Properties

Label 85.2.m.a
Level $85$
Weight $2$
Character orbit 85.m
Analytic conductor $0.679$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,2,Mod(9,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.m (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 24 q - 8 q^{9} - 16 q^{10} - 24 q^{14} - 16 q^{15} + 8 q^{16} - 24 q^{19} - 8 q^{20} + 32 q^{24} + 16 q^{25} - 16 q^{26} + 24 q^{29} - 24 q^{31} + 8 q^{34} + 8 q^{35} + 8 q^{36} - 24 q^{39} + 16 q^{40} - 48 q^{41} + 72 q^{44} + 48 q^{45} - 16 q^{46} + 48 q^{49} + 16 q^{50} + 32 q^{54} + 24 q^{56} - 48 q^{59} + 8 q^{60} + 16 q^{61} + 24 q^{65} - 96 q^{66} + 32 q^{69} + 32 q^{70} + 16 q^{71} - 64 q^{74} - 24 q^{76} - 72 q^{79} - 64 q^{80} - 96 q^{84} - 24 q^{85} - 8 q^{91} - 40 q^{94} - 88 q^{95} + 96 q^{96} - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
9.1 −1.48843 1.48843i −0.690961 + 1.66813i 2.43082i 1.70647 + 1.44498i 3.51133 1.45444i 2.47912 1.02689i 0.641241 0.641241i −0.183901 0.183901i −0.389210 4.69069i
9.2 −0.672981 0.672981i 0.947078 2.28645i 1.09419i −0.973741 + 2.01292i −2.17610 + 0.901371i −0.492777 + 0.204115i −2.08233 + 2.08233i −2.20957 2.20957i 2.00996 0.699345i
9.3 −0.352960 0.352960i −0.0655465 + 0.158243i 1.75084i −1.40760 1.73743i 0.0789888 0.0327182i 3.57820 1.48214i −1.32390 + 1.32390i 2.10058 + 2.10058i −0.116419 + 1.11007i
9.4 0.352960 + 0.352960i 0.0655465 0.158243i 1.75084i 2.22387 0.233230i 0.0789888 0.0327182i −3.57820 + 1.48214i 1.32390 1.32390i 2.10058 + 2.10058i 0.867258 + 0.702616i
9.5 0.672981 + 0.672981i −0.947078 + 2.28645i 1.09419i −0.734807 + 2.11188i −2.17610 + 0.901371i 0.492777 0.204115i 2.08233 2.08233i −2.20957 2.20957i −1.91577 + 0.926747i
9.6 1.48843 + 1.48843i 0.690961 1.66813i 2.43082i −2.22841 0.184902i 3.51133 1.45444i −2.47912 + 1.02689i −0.641241 + 0.641241i −0.183901 0.183901i −3.04161 3.59203i
19.1 −1.48843 + 1.48843i −0.690961 1.66813i 2.43082i 1.70647 1.44498i 3.51133 + 1.45444i 2.47912 + 1.02689i 0.641241 + 0.641241i −0.183901 + 0.183901i −0.389210 + 4.69069i
19.2 −0.672981 + 0.672981i 0.947078 + 2.28645i 1.09419i −0.973741 2.01292i −2.17610 0.901371i −0.492777 0.204115i −2.08233 2.08233i −2.20957 + 2.20957i 2.00996 + 0.699345i
19.3 −0.352960 + 0.352960i −0.0655465 0.158243i 1.75084i −1.40760 + 1.73743i 0.0789888 + 0.0327182i 3.57820 + 1.48214i −1.32390 1.32390i 2.10058 2.10058i −0.116419 1.11007i
19.4 0.352960 0.352960i 0.0655465 + 0.158243i 1.75084i 2.22387 + 0.233230i 0.0789888 + 0.0327182i −3.57820 1.48214i 1.32390 + 1.32390i 2.10058 2.10058i 0.867258 0.702616i
19.5 0.672981 0.672981i −0.947078 2.28645i 1.09419i −0.734807 2.11188i −2.17610 0.901371i 0.492777 + 0.204115i 2.08233 + 2.08233i −2.20957 + 2.20957i −1.91577 0.926747i
19.6 1.48843 1.48843i 0.690961 + 1.66813i 2.43082i −2.22841 + 0.184902i 3.51133 + 1.45444i −2.47912 1.02689i −0.641241 0.641241i −0.183901 + 0.183901i −3.04161 + 3.59203i
49.1 −1.63043 + 1.63043i 1.73474 0.718554i 3.31660i 2.22935 + 0.173214i −1.65683 + 3.99993i 0.591528 1.42808i 2.14663 + 2.14663i 0.371694 0.371694i −3.91721 + 3.35238i
49.2 −1.23200 + 1.23200i −0.553124 + 0.229112i 1.03565i −1.73956 + 1.40496i 0.399184 0.963715i −0.397218 + 0.958968i −1.18808 1.18808i −1.86787 + 1.86787i 0.412231 3.87406i
49.3 −0.176012 + 0.176012i 1.51856 0.629010i 1.93804i 0.0665446 2.23508i −0.156572 + 0.377999i −0.547653 + 1.32215i −0.693142 0.693142i −0.210935 + 0.210935i 0.381688 + 0.405113i
49.4 0.176012 0.176012i −1.51856 + 0.629010i 1.93804i 1.62749 + 1.53338i −0.156572 + 0.377999i 0.547653 1.32215i 0.693142 + 0.693142i −0.210935 + 0.210935i 0.556352 0.0165642i
49.5 1.23200 1.23200i 0.553124 0.229112i 1.03565i −2.22352 + 0.236600i 0.399184 0.963715i 0.397218 0.958968i 1.18808 + 1.18808i −1.86787 + 1.86787i −2.44788 + 3.03086i
49.6 1.63043 1.63043i −1.73474 + 0.718554i 3.31660i 1.45391 1.69887i −1.65683 + 3.99993i −0.591528 + 1.42808i −2.14663 2.14663i 0.371694 0.371694i −0.399393 5.14038i
59.1 −1.63043 1.63043i 1.73474 + 0.718554i 3.31660i 2.22935 0.173214i −1.65683 3.99993i 0.591528 + 1.42808i 2.14663 2.14663i 0.371694 + 0.371694i −3.91721 3.35238i
59.2 −1.23200 1.23200i −0.553124 0.229112i 1.03565i −1.73956 1.40496i 0.399184 + 0.963715i −0.397218 0.958968i −1.18808 + 1.18808i −1.86787 1.86787i 0.412231 + 3.87406i
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 9.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
17.d even 8 1 inner
85.m even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 85.2.m.a 24
3.b odd 2 1 765.2.bh.b 24
5.b even 2 1 inner 85.2.m.a 24
5.c odd 4 2 425.2.m.e 24
15.d odd 2 1 765.2.bh.b 24
17.d even 8 1 inner 85.2.m.a 24
17.e odd 16 2 1445.2.b.i 24
51.g odd 8 1 765.2.bh.b 24
85.k odd 8 1 425.2.m.e 24
85.m even 8 1 inner 85.2.m.a 24
85.n odd 8 1 425.2.m.e 24
85.o even 16 2 7225.2.a.by 24
85.p odd 16 2 1445.2.b.i 24
85.r even 16 2 7225.2.a.by 24
255.y odd 8 1 765.2.bh.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.2.m.a 24 1.a even 1 1 trivial
85.2.m.a 24 5.b even 2 1 inner
85.2.m.a 24 17.d even 8 1 inner
85.2.m.a 24 85.m even 8 1 inner
425.2.m.e 24 5.c odd 4 2
425.2.m.e 24 85.k odd 8 1
425.2.m.e 24 85.n odd 8 1
765.2.bh.b 24 3.b odd 2 1
765.2.bh.b 24 15.d odd 2 1
765.2.bh.b 24 51.g odd 8 1
765.2.bh.b 24 255.y odd 8 1
1445.2.b.i 24 17.e odd 16 2
1445.2.b.i 24 85.p odd 16 2
7225.2.a.by 24 85.o even 16 2
7225.2.a.by 24 85.r even 16 2

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(85, [\chi])\).