \beta_{2} + 280 \beta_1 + 716) q^{94} + ( - 70 \beta_{2} + 150 \beta_1 + 290) q^{95} + (315 \beta_{2} + 783 \beta_1 + 1251) q^{96} + (160 \beta_{2} + 80 \beta_1 + 690) q^{97} + (36 \beta_{2} - 313 \beta_1 - 1286) q^{98} + (95 \beta_{2} - 399 \beta_1 + 225) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} - 4 q^{3} + 10 q^{4} - 15 q^{5} + 36 q^{6} + 8 q^{7} - 66 q^{8} + 39 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 6 q^{2} - 4 q^{3} + 10 q^{4} - 15 q^{5} + 36 q^{6} + 8 q^{7} - 66 q^{8} + 39 q^{9} + 30 q^{10} - 118 q^{11} - 212 q^{12} - 10 q^{13} - 68 q^{14} + 20 q^{15} + 242 q^{16} + 51 q^{17} - 342 q^{18} - 160 q^{19} - 50 q^{20} - 472 q^{21} + 44 q^{22} - 92 q^{23} + 804 q^{24} + 75 q^{25} - 44 q^{26} - 280 q^{27} + 644 q^{28} + 374 q^{29} - 180 q^{30} + 70 q^{31} - 594 q^{32} - 8 q^{33} - 102 q^{34} - 40 q^{35} + 1258 q^{36} - 246 q^{37} + 896 q^{38} + 248 q^{39} + 330 q^{40} - 354 q^{41} + 1688 q^{42} - 286 q^{43} + 348 q^{44} - 195 q^{45} - 4 q^{46} - 390 q^{47} - 2004 q^{48} + 1091 q^{49} - 150 q^{50} - 68 q^{51} - 76 q^{52} - 1282 q^{53} + 1560 q^{54} + 590 q^{55} - 2996 q^{56} - 160 q^{57} - 1356 q^{58} - 304 q^{59} + 1060 q^{60} + 246 q^{61} + 532 q^{62} + 728 q^{63} + 1826 q^{64} + 50 q^{65} - 152 q^{66} - 718 q^{67} + 170 q^{68} - 1144 q^{69} + 340 q^{70} - 602 q^{71} - 3138 q^{72} + 282 q^{73} + 916 q^{74} - 100 q^{75} - 1888 q^{76} - 256 q^{77} - 568 q^{78} + 206 q^{79} - 1210 q^{80} + 435 q^{81} + 1572 q^{82} - 2414 q^{83} - 4120 q^{84} - 255 q^{85} + 256 q^{86} - 8 q^{87} + 1412 q^{88} - 870 q^{89} + 1710 q^{90} - 1456 q^{91} + 1524 q^{92} + 3528 q^{93} + 2224 q^{94} + 800 q^{95} + 4068 q^{96} + 2230 q^{97} - 3822 q^{98} + 770 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 11x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 7 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.40405
−0.182370
−3.22168
−5.40405 −8.99158 21.2037 −5.00000 48.5909 27.3417 −71.3535 53.8486 27.0202
1.2 −1.81763 6.14911 −4.69622 −5.00000 −11.1768 −34.0161 23.0770 10.8116 9.08815
1.3 1.22168 −1.15753 −6.50750 −5.00000 −1.41413 14.6743 −17.7235 −25.6601 −6.10839
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 85.4.a.e 3
3.b odd 2 1 765.4.a.l 3
4.b odd 2 1 1360.4.a.s 3
5.b even 2 1 425.4.a.h 3
5.c odd 4 2 425.4.b.g 6
17.b even 2 1 1445.4.a.j 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.4.a.e 3 1.a even 1 1 trivial
425.4.a.h 3 5.b even 2 1
425.4.b.g 6 5.c odd 4 2
765.4.a.l 3 3.b odd 2 1
1360.4.a.s 3 4.b odd 2 1
1445.4.a.j 3 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(85))\):

\( T_{2}^{3} + 6T_{2}^{2} + T_{2} - 12 \) Copy content Toggle raw display
\( T_{3}^{3} + 4T_{3}^{2} - 52T_{3} - 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 6T^{2} + T - 12 \) Copy content Toggle raw display
$3$ \( T^{3} + 4 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$5$ \( (T + 5)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 8 T^{2} + \cdots + 13648 \) Copy content Toggle raw display
$11$ \( T^{3} + 118 T^{2} + \cdots + 31128 \) Copy content Toggle raw display
$13$ \( T^{3} + 10 T^{2} + \cdots - 4808 \) Copy content Toggle raw display
$17$ \( (T - 17)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} + 160 T^{2} + \cdots - 1236992 \) Copy content Toggle raw display
$23$ \( T^{3} + 92 T^{2} + \cdots - 37824 \) Copy content Toggle raw display
$29$ \( T^{3} - 374 T^{2} + \cdots + 1059384 \) Copy content Toggle raw display
$31$ \( T^{3} - 70 T^{2} + \cdots - 869848 \) Copy content Toggle raw display
$37$ \( T^{3} + 246 T^{2} + \cdots - 107032 \) Copy content Toggle raw display
$41$ \( T^{3} + 354 T^{2} + \cdots + 268056 \) Copy content Toggle raw display
$43$ \( T^{3} + 286 T^{2} + \cdots - 3687392 \) Copy content Toggle raw display
$47$ \( T^{3} + 390 T^{2} + \cdots - 1611552 \) Copy content Toggle raw display
$53$ \( T^{3} + 1282 T^{2} + \cdots - 35263752 \) Copy content Toggle raw display
$59$ \( T^{3} + 304 T^{2} + \cdots - 121786368 \) Copy content Toggle raw display
$61$ \( T^{3} - 246 T^{2} + \cdots + 59018936 \) Copy content Toggle raw display
$67$ \( T^{3} + 718 T^{2} + \cdots - 59593088 \) Copy content Toggle raw display
$71$ \( T^{3} + 602 T^{2} + \cdots - 23858136 \) Copy content Toggle raw display
$73$ \( T^{3} - 282 T^{2} + \cdots + 187092392 \) Copy content Toggle raw display
$79$ \( T^{3} - 206 T^{2} + \cdots + 3736296 \) Copy content Toggle raw display
$83$ \( T^{3} + 2414 T^{2} + \cdots + 270648096 \) Copy content Toggle raw display
$89$ \( T^{3} + 870 T^{2} + \cdots - 7132536 \) Copy content Toggle raw display
$97$ \( T^{3} - 2230 T^{2} + \cdots + 724979000 \) Copy content Toggle raw display
show more
show less