Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [85,2,Mod(9,85)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(85, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([4, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("85.9");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 85 = 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 85.m (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.678728417181\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 | −1.48843 | − | 1.48843i | −0.690961 | + | 1.66813i | 2.43082i | 1.70647 | + | 1.44498i | 3.51133 | − | 1.45444i | 2.47912 | − | 1.02689i | 0.641241 | − | 0.641241i | −0.183901 | − | 0.183901i | −0.389210 | − | 4.69069i | ||
9.2 | −0.672981 | − | 0.672981i | 0.947078 | − | 2.28645i | − | 1.09419i | −0.973741 | + | 2.01292i | −2.17610 | + | 0.901371i | −0.492777 | + | 0.204115i | −2.08233 | + | 2.08233i | −2.20957 | − | 2.20957i | 2.00996 | − | 0.699345i | |
9.3 | −0.352960 | − | 0.352960i | −0.0655465 | + | 0.158243i | − | 1.75084i | −1.40760 | − | 1.73743i | 0.0789888 | − | 0.0327182i | 3.57820 | − | 1.48214i | −1.32390 | + | 1.32390i | 2.10058 | + | 2.10058i | −0.116419 | + | 1.11007i | |
9.4 | 0.352960 | + | 0.352960i | 0.0655465 | − | 0.158243i | − | 1.75084i | 2.22387 | − | 0.233230i | 0.0789888 | − | 0.0327182i | −3.57820 | + | 1.48214i | 1.32390 | − | 1.32390i | 2.10058 | + | 2.10058i | 0.867258 | + | 0.702616i | |
9.5 | 0.672981 | + | 0.672981i | −0.947078 | + | 2.28645i | − | 1.09419i | −0.734807 | + | 2.11188i | −2.17610 | + | 0.901371i | 0.492777 | − | 0.204115i | 2.08233 | − | 2.08233i | −2.20957 | − | 2.20957i | −1.91577 | + | 0.926747i | |
9.6 | 1.48843 | + | 1.48843i | 0.690961 | − | 1.66813i | 2.43082i | −2.22841 | − | 0.184902i | 3.51133 | − | 1.45444i | −2.47912 | + | 1.02689i | −0.641241 | + | 0.641241i | −0.183901 | − | 0.183901i | −3.04161 | − | 3.59203i | ||
19.1 | −1.48843 | + | 1.48843i | −0.690961 | − | 1.66813i | − | 2.43082i | 1.70647 | − | 1.44498i | 3.51133 | + | 1.45444i | 2.47912 | + | 1.02689i | 0.641241 | + | 0.641241i | −0.183901 | + | 0.183901i | −0.389210 | + | 4.69069i | |
19.2 | −0.672981 | + | 0.672981i | 0.947078 | + | 2.28645i | 1.09419i | −0.973741 | − | 2.01292i | −2.17610 | − | 0.901371i | −0.492777 | − | 0.204115i | −2.08233 | − | 2.08233i | −2.20957 | + | 2.20957i | 2.00996 | + | 0.699345i | ||
19.3 | −0.352960 | + | 0.352960i | −0.0655465 | − | 0.158243i | 1.75084i | −1.40760 | + | 1.73743i | 0.0789888 | + | 0.0327182i | 3.57820 | + | 1.48214i | −1.32390 | − | 1.32390i | 2.10058 | − | 2.10058i | −0.116419 | − | 1.11007i | ||
19.4 | 0.352960 | − | 0.352960i | 0.0655465 | + | 0.158243i | 1.75084i | 2.22387 | + | 0.233230i | 0.0789888 | + | 0.0327182i | −3.57820 | − | 1.48214i | 1.32390 | + | 1.32390i | 2.10058 | − | 2.10058i | 0.867258 | − | 0.702616i | ||
19.5 | 0.672981 | − | 0.672981i | −0.947078 | − | 2.28645i | 1.09419i | −0.734807 | − | 2.11188i | −2.17610 | − | 0.901371i | 0.492777 | + | 0.204115i | 2.08233 | + | 2.08233i | −2.20957 | + | 2.20957i | −1.91577 | − | 0.926747i | ||
19.6 | 1.48843 | − | 1.48843i | 0.690961 | + | 1.66813i | − | 2.43082i | −2.22841 | + | 0.184902i | 3.51133 | + | 1.45444i | −2.47912 | − | 1.02689i | −0.641241 | − | 0.641241i | −0.183901 | + | 0.183901i | −3.04161 | + | 3.59203i | |
49.1 | −1.63043 | + | 1.63043i | 1.73474 | − | 0.718554i | − | 3.31660i | 2.22935 | + | 0.173214i | −1.65683 | + | 3.99993i | 0.591528 | − | 1.42808i | 2.14663 | + | 2.14663i | 0.371694 | − | 0.371694i | −3.91721 | + | 3.35238i | |
49.2 | −1.23200 | + | 1.23200i | −0.553124 | + | 0.229112i | − | 1.03565i | −1.73956 | + | 1.40496i | 0.399184 | − | 0.963715i | −0.397218 | + | 0.958968i | −1.18808 | − | 1.18808i | −1.86787 | + | 1.86787i | 0.412231 | − | 3.87406i | |
49.3 | −0.176012 | + | 0.176012i | 1.51856 | − | 0.629010i | 1.93804i | 0.0665446 | − | 2.23508i | −0.156572 | + | 0.377999i | −0.547653 | + | 1.32215i | −0.693142 | − | 0.693142i | −0.210935 | + | 0.210935i | 0.381688 | + | 0.405113i | ||
49.4 | 0.176012 | − | 0.176012i | −1.51856 | + | 0.629010i | 1.93804i | 1.62749 | + | 1.53338i | −0.156572 | + | 0.377999i | 0.547653 | − | 1.32215i | 0.693142 | + | 0.693142i | −0.210935 | + | 0.210935i | 0.556352 | − | 0.0165642i | ||
49.5 | 1.23200 | − | 1.23200i | 0.553124 | − | 0.229112i | − | 1.03565i | −2.22352 | + | 0.236600i | 0.399184 | − | 0.963715i | 0.397218 | − | 0.958968i | 1.18808 | + | 1.18808i | −1.86787 | + | 1.86787i | −2.44788 | + | 3.03086i | |
49.6 | 1.63043 | − | 1.63043i | −1.73474 | + | 0.718554i | − | 3.31660i | 1.45391 | − | 1.69887i | −1.65683 | + | 3.99993i | −0.591528 | + | 1.42808i | −2.14663 | − | 2.14663i | 0.371694 | − | 0.371694i | −0.399393 | − | 5.14038i | |
59.1 | −1.63043 | − | 1.63043i | 1.73474 | + | 0.718554i | 3.31660i | 2.22935 | − | 0.173214i | −1.65683 | − | 3.99993i | 0.591528 | + | 1.42808i | 2.14663 | − | 2.14663i | 0.371694 | + | 0.371694i | −3.91721 | − | 3.35238i | ||
59.2 | −1.23200 | − | 1.23200i | −0.553124 | − | 0.229112i | 1.03565i | −1.73956 | − | 1.40496i | 0.399184 | + | 0.963715i | −0.397218 | − | 0.958968i | −1.18808 | + | 1.18808i | −1.86787 | − | 1.86787i | 0.412231 | + | 3.87406i | ||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
17.d | even | 8 | 1 | inner |
85.m | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 85.2.m.a | ✓ | 24 |
3.b | odd | 2 | 1 | 765.2.bh.b | 24 | ||
5.b | even | 2 | 1 | inner | 85.2.m.a | ✓ | 24 |
5.c | odd | 4 | 2 | 425.2.m.e | 24 | ||
15.d | odd | 2 | 1 | 765.2.bh.b | 24 | ||
17.d | even | 8 | 1 | inner | 85.2.m.a | ✓ | 24 |
17.e | odd | 16 | 2 | 1445.2.b.i | 24 | ||
51.g | odd | 8 | 1 | 765.2.bh.b | 24 | ||
85.k | odd | 8 | 1 | 425.2.m.e | 24 | ||
85.m | even | 8 | 1 | inner | 85.2.m.a | ✓ | 24 |
85.n | odd | 8 | 1 | 425.2.m.e | 24 | ||
85.o | even | 16 | 2 | 7225.2.a.by | 24 | ||
85.p | odd | 16 | 2 | 1445.2.b.i | 24 | ||
85.r | even | 16 | 2 | 7225.2.a.by | 24 | ||
255.y | odd | 8 | 1 | 765.2.bh.b | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
85.2.m.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
85.2.m.a | ✓ | 24 | 5.b | even | 2 | 1 | inner |
85.2.m.a | ✓ | 24 | 17.d | even | 8 | 1 | inner |
85.2.m.a | ✓ | 24 | 85.m | even | 8 | 1 | inner |
425.2.m.e | 24 | 5.c | odd | 4 | 2 | ||
425.2.m.e | 24 | 85.k | odd | 8 | 1 | ||
425.2.m.e | 24 | 85.n | odd | 8 | 1 | ||
765.2.bh.b | 24 | 3.b | odd | 2 | 1 | ||
765.2.bh.b | 24 | 15.d | odd | 2 | 1 | ||
765.2.bh.b | 24 | 51.g | odd | 8 | 1 | ||
765.2.bh.b | 24 | 255.y | odd | 8 | 1 | ||
1445.2.b.i | 24 | 17.e | odd | 16 | 2 | ||
1445.2.b.i | 24 | 85.p | odd | 16 | 2 | ||
7225.2.a.by | 24 | 85.o | even | 16 | 2 | ||
7225.2.a.by | 24 | 85.r | even | 16 | 2 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(85, [\chi])\).