Properties

Label 85.4.a.a
Level $85$
Weight $4$
Character orbit 85.a
Self dual yes
Analytic conductor $5.015$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,4,Mod(1,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 85.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.01516235049\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{2} - 7 q^{3} + q^{4} + 5 q^{5} - 21 q^{6} - 22 q^{7} - 21 q^{8} + 22 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{2} - 7 q^{3} + q^{4} + 5 q^{5} - 21 q^{6} - 22 q^{7} - 21 q^{8} + 22 q^{9} + 15 q^{10} - 64 q^{11} - 7 q^{12} + 73 q^{13} - 66 q^{14} - 35 q^{15} - 71 q^{16} - 17 q^{17} + 66 q^{18} - 49 q^{19} + 5 q^{20} + 154 q^{21} - 192 q^{22} + 110 q^{23} + 147 q^{24} + 25 q^{25} + 219 q^{26} + 35 q^{27} - 22 q^{28} + 155 q^{29} - 105 q^{30} - 197 q^{31} - 45 q^{32} + 448 q^{33} - 51 q^{34} - 110 q^{35} + 22 q^{36} - 372 q^{37} - 147 q^{38} - 511 q^{39} - 105 q^{40} - 262 q^{41} + 462 q^{42} + 258 q^{43} - 64 q^{44} + 110 q^{45} + 330 q^{46} - 13 q^{47} + 497 q^{48} + 141 q^{49} + 75 q^{50} + 119 q^{51} + 73 q^{52} - 653 q^{53} + 105 q^{54} - 320 q^{55} + 462 q^{56} + 343 q^{57} + 465 q^{58} - 333 q^{59} - 35 q^{60} - 355 q^{61} - 591 q^{62} - 484 q^{63} + 433 q^{64} + 365 q^{65} + 1344 q^{66} + 814 q^{67} - 17 q^{68} - 770 q^{69} - 330 q^{70} + 47 q^{71} - 462 q^{72} - 437 q^{73} - 1116 q^{74} - 175 q^{75} - 49 q^{76} + 1408 q^{77} - 1533 q^{78} - 384 q^{79} - 355 q^{80} - 839 q^{81} - 786 q^{82} - 736 q^{83} + 154 q^{84} - 85 q^{85} + 774 q^{86} - 1085 q^{87} + 1344 q^{88} + 511 q^{89} + 330 q^{90} - 1606 q^{91} + 110 q^{92} + 1379 q^{93} - 39 q^{94} - 245 q^{95} + 315 q^{96} + 537 q^{97} + 423 q^{98} - 1408 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
3.00000 −7.00000 1.00000 5.00000 −21.0000 −22.0000 −21.0000 22.0000 15.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 85.4.a.a 1
3.b odd 2 1 765.4.a.b 1
4.b odd 2 1 1360.4.a.i 1
5.b even 2 1 425.4.a.c 1
5.c odd 4 2 425.4.b.a 2
17.b even 2 1 1445.4.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.4.a.a 1 1.a even 1 1 trivial
425.4.a.c 1 5.b even 2 1
425.4.b.a 2 5.c odd 4 2
765.4.a.b 1 3.b odd 2 1
1360.4.a.i 1 4.b odd 2 1
1445.4.a.h 1 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(85))\):

\( T_{2} - 3 \) Copy content Toggle raw display
\( T_{3} + 7 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 3 \) Copy content Toggle raw display
$3$ \( T + 7 \) Copy content Toggle raw display
$5$ \( T - 5 \) Copy content Toggle raw display
$7$ \( T + 22 \) Copy content Toggle raw display
$11$ \( T + 64 \) Copy content Toggle raw display
$13$ \( T - 73 \) Copy content Toggle raw display
$17$ \( T + 17 \) Copy content Toggle raw display
$19$ \( T + 49 \) Copy content Toggle raw display
$23$ \( T - 110 \) Copy content Toggle raw display
$29$ \( T - 155 \) Copy content Toggle raw display
$31$ \( T + 197 \) Copy content Toggle raw display
$37$ \( T + 372 \) Copy content Toggle raw display
$41$ \( T + 262 \) Copy content Toggle raw display
$43$ \( T - 258 \) Copy content Toggle raw display
$47$ \( T + 13 \) Copy content Toggle raw display
$53$ \( T + 653 \) Copy content Toggle raw display
$59$ \( T + 333 \) Copy content Toggle raw display
$61$ \( T + 355 \) Copy content Toggle raw display
$67$ \( T - 814 \) Copy content Toggle raw display
$71$ \( T - 47 \) Copy content Toggle raw display
$73$ \( T + 437 \) Copy content Toggle raw display
$79$ \( T + 384 \) Copy content Toggle raw display
$83$ \( T + 736 \) Copy content Toggle raw display
$89$ \( T - 511 \) Copy content Toggle raw display
$97$ \( T - 537 \) Copy content Toggle raw display
show more
show less