Properties

Label 85.4.a.b
Level $85$
Weight $4$
Character orbit 85.a
Self dual yes
Analytic conductor $5.015$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,4,Mod(1,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 85.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.01516235049\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{2} - 5 q^{3} + q^{4} - 5 q^{5} - 15 q^{6} - 22 q^{7} - 21 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{2} - 5 q^{3} + q^{4} - 5 q^{5} - 15 q^{6} - 22 q^{7} - 21 q^{8} - 2 q^{9} - 15 q^{10} + 60 q^{11} - 5 q^{12} - 31 q^{13} - 66 q^{14} + 25 q^{15} - 71 q^{16} + 17 q^{17} - 6 q^{18} - 61 q^{19} - 5 q^{20} + 110 q^{21} + 180 q^{22} - 78 q^{23} + 105 q^{24} + 25 q^{25} - 93 q^{26} + 145 q^{27} - 22 q^{28} + 69 q^{29} + 75 q^{30} - 31 q^{31} - 45 q^{32} - 300 q^{33} + 51 q^{34} + 110 q^{35} - 2 q^{36} + 56 q^{37} - 183 q^{38} + 155 q^{39} + 105 q^{40} - 6 q^{41} + 330 q^{42} - 538 q^{43} + 60 q^{44} + 10 q^{45} - 234 q^{46} - 465 q^{47} + 355 q^{48} + 141 q^{49} + 75 q^{50} - 85 q^{51} - 31 q^{52} + 723 q^{53} + 435 q^{54} - 300 q^{55} + 462 q^{56} + 305 q^{57} + 207 q^{58} - 753 q^{59} + 25 q^{60} + 35 q^{61} - 93 q^{62} + 44 q^{63} + 433 q^{64} + 155 q^{65} - 900 q^{66} - 322 q^{67} + 17 q^{68} + 390 q^{69} + 330 q^{70} - 99 q^{71} + 42 q^{72} - 1123 q^{73} + 168 q^{74} - 125 q^{75} - 61 q^{76} - 1320 q^{77} + 465 q^{78} + 488 q^{79} + 355 q^{80} - 671 q^{81} - 18 q^{82} - 852 q^{83} + 110 q^{84} - 85 q^{85} - 1614 q^{86} - 345 q^{87} - 1260 q^{88} + 1215 q^{89} + 30 q^{90} + 682 q^{91} - 78 q^{92} + 155 q^{93} - 1395 q^{94} + 305 q^{95} + 225 q^{96} - 601 q^{97} + 423 q^{98} - 120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
3.00000 −5.00000 1.00000 −5.00000 −15.0000 −22.0000 −21.0000 −2.00000 −15.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 85.4.a.b 1
3.b odd 2 1 765.4.a.c 1
4.b odd 2 1 1360.4.a.g 1
5.b even 2 1 425.4.a.b 1
5.c odd 4 2 425.4.b.b 2
17.b even 2 1 1445.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.4.a.b 1 1.a even 1 1 trivial
425.4.a.b 1 5.b even 2 1
425.4.b.b 2 5.c odd 4 2
765.4.a.c 1 3.b odd 2 1
1360.4.a.g 1 4.b odd 2 1
1445.4.a.g 1 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(85))\):

\( T_{2} - 3 \) Copy content Toggle raw display
\( T_{3} + 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 3 \) Copy content Toggle raw display
$3$ \( T + 5 \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T + 22 \) Copy content Toggle raw display
$11$ \( T - 60 \) Copy content Toggle raw display
$13$ \( T + 31 \) Copy content Toggle raw display
$17$ \( T - 17 \) Copy content Toggle raw display
$19$ \( T + 61 \) Copy content Toggle raw display
$23$ \( T + 78 \) Copy content Toggle raw display
$29$ \( T - 69 \) Copy content Toggle raw display
$31$ \( T + 31 \) Copy content Toggle raw display
$37$ \( T - 56 \) Copy content Toggle raw display
$41$ \( T + 6 \) Copy content Toggle raw display
$43$ \( T + 538 \) Copy content Toggle raw display
$47$ \( T + 465 \) Copy content Toggle raw display
$53$ \( T - 723 \) Copy content Toggle raw display
$59$ \( T + 753 \) Copy content Toggle raw display
$61$ \( T - 35 \) Copy content Toggle raw display
$67$ \( T + 322 \) Copy content Toggle raw display
$71$ \( T + 99 \) Copy content Toggle raw display
$73$ \( T + 1123 \) Copy content Toggle raw display
$79$ \( T - 488 \) Copy content Toggle raw display
$83$ \( T + 852 \) Copy content Toggle raw display
$89$ \( T - 1215 \) Copy content Toggle raw display
$97$ \( T + 601 \) Copy content Toggle raw display
show more
show less