Properties

Label 85.2.o
Level $85$
Weight $2$
Character orbit 85.o
Rep. character $\chi_{85}(3,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $56$
Newform subspaces $1$
Sturm bound $18$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.o (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 85 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 1 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(85, [\chi])\).

Total New Old
Modular forms 88 88 0
Cusp forms 56 56 0
Eisenstein series 32 32 0

Trace form

\( 56 q - 8 q^{2} - 8 q^{3} - 8 q^{5} - 16 q^{6} - 8 q^{7} + 8 q^{8} - 24 q^{10} - 16 q^{11} - 32 q^{12} + 32 q^{14} + 16 q^{15} - 8 q^{17} - 16 q^{18} - 32 q^{19} + 32 q^{20} - 16 q^{21} - 8 q^{22} - 8 q^{23}+ \cdots - 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(85, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
85.2.o.a 85.o 85.o $56$ $0.679$ None 85.2.o.a \(-8\) \(-8\) \(-8\) \(-8\) $\mathrm{SU}(2)[C_{16}]$