Properties

Label 85.2.l.a.66.3
Level $85$
Weight $2$
Character 85.66
Analytic conductor $0.679$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,2,Mod(26,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.l (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 66.3
Character \(\chi\) \(=\) 85.66
Dual form 85.2.l.a.76.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.254738 - 0.254738i) q^{2} +(0.0207557 + 0.0501087i) q^{3} -1.87022i q^{4} +(0.923880 - 0.382683i) q^{5} +(0.00747733 - 0.0180519i) q^{6} +(0.275980 + 0.114315i) q^{7} +(-0.985893 + 0.985893i) q^{8} +(2.11924 - 2.11924i) q^{9} +(-0.332832 - 0.137863i) q^{10} +(-1.05900 + 2.55665i) q^{11} +(0.0937141 - 0.0388177i) q^{12} +1.97956i q^{13} +(-0.0411823 - 0.0994229i) q^{14} +(0.0383515 + 0.0383515i) q^{15} -3.23814 q^{16} +(-1.21202 + 3.94094i) q^{17} -1.07970 q^{18} +(-1.99331 - 1.99331i) q^{19} +(-0.715701 - 1.72785i) q^{20} +0.0162017i q^{21} +(0.921046 - 0.381510i) q^{22} +(-2.57919 + 6.22672i) q^{23} +(-0.0698647 - 0.0289389i) q^{24} +(0.707107 - 0.707107i) q^{25} +(0.504269 - 0.504269i) q^{26} +(0.300505 + 0.124473i) q^{27} +(0.213793 - 0.516142i) q^{28} +(4.36632 - 1.80859i) q^{29} -0.0195392i q^{30} +(1.15808 + 2.79584i) q^{31} +(2.79667 + 2.79667i) q^{32} -0.150091 q^{33} +(1.31266 - 0.695159i) q^{34} +0.298718 q^{35} +(-3.96344 - 3.96344i) q^{36} +(-3.60537 - 8.70414i) q^{37} +1.01554i q^{38} +(-0.0991930 + 0.0410871i) q^{39} +(-0.533561 + 1.28813i) q^{40} +(2.87301 + 1.19004i) q^{41} +(0.00412718 - 0.00412718i) q^{42} +(5.78771 - 5.78771i) q^{43} +(4.78150 + 1.98056i) q^{44} +(1.14692 - 2.76892i) q^{45} +(2.24320 - 0.929166i) q^{46} -1.08341i q^{47} +(-0.0672100 - 0.162259i) q^{48} +(-4.88665 - 4.88665i) q^{49} -0.360254 q^{50} +(-0.222632 + 0.0210640i) q^{51} +3.70220 q^{52} +(-1.89858 - 1.89858i) q^{53} +(-0.0448420 - 0.108258i) q^{54} +2.76730i q^{55} +(-0.384788 + 0.159384i) q^{56} +(0.0585096 - 0.141255i) q^{57} +(-1.57299 - 0.651553i) q^{58} +(-6.47310 + 6.47310i) q^{59} +(0.0717257 - 0.0717257i) q^{60} +(10.3418 + 4.28372i) q^{61} +(0.417202 - 1.00722i) q^{62} +(0.827127 - 0.342607i) q^{63} +5.05145i q^{64} +(0.757544 + 1.82887i) q^{65} +(0.0382339 + 0.0382339i) q^{66} -12.5585 q^{67} +(7.37041 + 2.26675i) q^{68} -0.365546 q^{69} +(-0.0760950 - 0.0760950i) q^{70} +(-2.25315 - 5.43960i) q^{71} +4.17869i q^{72} +(-0.200173 + 0.0829144i) q^{73} +(-1.29885 + 3.13570i) q^{74} +(0.0501087 + 0.0207557i) q^{75} +(-3.72792 + 3.72792i) q^{76} +(-0.584525 + 0.584525i) q^{77} +(0.0357347 + 0.0148018i) q^{78} +(-4.07771 + 9.84447i) q^{79} +(-2.99165 + 1.23918i) q^{80} -8.97353i q^{81} +(-0.428717 - 1.03501i) q^{82} +(-11.0129 - 11.0129i) q^{83} +0.0303006 q^{84} +(0.388367 + 4.10477i) q^{85} -2.94870 q^{86} +(0.181252 + 0.181252i) q^{87} +(-1.47653 - 3.56465i) q^{88} +1.55264i q^{89} +(-0.997516 + 0.413185i) q^{90} +(-0.226292 + 0.546318i) q^{91} +(11.6453 + 4.82365i) q^{92} +(-0.116059 + 0.116059i) q^{93} +(-0.275986 + 0.275986i) q^{94} +(-2.60438 - 1.07877i) q^{95} +(-0.0820905 + 0.198184i) q^{96} +(8.28752 - 3.43280i) q^{97} +2.48963i q^{98} +(3.17389 + 7.66244i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{6} - 24 q^{9} - 8 q^{11} + 24 q^{12} - 8 q^{15} - 24 q^{16} - 8 q^{17} + 8 q^{18} - 8 q^{19} - 32 q^{22} - 16 q^{23} - 8 q^{24} + 16 q^{26} + 24 q^{27} + 48 q^{28} - 8 q^{29} + 16 q^{34} - 32 q^{35}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/85\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.254738 0.254738i −0.180127 0.180127i 0.611284 0.791411i \(-0.290653\pi\)
−0.791411 + 0.611284i \(0.790653\pi\)
\(3\) 0.0207557 + 0.0501087i 0.0119833 + 0.0289303i 0.929758 0.368171i \(-0.120016\pi\)
−0.917775 + 0.397102i \(0.870016\pi\)
\(4\) 1.87022i 0.935108i
\(5\) 0.923880 0.382683i 0.413171 0.171141i
\(6\) 0.00747733 0.0180519i 0.00305261 0.00736965i
\(7\) 0.275980 + 0.114315i 0.104310 + 0.0432068i 0.434228 0.900803i \(-0.357021\pi\)
−0.329918 + 0.944010i \(0.607021\pi\)
\(8\) −0.985893 + 0.985893i −0.348566 + 0.348566i
\(9\) 2.11924 2.11924i 0.706413 0.706413i
\(10\) −0.332832 0.137863i −0.105251 0.0435962i
\(11\) −1.05900 + 2.55665i −0.319301 + 0.770860i 0.679991 + 0.733221i \(0.261984\pi\)
−0.999291 + 0.0376394i \(0.988016\pi\)
\(12\) 0.0937141 0.0388177i 0.0270529 0.0112057i
\(13\) 1.97956i 0.549030i 0.961583 + 0.274515i \(0.0885174\pi\)
−0.961583 + 0.274515i \(0.911483\pi\)
\(14\) −0.0411823 0.0994229i −0.0110064 0.0265719i
\(15\) 0.0383515 + 0.0383515i 0.00990232 + 0.00990232i
\(16\) −3.23814 −0.809536
\(17\) −1.21202 + 3.94094i −0.293959 + 0.955818i
\(18\) −1.07970 −0.254489
\(19\) −1.99331 1.99331i −0.457296 0.457296i 0.440471 0.897767i \(-0.354812\pi\)
−0.897767 + 0.440471i \(0.854812\pi\)
\(20\) −0.715701 1.72785i −0.160036 0.386360i
\(21\) 0.0162017i 0.00353549i
\(22\) 0.921046 0.381510i 0.196368 0.0813382i
\(23\) −2.57919 + 6.22672i −0.537799 + 1.29836i 0.388457 + 0.921467i \(0.373008\pi\)
−0.926256 + 0.376895i \(0.876992\pi\)
\(24\) −0.0698647 0.0289389i −0.0142611 0.00590713i
\(25\) 0.707107 0.707107i 0.141421 0.141421i
\(26\) 0.504269 0.504269i 0.0988953 0.0988953i
\(27\) 0.300505 + 0.124473i 0.0578322 + 0.0239549i
\(28\) 0.213793 0.516142i 0.0404031 0.0975416i
\(29\) 4.36632 1.80859i 0.810806 0.335847i 0.0615305 0.998105i \(-0.480402\pi\)
0.749276 + 0.662258i \(0.230402\pi\)
\(30\) 0.0195392i 0.00356736i
\(31\) 1.15808 + 2.79584i 0.207997 + 0.502148i 0.993108 0.117207i \(-0.0373941\pi\)
−0.785111 + 0.619355i \(0.787394\pi\)
\(32\) 2.79667 + 2.79667i 0.494385 + 0.494385i
\(33\) −0.150091 −0.0261275
\(34\) 1.31266 0.695159i 0.225119 0.119219i
\(35\) 0.298718 0.0504926
\(36\) −3.96344 3.96344i −0.660573 0.660573i
\(37\) −3.60537 8.70414i −0.592719 1.43095i −0.880866 0.473365i \(-0.843039\pi\)
0.288147 0.957586i \(-0.406961\pi\)
\(38\) 1.01554i 0.164743i
\(39\) −0.0991930 + 0.0410871i −0.0158836 + 0.00657920i
\(40\) −0.533561 + 1.28813i −0.0843635 + 0.203671i
\(41\) 2.87301 + 1.19004i 0.448688 + 0.185853i 0.595574 0.803301i \(-0.296925\pi\)
−0.146885 + 0.989154i \(0.546925\pi\)
\(42\) 0.00412718 0.00412718i 0.000636838 0.000636838i
\(43\) 5.78771 5.78771i 0.882617 0.882617i −0.111183 0.993800i \(-0.535464\pi\)
0.993800 + 0.111183i \(0.0354638\pi\)
\(44\) 4.78150 + 1.98056i 0.720838 + 0.298581i
\(45\) 1.14692 2.76892i 0.170973 0.412766i
\(46\) 2.24320 0.929166i 0.330742 0.136998i
\(47\) 1.08341i 0.158032i −0.996873 0.0790159i \(-0.974822\pi\)
0.996873 0.0790159i \(-0.0251778\pi\)
\(48\) −0.0672100 0.162259i −0.00970092 0.0234201i
\(49\) −4.88665 4.88665i −0.698093 0.698093i
\(50\) −0.360254 −0.0509477
\(51\) −0.222632 + 0.0210640i −0.0311747 + 0.00294954i
\(52\) 3.70220 0.513403
\(53\) −1.89858 1.89858i −0.260790 0.260790i 0.564585 0.825375i \(-0.309036\pi\)
−0.825375 + 0.564585i \(0.809036\pi\)
\(54\) −0.0448420 0.108258i −0.00610222 0.0147321i
\(55\) 2.76730i 0.373143i
\(56\) −0.384788 + 0.159384i −0.0514195 + 0.0212986i
\(57\) 0.0585096 0.141255i 0.00774979 0.0187096i
\(58\) −1.57299 0.651553i −0.206543 0.0855531i
\(59\) −6.47310 + 6.47310i −0.842726 + 0.842726i −0.989213 0.146487i \(-0.953203\pi\)
0.146487 + 0.989213i \(0.453203\pi\)
\(60\) 0.0717257 0.0717257i 0.00925975 0.00925975i
\(61\) 10.3418 + 4.28372i 1.32413 + 0.548474i 0.928976 0.370139i \(-0.120690\pi\)
0.395158 + 0.918613i \(0.370690\pi\)
\(62\) 0.417202 1.00722i 0.0529847 0.127916i
\(63\) 0.827127 0.342607i 0.104208 0.0431645i
\(64\) 5.05145i 0.631432i
\(65\) 0.757544 + 1.82887i 0.0939617 + 0.226844i
\(66\) 0.0382339 + 0.0382339i 0.00470627 + 0.00470627i
\(67\) −12.5585 −1.53427 −0.767133 0.641488i \(-0.778317\pi\)
−0.767133 + 0.641488i \(0.778317\pi\)
\(68\) 7.37041 + 2.26675i 0.893793 + 0.274884i
\(69\) −0.365546 −0.0440066
\(70\) −0.0760950 0.0760950i −0.00909509 0.00909509i
\(71\) −2.25315 5.43960i −0.267400 0.645561i 0.731959 0.681348i \(-0.238606\pi\)
−0.999359 + 0.0357872i \(0.988606\pi\)
\(72\) 4.17869i 0.492463i
\(73\) −0.200173 + 0.0829144i −0.0234285 + 0.00970440i −0.394367 0.918953i \(-0.629036\pi\)
0.370938 + 0.928657i \(0.379036\pi\)
\(74\) −1.29885 + 3.13570i −0.150988 + 0.364518i
\(75\) 0.0501087 + 0.0207557i 0.00578605 + 0.00239666i
\(76\) −3.72792 + 3.72792i −0.427622 + 0.427622i
\(77\) −0.584525 + 0.584525i −0.0666128 + 0.0666128i
\(78\) 0.0357347 + 0.0148018i 0.00404616 + 0.00167598i
\(79\) −4.07771 + 9.84447i −0.458779 + 1.10759i 0.510114 + 0.860107i \(0.329603\pi\)
−0.968892 + 0.247482i \(0.920397\pi\)
\(80\) −2.99165 + 1.23918i −0.334477 + 0.138545i
\(81\) 8.97353i 0.997059i
\(82\) −0.428717 1.03501i −0.0473438 0.114298i
\(83\) −11.0129 11.0129i −1.20883 1.20883i −0.971407 0.237421i \(-0.923698\pi\)
−0.237421 0.971407i \(-0.576302\pi\)
\(84\) 0.0303006 0.00330607
\(85\) 0.388367 + 4.10477i 0.0421243 + 0.445225i
\(86\) −2.94870 −0.317967
\(87\) 0.181252 + 0.181252i 0.0194323 + 0.0194323i
\(88\) −1.47653 3.56465i −0.157398 0.379993i
\(89\) 1.55264i 0.164579i 0.996608 + 0.0822897i \(0.0262233\pi\)
−0.996608 + 0.0822897i \(0.973777\pi\)
\(90\) −0.997516 + 0.413185i −0.105147 + 0.0435535i
\(91\) −0.226292 + 0.546318i −0.0237219 + 0.0572696i
\(92\) 11.6453 + 4.82365i 1.21411 + 0.502900i
\(93\) −0.116059 + 0.116059i −0.0120348 + 0.0120348i
\(94\) −0.275986 + 0.275986i −0.0284658 + 0.0284658i
\(95\) −2.60438 1.07877i −0.267204 0.110680i
\(96\) −0.0820905 + 0.198184i −0.00837833 + 0.0202271i
\(97\) 8.28752 3.43280i 0.841471 0.348549i 0.0800373 0.996792i \(-0.474496\pi\)
0.761433 + 0.648243i \(0.224496\pi\)
\(98\) 2.48963i 0.251491i
\(99\) 3.17389 + 7.66244i 0.318988 + 0.770104i
\(100\) −1.32244 1.32244i −0.132244 0.132244i
\(101\) −6.92132 −0.688697 −0.344349 0.938842i \(-0.611900\pi\)
−0.344349 + 0.938842i \(0.611900\pi\)
\(102\) 0.0620786 + 0.0513470i 0.00614670 + 0.00508412i
\(103\) 12.9642 1.27740 0.638699 0.769457i \(-0.279473\pi\)
0.638699 + 0.769457i \(0.279473\pi\)
\(104\) −1.95163 1.95163i −0.191373 0.191373i
\(105\) 0.00620011 + 0.0149684i 0.000605068 + 0.00146076i
\(106\) 0.967283i 0.0939508i
\(107\) −3.34779 + 1.38670i −0.323643 + 0.134058i −0.538589 0.842568i \(-0.681043\pi\)
0.214946 + 0.976626i \(0.431043\pi\)
\(108\) 0.232792 0.562009i 0.0224004 0.0540793i
\(109\) −4.75832 1.97096i −0.455764 0.188784i 0.142977 0.989726i \(-0.454332\pi\)
−0.598742 + 0.800942i \(0.704332\pi\)
\(110\) 0.704938 0.704938i 0.0672132 0.0672132i
\(111\) 0.361321 0.361321i 0.0342951 0.0342951i
\(112\) −0.893662 0.370167i −0.0844431 0.0349775i
\(113\) 4.21202 10.1687i 0.396234 0.956593i −0.592317 0.805705i \(-0.701787\pi\)
0.988551 0.150888i \(-0.0482133\pi\)
\(114\) −0.0508876 + 0.0210783i −0.00476606 + 0.00197417i
\(115\) 6.73975i 0.628485i
\(116\) −3.38246 8.16597i −0.314053 0.758192i
\(117\) 4.19516 + 4.19516i 0.387842 + 0.387842i
\(118\) 3.29789 0.303596
\(119\) −0.785001 + 0.949067i −0.0719609 + 0.0870008i
\(120\) −0.0756210 −0.00690322
\(121\) 2.36318 + 2.36318i 0.214834 + 0.214834i
\(122\) −1.54323 3.72569i −0.139717 0.337308i
\(123\) 0.168663i 0.0152078i
\(124\) 5.22883 2.16585i 0.469563 0.194499i
\(125\) 0.382683 0.923880i 0.0342282 0.0826343i
\(126\) −0.297976 0.123426i −0.0265458 0.0109956i
\(127\) 5.18472 5.18472i 0.460070 0.460070i −0.438608 0.898678i \(-0.644528\pi\)
0.898678 + 0.438608i \(0.144528\pi\)
\(128\) 6.88013 6.88013i 0.608123 0.608123i
\(129\) 0.410143 + 0.169887i 0.0361110 + 0.0149577i
\(130\) 0.272909 0.658860i 0.0239357 0.0577858i
\(131\) 16.0035 6.62885i 1.39823 0.579166i 0.448938 0.893563i \(-0.351802\pi\)
0.949291 + 0.314397i \(0.101802\pi\)
\(132\) 0.280703i 0.0244320i
\(133\) −0.322249 0.777977i −0.0279425 0.0674592i
\(134\) 3.19913 + 3.19913i 0.276363 + 0.276363i
\(135\) 0.325264 0.0279943
\(136\) −2.69042 5.08027i −0.230701 0.435629i
\(137\) −13.9745 −1.19392 −0.596959 0.802272i \(-0.703625\pi\)
−0.596959 + 0.802272i \(0.703625\pi\)
\(138\) 0.0931186 + 0.0931186i 0.00792678 + 0.00792678i
\(139\) −1.38555 3.34501i −0.117521 0.283720i 0.854163 0.520005i \(-0.174070\pi\)
−0.971684 + 0.236285i \(0.924070\pi\)
\(140\) 0.558668i 0.0472160i
\(141\) 0.0542883 0.0224870i 0.00457190 0.00189374i
\(142\) −0.811709 + 1.95964i −0.0681171 + 0.164449i
\(143\) −5.06104 2.09635i −0.423226 0.175306i
\(144\) −6.86241 + 6.86241i −0.571867 + 0.571867i
\(145\) 3.34184 3.34184i 0.277525 0.277525i
\(146\) 0.0721133 + 0.0298703i 0.00596814 + 0.00247208i
\(147\) 0.143438 0.346290i 0.0118306 0.0285615i
\(148\) −16.2786 + 6.74283i −1.33809 + 0.554257i
\(149\) 12.8580i 1.05336i −0.850062 0.526682i \(-0.823436\pi\)
0.850062 0.526682i \(-0.176564\pi\)
\(150\) −0.00747733 0.0180519i −0.000610522 0.00147393i
\(151\) 13.5511 + 13.5511i 1.10277 + 1.10277i 0.994075 + 0.108700i \(0.0346687\pi\)
0.108700 + 0.994075i \(0.465331\pi\)
\(152\) 3.93038 0.318796
\(153\) 5.78322 + 10.9204i 0.467546 + 0.882859i
\(154\) 0.297802 0.0239976
\(155\) 2.13985 + 2.13985i 0.171877 + 0.171877i
\(156\) 0.0768418 + 0.185512i 0.00615227 + 0.0148529i
\(157\) 2.70222i 0.215661i −0.994169 0.107830i \(-0.965610\pi\)
0.994169 0.107830i \(-0.0343903\pi\)
\(158\) 3.54651 1.46901i 0.282146 0.116868i
\(159\) 0.0557290 0.134542i 0.00441960 0.0106699i
\(160\) 3.65402 + 1.51354i 0.288876 + 0.119656i
\(161\) −1.42361 + 1.42361i −0.112196 + 0.112196i
\(162\) −2.28590 + 2.28590i −0.179598 + 0.179598i
\(163\) −15.8036 6.54609i −1.23784 0.512729i −0.334799 0.942290i \(-0.608668\pi\)
−0.903038 + 0.429561i \(0.858668\pi\)
\(164\) 2.22563 5.37315i 0.173792 0.419572i
\(165\) −0.138666 + 0.0574373i −0.0107951 + 0.00447149i
\(166\) 5.61084i 0.435486i
\(167\) 3.38773 + 8.17871i 0.262151 + 0.632887i 0.999071 0.0430919i \(-0.0137208\pi\)
−0.736921 + 0.675979i \(0.763721\pi\)
\(168\) −0.0159731 0.0159731i −0.00123235 0.00123235i
\(169\) 9.08135 0.698566
\(170\) 0.946712 1.14458i 0.0726095 0.0877849i
\(171\) −8.44860 −0.646081
\(172\) −10.8243 10.8243i −0.825343 0.825343i
\(173\) 7.34175 + 17.7246i 0.558183 + 1.34757i 0.911203 + 0.411957i \(0.135155\pi\)
−0.353020 + 0.935616i \(0.614845\pi\)
\(174\) 0.0923438i 0.00700057i
\(175\) 0.275980 0.114315i 0.0208621 0.00864136i
\(176\) 3.42920 8.27881i 0.258485 0.624039i
\(177\) −0.458712 0.190005i −0.0344789 0.0142816i
\(178\) 0.395517 0.395517i 0.0296452 0.0296452i
\(179\) −3.06554 + 3.06554i −0.229129 + 0.229129i −0.812329 0.583200i \(-0.801801\pi\)
0.583200 + 0.812329i \(0.301801\pi\)
\(180\) −5.17848 2.14500i −0.385981 0.159879i
\(181\) −9.09958 + 21.9683i −0.676366 + 1.63289i 0.0942155 + 0.995552i \(0.469966\pi\)
−0.770582 + 0.637341i \(0.780034\pi\)
\(182\) 0.196813 0.0815228i 0.0145888 0.00604287i
\(183\) 0.607127i 0.0448801i
\(184\) −3.59607 8.68169i −0.265106 0.640022i
\(185\) −6.66186 6.66186i −0.489790 0.489790i
\(186\) 0.0591296 0.00433559
\(187\) −8.79208 7.27219i −0.642941 0.531795i
\(188\) −2.02621 −0.147777
\(189\) 0.0687041 + 0.0687041i 0.00499749 + 0.00499749i
\(190\) 0.388632 + 0.938241i 0.0281943 + 0.0680672i
\(191\) 7.27055i 0.526079i −0.964785 0.263039i \(-0.915275\pi\)
0.964785 0.263039i \(-0.0847249\pi\)
\(192\) −0.253122 + 0.104846i −0.0182675 + 0.00756664i
\(193\) −8.49528 + 20.5094i −0.611504 + 1.47630i 0.249845 + 0.968286i \(0.419620\pi\)
−0.861348 + 0.508015i \(0.830380\pi\)
\(194\) −2.98562 1.23668i −0.214355 0.0887887i
\(195\) −0.0759191 + 0.0759191i −0.00543668 + 0.00543668i
\(196\) −9.13910 + 9.13910i −0.652793 + 0.652793i
\(197\) 4.14027 + 1.71496i 0.294982 + 0.122186i 0.525267 0.850938i \(-0.323966\pi\)
−0.230284 + 0.973123i \(0.573966\pi\)
\(198\) 1.14341 2.76043i 0.0812584 0.196175i
\(199\) −0.368987 + 0.152839i −0.0261568 + 0.0108345i −0.395723 0.918370i \(-0.629506\pi\)
0.369567 + 0.929204i \(0.379506\pi\)
\(200\) 1.39426i 0.0985893i
\(201\) −0.260661 0.629290i −0.0183856 0.0443867i
\(202\) 1.76313 + 1.76313i 0.124053 + 0.124053i
\(203\) 1.41176 0.0990865
\(204\) 0.0393942 + 0.416370i 0.00275814 + 0.0291517i
\(205\) 3.10972 0.217192
\(206\) −3.30247 3.30247i −0.230094 0.230094i
\(207\) 7.72999 + 18.6618i 0.537271 + 1.29709i
\(208\) 6.41009i 0.444460i
\(209\) 7.20712 2.98529i 0.498527 0.206497i
\(210\) 0.00223362 0.00539243i 0.000154134 0.000372113i
\(211\) −1.80171 0.746294i −0.124035 0.0513770i 0.319803 0.947484i \(-0.396383\pi\)
−0.443838 + 0.896107i \(0.646383\pi\)
\(212\) −3.55076 + 3.55076i −0.243867 + 0.243867i
\(213\) 0.225805 0.225805i 0.0154719 0.0154719i
\(214\) 1.20606 + 0.499566i 0.0824444 + 0.0341496i
\(215\) 3.13229 7.56201i 0.213620 0.515725i
\(216\) −0.418983 + 0.173548i −0.0285082 + 0.0118085i
\(217\) 0.903981i 0.0613662i
\(218\) 0.710047 + 1.71421i 0.0480905 + 0.116101i
\(219\) −0.00830947 0.00830947i −0.000561502 0.000561502i
\(220\) 5.17546 0.348929
\(221\) −7.80131 2.39927i −0.524773 0.161393i
\(222\) −0.184085 −0.0123550
\(223\) 16.7800 + 16.7800i 1.12367 + 1.12367i 0.991184 + 0.132491i \(0.0422974\pi\)
0.132491 + 0.991184i \(0.457703\pi\)
\(224\) 0.452123 + 1.09152i 0.0302088 + 0.0729304i
\(225\) 2.99706i 0.199804i
\(226\) −3.66333 + 1.51740i −0.243681 + 0.100936i
\(227\) 7.86790 18.9948i 0.522211 1.26073i −0.414316 0.910133i \(-0.635979\pi\)
0.936527 0.350595i \(-0.114021\pi\)
\(228\) −0.264177 0.109426i −0.0174955 0.00724689i
\(229\) 18.8066 18.8066i 1.24277 1.24277i 0.283928 0.958846i \(-0.408362\pi\)
0.958846 0.283928i \(-0.0916375\pi\)
\(230\) 1.71687 1.71687i 0.113207 0.113207i
\(231\) −0.0414220 0.0171576i −0.00272537 0.00112889i
\(232\) −2.52165 + 6.08780i −0.165554 + 0.399684i
\(233\) −21.7104 + 8.99275i −1.42230 + 0.589135i −0.955437 0.295196i \(-0.904615\pi\)
−0.466860 + 0.884331i \(0.654615\pi\)
\(234\) 2.13734i 0.139722i
\(235\) −0.414604 1.00094i −0.0270458 0.0652942i
\(236\) 12.1061 + 12.1061i 0.788040 + 0.788040i
\(237\) −0.577929 −0.0375405
\(238\) 0.441734 0.0417939i 0.0286333 0.00270910i
\(239\) 5.25737 0.340071 0.170036 0.985438i \(-0.445612\pi\)
0.170036 + 0.985438i \(0.445612\pi\)
\(240\) −0.124188 0.124188i −0.00801629 0.00801629i
\(241\) 2.08146 + 5.02509i 0.134079 + 0.323694i 0.976632 0.214918i \(-0.0689486\pi\)
−0.842553 + 0.538613i \(0.818949\pi\)
\(242\) 1.20398i 0.0773950i
\(243\) 1.35117 0.559671i 0.0866774 0.0359029i
\(244\) 8.01149 19.3414i 0.512883 1.23821i
\(245\) −6.38472 2.64464i −0.407905 0.168960i
\(246\) 0.0429649 0.0429649i 0.00273934 0.00273934i
\(247\) 3.94587 3.94587i 0.251070 0.251070i
\(248\) −3.89814 1.61466i −0.247532 0.102531i
\(249\) 0.323263 0.780426i 0.0204860 0.0494575i
\(250\) −0.332832 + 0.137863i −0.0210501 + 0.00871925i
\(251\) 26.3864i 1.66550i −0.553652 0.832748i \(-0.686766\pi\)
0.553652 0.832748i \(-0.313234\pi\)
\(252\) −0.640750 1.54691i −0.0403634 0.0974460i
\(253\) −13.1882 13.1882i −0.829135 0.829135i
\(254\) −2.64150 −0.165742
\(255\) −0.197624 + 0.104658i −0.0123757 + 0.00655394i
\(256\) 6.59764 0.412352
\(257\) 13.2589 + 13.2589i 0.827065 + 0.827065i 0.987110 0.160045i \(-0.0511639\pi\)
−0.160045 + 0.987110i \(0.551164\pi\)
\(258\) −0.0612024 0.147756i −0.00381030 0.00919887i
\(259\) 2.81431i 0.174873i
\(260\) 3.42039 1.41677i 0.212123 0.0878644i
\(261\) 5.42045 13.0861i 0.335518 0.810011i
\(262\) −5.76532 2.38807i −0.356183 0.147536i
\(263\) 11.3145 11.3145i 0.697680 0.697680i −0.266230 0.963910i \(-0.585778\pi\)
0.963910 + 0.266230i \(0.0857781\pi\)
\(264\) 0.147974 0.147974i 0.00910714 0.00910714i
\(265\) −2.48062 1.02750i −0.152383 0.0631191i
\(266\) −0.116091 + 0.280270i −0.00711803 + 0.0171844i
\(267\) −0.0778007 + 0.0322261i −0.00476133 + 0.00197221i
\(268\) 23.4871i 1.43470i
\(269\) 0.457836 + 1.10531i 0.0279147 + 0.0673922i 0.937222 0.348733i \(-0.113388\pi\)
−0.909307 + 0.416125i \(0.863388\pi\)
\(270\) −0.0828572 0.0828572i −0.00504253 0.00504253i
\(271\) −0.888590 −0.0539780 −0.0269890 0.999636i \(-0.508592\pi\)
−0.0269890 + 0.999636i \(0.508592\pi\)
\(272\) 3.92471 12.7613i 0.237971 0.773769i
\(273\) −0.0320721 −0.00194109
\(274\) 3.55983 + 3.55983i 0.215057 + 0.215057i
\(275\) 1.05900 + 2.55665i 0.0638602 + 0.154172i
\(276\) 0.683650i 0.0411509i
\(277\) −5.70841 + 2.36450i −0.342985 + 0.142069i −0.547525 0.836789i \(-0.684430\pi\)
0.204540 + 0.978858i \(0.434430\pi\)
\(278\) −0.499150 + 1.20505i −0.0299370 + 0.0722744i
\(279\) 8.37931 + 3.47082i 0.501656 + 0.207793i
\(280\) −0.294504 + 0.294504i −0.0176000 + 0.0176000i
\(281\) −19.7250 + 19.7250i −1.17670 + 1.17670i −0.196117 + 0.980581i \(0.562833\pi\)
−0.980581 + 0.196117i \(0.937167\pi\)
\(282\) −0.0195576 0.00810103i −0.00116464 0.000482409i
\(283\) 11.3703 27.4503i 0.675893 1.63175i −0.0955282 0.995427i \(-0.530454\pi\)
0.771422 0.636324i \(-0.219546\pi\)
\(284\) −10.1732 + 4.21389i −0.603670 + 0.250048i
\(285\) 0.152893i 0.00905660i
\(286\) 0.755221 + 1.82326i 0.0446571 + 0.107812i
\(287\) 0.656853 + 0.656853i 0.0387728 + 0.0387728i
\(288\) 11.8536 0.698481
\(289\) −14.0620 9.55303i −0.827176 0.561943i
\(290\) −1.70259 −0.0999795
\(291\) 0.344027 + 0.344027i 0.0201672 + 0.0201672i
\(292\) 0.155068 + 0.374367i 0.00907466 + 0.0219082i
\(293\) 22.4626i 1.31228i 0.754639 + 0.656140i \(0.227812\pi\)
−0.754639 + 0.656140i \(0.772188\pi\)
\(294\) −0.124752 + 0.0516741i −0.00727571 + 0.00301370i
\(295\) −3.50322 + 8.45751i −0.203965 + 0.492415i
\(296\) 12.1359 + 5.02684i 0.705382 + 0.292179i
\(297\) −0.636470 + 0.636470i −0.0369317 + 0.0369317i
\(298\) −3.27542 + 3.27542i −0.189740 + 0.189740i
\(299\) −12.3262 5.10566i −0.712840 0.295268i
\(300\) 0.0388177 0.0937141i 0.00224114 0.00541059i
\(301\) 2.25891 0.935671i 0.130201 0.0539312i
\(302\) 6.90398i 0.397279i
\(303\) −0.143657 0.346818i −0.00825287 0.0199242i
\(304\) 6.45462 + 6.45462i 0.370198 + 0.370198i
\(305\) 11.1939 0.640961
\(306\) 1.30863 4.25505i 0.0748093 0.243245i
\(307\) 5.53854 0.316101 0.158050 0.987431i \(-0.449479\pi\)
0.158050 + 0.987431i \(0.449479\pi\)
\(308\) 1.09319 + 1.09319i 0.0622902 + 0.0622902i
\(309\) 0.269080 + 0.649618i 0.0153075 + 0.0369555i
\(310\) 1.09020i 0.0619193i
\(311\) −20.8510 + 8.63675i −1.18235 + 0.489745i −0.885256 0.465104i \(-0.846017\pi\)
−0.297093 + 0.954849i \(0.596017\pi\)
\(312\) 0.0572862 0.138301i 0.00324319 0.00782976i
\(313\) −11.2581 4.66325i −0.636345 0.263583i 0.0411013 0.999155i \(-0.486913\pi\)
−0.677446 + 0.735572i \(0.736913\pi\)
\(314\) −0.688359 + 0.688359i −0.0388463 + 0.0388463i
\(315\) 0.633056 0.633056i 0.0356686 0.0356686i
\(316\) 18.4113 + 7.62621i 1.03572 + 0.429008i
\(317\) −8.41030 + 20.3043i −0.472370 + 1.14040i 0.490743 + 0.871304i \(0.336725\pi\)
−0.963113 + 0.269097i \(0.913275\pi\)
\(318\) −0.0484693 + 0.0200766i −0.00271802 + 0.00112584i
\(319\) 13.0785i 0.732254i
\(320\) 1.93311 + 4.66693i 0.108064 + 0.260889i
\(321\) −0.138972 0.138972i −0.00775664 0.00775664i
\(322\) 0.725296 0.0404192
\(323\) 10.2714 5.43957i 0.571519 0.302666i
\(324\) −16.7825 −0.932358
\(325\) 1.39976 + 1.39976i 0.0776446 + 0.0776446i
\(326\) 2.35826 + 5.69333i 0.130612 + 0.315325i
\(327\) 0.279342i 0.0154476i
\(328\) −4.00573 + 1.65923i −0.221179 + 0.0916155i
\(329\) 0.123850 0.298999i 0.00682805 0.0164844i
\(330\) 0.0499550 + 0.0206920i 0.00274993 + 0.00113906i
\(331\) 10.2262 10.2262i 0.562083 0.562083i −0.367816 0.929899i \(-0.619894\pi\)
0.929899 + 0.367816i \(0.119894\pi\)
\(332\) −20.5966 + 20.5966i −1.13038 + 1.13038i
\(333\) −26.0868 10.8055i −1.42955 0.592138i
\(334\) 1.22045 2.94642i 0.0667798 0.161221i
\(335\) −11.6025 + 4.80593i −0.633915 + 0.262576i
\(336\) 0.0524633i 0.00286211i
\(337\) −9.27853 22.4004i −0.505434 1.22023i −0.946486 0.322744i \(-0.895395\pi\)
0.441052 0.897481i \(-0.354605\pi\)
\(338\) −2.31337 2.31337i −0.125831 0.125831i
\(339\) 0.596965 0.0324227
\(340\) 7.67682 0.726330i 0.416334 0.0393908i
\(341\) −8.37441 −0.453500
\(342\) 2.15218 + 2.15218i 0.116377 + 0.116377i
\(343\) −1.59020 3.83909i −0.0858629 0.207291i
\(344\) 11.4121i 0.615300i
\(345\) −0.337720 + 0.139888i −0.0181823 + 0.00753134i
\(346\) 2.64490 6.38535i 0.142191 0.343279i
\(347\) −19.8599 8.22624i −1.06614 0.441608i −0.220510 0.975385i \(-0.570772\pi\)
−0.845625 + 0.533777i \(0.820772\pi\)
\(348\) 0.338981 0.338981i 0.0181713 0.0181713i
\(349\) −17.0669 + 17.0669i −0.913570 + 0.913570i −0.996551 0.0829813i \(-0.973556\pi\)
0.0829813 + 0.996551i \(0.473556\pi\)
\(350\) −0.0994229 0.0411823i −0.00531438 0.00220129i
\(351\) −0.246402 + 0.594866i −0.0131520 + 0.0317516i
\(352\) −10.1118 + 4.18843i −0.538959 + 0.223244i
\(353\) 7.24444i 0.385583i 0.981240 + 0.192791i \(0.0617541\pi\)
−0.981240 + 0.192791i \(0.938246\pi\)
\(354\) 0.0684501 + 0.165253i 0.00363808 + 0.00878311i
\(355\) −4.16329 4.16329i −0.220964 0.220964i
\(356\) 2.90377 0.153900
\(357\) −0.0638497 0.0196368i −0.00337929 0.00103929i
\(358\) 1.56182 0.0825449
\(359\) 12.2079 + 12.2079i 0.644308 + 0.644308i 0.951612 0.307303i \(-0.0994266\pi\)
−0.307303 + 0.951612i \(0.599427\pi\)
\(360\) 1.59911 + 3.86060i 0.0842807 + 0.203472i
\(361\) 11.0534i 0.581760i
\(362\) 7.91419 3.27816i 0.415960 0.172296i
\(363\) −0.0693663 + 0.167465i −0.00364079 + 0.00878964i
\(364\) 1.02173 + 0.423215i 0.0535533 + 0.0221825i
\(365\) −0.153206 + 0.153206i −0.00801916 + 0.00801916i
\(366\) 0.154658 0.154658i 0.00808413 0.00808413i
\(367\) 34.5930 + 14.3289i 1.80574 + 0.747963i 0.984016 + 0.178080i \(0.0569886\pi\)
0.821726 + 0.569883i \(0.193011\pi\)
\(368\) 8.35180 20.1630i 0.435368 1.05107i
\(369\) 8.61057 3.56661i 0.448248 0.185671i
\(370\) 3.39406i 0.176449i
\(371\) −0.306934 0.741005i −0.0159352 0.0384711i
\(372\) 0.217056 + 0.217056i 0.0112538 + 0.0112538i
\(373\) 29.8887 1.54758 0.773789 0.633443i \(-0.218359\pi\)
0.773789 + 0.633443i \(0.218359\pi\)
\(374\) 0.387176 + 4.09219i 0.0200204 + 0.211602i
\(375\) 0.0542373 0.00280080
\(376\) 1.06813 + 1.06813i 0.0550845 + 0.0550845i
\(377\) 3.58021 + 8.64339i 0.184390 + 0.445157i
\(378\) 0.0350031i 0.00180037i
\(379\) −27.7353 + 11.4883i −1.42467 + 0.590116i −0.956028 0.293275i \(-0.905255\pi\)
−0.468637 + 0.883391i \(0.655255\pi\)
\(380\) −2.01754 + 4.87076i −0.103497 + 0.249865i
\(381\) 0.367412 + 0.152187i 0.0188231 + 0.00779679i
\(382\) −1.85209 + 1.85209i −0.0947611 + 0.0947611i
\(383\) 13.9465 13.9465i 0.712634 0.712634i −0.254451 0.967086i \(-0.581895\pi\)
0.967086 + 0.254451i \(0.0818949\pi\)
\(384\) 0.487556 + 0.201952i 0.0248805 + 0.0103058i
\(385\) −0.316343 + 0.763719i −0.0161223 + 0.0389227i
\(386\) 7.38861 3.06046i 0.376070 0.155773i
\(387\) 24.5311i 1.24699i
\(388\) −6.42009 15.4995i −0.325931 0.786866i
\(389\) 2.62699 + 2.62699i 0.133194 + 0.133194i 0.770561 0.637367i \(-0.219976\pi\)
−0.637367 + 0.770561i \(0.719976\pi\)
\(390\) 0.0386790 0.00195859
\(391\) −21.4131 17.7114i −1.08291 0.895703i
\(392\) 9.63543 0.486663
\(393\) 0.664326 + 0.664326i 0.0335108 + 0.0335108i
\(394\) −0.617821 1.49155i −0.0311254 0.0751433i
\(395\) 10.6556i 0.536140i
\(396\) 14.3304 5.93586i 0.720131 0.298288i
\(397\) −1.97916 + 4.77812i −0.0993314 + 0.239807i −0.965731 0.259543i \(-0.916428\pi\)
0.866400 + 0.499350i \(0.166428\pi\)
\(398\) 0.132929 + 0.0550610i 0.00666313 + 0.00275996i
\(399\) 0.0322949 0.0322949i 0.00161677 0.00161677i
\(400\) −2.28971 + 2.28971i −0.114486 + 0.114486i
\(401\) 0.364698 + 0.151063i 0.0182122 + 0.00754372i 0.391771 0.920063i \(-0.371863\pi\)
−0.373559 + 0.927607i \(0.621863\pi\)
\(402\) −0.0939042 + 0.226705i −0.00468351 + 0.0113070i
\(403\) −5.53453 + 2.29248i −0.275695 + 0.114196i
\(404\) 12.9444i 0.644007i
\(405\) −3.43402 8.29046i −0.170638 0.411956i
\(406\) −0.359631 0.359631i −0.0178482 0.0178482i
\(407\) 26.0716 1.29232
\(408\) 0.198724 0.240258i 0.00983831 0.0118945i
\(409\) 0.521080 0.0257657 0.0128829 0.999917i \(-0.495899\pi\)
0.0128829 + 0.999917i \(0.495899\pi\)
\(410\) −0.792165 0.792165i −0.0391222 0.0391222i
\(411\) −0.290050 0.700242i −0.0143071 0.0345404i
\(412\) 24.2458i 1.19451i
\(413\) −2.52641 + 1.04647i −0.124317 + 0.0514936i
\(414\) 2.78476 6.72301i 0.136864 0.330418i
\(415\) −14.3891 5.96016i −0.706333 0.292573i
\(416\) −5.53616 + 5.53616i −0.271433 + 0.271433i
\(417\) 0.138856 0.138856i 0.00679981 0.00679981i
\(418\) −2.59640 1.07546i −0.126994 0.0526026i
\(419\) 1.74972 4.22419i 0.0854793 0.206365i −0.875360 0.483472i \(-0.839376\pi\)
0.960839 + 0.277107i \(0.0893755\pi\)
\(420\) 0.0279941 0.0115955i 0.00136597 0.000565805i
\(421\) 7.55233i 0.368078i −0.982919 0.184039i \(-0.941083\pi\)
0.982919 0.184039i \(-0.0589173\pi\)
\(422\) 0.268856 + 0.649075i 0.0130877 + 0.0315965i
\(423\) −2.29601 2.29601i −0.111636 0.111636i
\(424\) 3.74359 0.181805
\(425\) 1.92963 + 3.64370i 0.0936010 + 0.176745i
\(426\) −0.115043 −0.00557383
\(427\) 2.36444 + 2.36444i 0.114423 + 0.114423i
\(428\) 2.59343 + 6.26110i 0.125358 + 0.302642i
\(429\) 0.297114i 0.0143448i
\(430\) −2.72425 + 1.12842i −0.131375 + 0.0544172i
\(431\) 7.99371 19.2985i 0.385043 0.929577i −0.605930 0.795518i \(-0.707199\pi\)
0.990973 0.134059i \(-0.0428011\pi\)
\(432\) −0.973078 0.403062i −0.0468172 0.0193923i
\(433\) 23.2292 23.2292i 1.11632 1.11632i 0.124045 0.992277i \(-0.460413\pi\)
0.992277 0.124045i \(-0.0395868\pi\)
\(434\) 0.230279 0.230279i 0.0110537 0.0110537i
\(435\) 0.236817 + 0.0980930i 0.0113545 + 0.00470320i
\(436\) −3.68612 + 8.89909i −0.176533 + 0.426189i
\(437\) 17.5529 7.27065i 0.839670 0.347803i
\(438\) 0.00423348i 0.000202284i
\(439\) 9.19069 + 22.1883i 0.438648 + 1.05899i 0.976416 + 0.215897i \(0.0692674\pi\)
−0.537769 + 0.843093i \(0.680733\pi\)
\(440\) −2.72826 2.72826i −0.130065 0.130065i
\(441\) −20.7120 −0.986284
\(442\) 1.37611 + 2.59848i 0.0654547 + 0.123597i
\(443\) 8.36893 0.397620 0.198810 0.980038i \(-0.436292\pi\)
0.198810 + 0.980038i \(0.436292\pi\)
\(444\) −0.675748 0.675748i −0.0320696 0.0320696i
\(445\) 0.594169 + 1.43445i 0.0281663 + 0.0679995i
\(446\) 8.54904i 0.404809i
\(447\) 0.644296 0.266876i 0.0304741 0.0126228i
\(448\) −0.577454 + 1.39410i −0.0272821 + 0.0658649i
\(449\) 22.7241 + 9.41265i 1.07242 + 0.444210i 0.847844 0.530246i \(-0.177901\pi\)
0.224575 + 0.974457i \(0.427901\pi\)
\(450\) −0.763466 + 0.763466i −0.0359901 + 0.0359901i
\(451\) −6.08503 + 6.08503i −0.286533 + 0.286533i
\(452\) −19.0177 7.87740i −0.894518 0.370522i
\(453\) −0.397766 + 0.960292i −0.0186887 + 0.0451184i
\(454\) −6.84296 + 2.83444i −0.321156 + 0.133027i
\(455\) 0.591330i 0.0277220i
\(456\) 0.0815778 + 0.196946i 0.00382023 + 0.00922285i
\(457\) 5.38146 + 5.38146i 0.251734 + 0.251734i 0.821681 0.569947i \(-0.193036\pi\)
−0.569947 + 0.821681i \(0.693036\pi\)
\(458\) −9.58151 −0.447715
\(459\) −0.854760 + 1.03341i −0.0398968 + 0.0482353i
\(460\) 12.6048 0.587702
\(461\) 5.10577 + 5.10577i 0.237800 + 0.237800i 0.815938 0.578139i \(-0.196221\pi\)
−0.578139 + 0.815938i \(0.696221\pi\)
\(462\) 0.00618109 + 0.0149225i 0.000287570 + 0.000694256i
\(463\) 23.0362i 1.07058i −0.844667 0.535292i \(-0.820202\pi\)
0.844667 0.535292i \(-0.179798\pi\)
\(464\) −14.1388 + 5.85648i −0.656377 + 0.271880i
\(465\) −0.0628109 + 0.151639i −0.00291279 + 0.00703209i
\(466\) 7.82128 + 3.23968i 0.362314 + 0.150075i
\(467\) −21.1457 + 21.1457i −0.978506 + 0.978506i −0.999774 0.0212676i \(-0.993230\pi\)
0.0212676 + 0.999774i \(0.493230\pi\)
\(468\) 7.84585 7.84585i 0.362675 0.362675i
\(469\) −3.46589 1.43562i −0.160040 0.0662907i
\(470\) −0.149363 + 0.360594i −0.00688959 + 0.0166329i
\(471\) 0.135405 0.0560865i 0.00623912 0.00258433i
\(472\) 12.7636i 0.587491i
\(473\) 8.66798 + 20.9264i 0.398554 + 0.962195i
\(474\) 0.147221 + 0.147221i 0.00676207 + 0.00676207i
\(475\) −2.81896 −0.129343
\(476\) 1.77496 + 1.46812i 0.0813552 + 0.0672912i
\(477\) −8.04710 −0.368451
\(478\) −1.33925 1.33925i −0.0612561 0.0612561i
\(479\) 3.69569 + 8.92218i 0.168860 + 0.407665i 0.985544 0.169421i \(-0.0541898\pi\)
−0.816684 + 0.577086i \(0.804190\pi\)
\(480\) 0.214513i 0.00979113i
\(481\) 17.2303 7.13704i 0.785636 0.325421i
\(482\) 0.749855 1.81031i 0.0341550 0.0824574i
\(483\) −0.100883 0.0417872i −0.00459035 0.00190138i
\(484\) 4.41965 4.41965i 0.200893 0.200893i
\(485\) 6.34300 6.34300i 0.288021 0.288021i
\(486\) −0.486764 0.201624i −0.0220801 0.00914586i
\(487\) −1.84840 + 4.46244i −0.0837591 + 0.202212i −0.960210 0.279279i \(-0.909905\pi\)
0.876451 + 0.481491i \(0.159905\pi\)
\(488\) −14.4192 + 5.97263i −0.652727 + 0.270368i
\(489\) 0.927769i 0.0419552i
\(490\) 0.952742 + 2.30012i 0.0430405 + 0.103909i
\(491\) 15.1849 + 15.1849i 0.685287 + 0.685287i 0.961186 0.275900i \(-0.0889758\pi\)
−0.275900 + 0.961186i \(0.588976\pi\)
\(492\) 0.315436 0.0142209
\(493\) 1.83545 + 19.3995i 0.0826646 + 0.873708i
\(494\) −2.01033 −0.0904490
\(495\) 5.86458 + 5.86458i 0.263593 + 0.263593i
\(496\) −3.75002 9.05334i −0.168381 0.406507i
\(497\) 1.75879i 0.0788923i
\(498\) −0.281152 + 0.116457i −0.0125987 + 0.00521856i
\(499\) −7.13250 + 17.2194i −0.319295 + 0.770845i 0.679997 + 0.733215i \(0.261981\pi\)
−0.999292 + 0.0376305i \(0.988019\pi\)
\(500\) −1.72785 0.715701i −0.0772720 0.0320071i
\(501\) −0.339510 + 0.339510i −0.0151682 + 0.0151682i
\(502\) −6.72164 + 6.72164i −0.300001 + 0.300001i
\(503\) −17.1646 7.10981i −0.765332 0.317011i −0.0343519 0.999410i \(-0.510937\pi\)
−0.730980 + 0.682399i \(0.760937\pi\)
\(504\) −0.477685 + 1.15323i −0.0212778 + 0.0513691i
\(505\) −6.39447 + 2.64868i −0.284550 + 0.117865i
\(506\) 6.71908i 0.298700i
\(507\) 0.188490 + 0.455055i 0.00837113 + 0.0202097i
\(508\) −9.69656 9.69656i −0.430215 0.430215i
\(509\) −28.4343 −1.26033 −0.630163 0.776463i \(-0.717012\pi\)
−0.630163 + 0.776463i \(0.717012\pi\)
\(510\) 0.0770029 + 0.0236820i 0.00340974 + 0.00104866i
\(511\) −0.0647220 −0.00286313
\(512\) −15.4409 15.4409i −0.682399 0.682399i
\(513\) −0.350885 0.847112i −0.0154920 0.0374009i
\(514\) 6.75508i 0.297954i
\(515\) 11.9773 4.96117i 0.527784 0.218615i
\(516\) 0.317725 0.767056i 0.0139871 0.0337677i
\(517\) 2.76991 + 1.14733i 0.121820 + 0.0504597i
\(518\) −0.716913 + 0.716913i −0.0314993 + 0.0314993i
\(519\) −0.735771 + 0.735771i −0.0322968 + 0.0322968i
\(520\) −2.54993 1.05622i −0.111822 0.0463181i
\(521\) −7.26078 + 17.5291i −0.318100 + 0.767962i 0.681254 + 0.732047i \(0.261435\pi\)
−0.999355 + 0.0359155i \(0.988565\pi\)
\(522\) −4.71434 + 1.95274i −0.206341 + 0.0854692i
\(523\) 24.4504i 1.06914i 0.845124 + 0.534571i \(0.179527\pi\)
−0.845124 + 0.534571i \(0.820473\pi\)
\(524\) −12.3974 29.9299i −0.541583 1.30750i
\(525\) 0.0114563 + 0.0114563i 0.000499994 + 0.000499994i
\(526\) −5.76445 −0.251342
\(527\) −12.4219 + 1.17528i −0.541105 + 0.0511958i
\(528\) 0.486016 0.0211511
\(529\) −15.8564 15.8564i −0.689407 0.689407i
\(530\) 0.370163 + 0.893653i 0.0160789 + 0.0388178i
\(531\) 27.4361i 1.19063i
\(532\) −1.45499 + 0.602675i −0.0630816 + 0.0261293i
\(533\) −2.35575 + 5.68728i −0.102039 + 0.246344i
\(534\) 0.0280281 + 0.0116096i 0.00121289 + 0.000502397i
\(535\) −2.56229 + 2.56229i −0.110777 + 0.110777i
\(536\) 12.3813 12.3813i 0.534792 0.534792i
\(537\) −0.217238 0.0899828i −0.00937450 0.00388305i
\(538\) 0.164937 0.398194i 0.00711096 0.0171674i
\(539\) 17.6684 7.31851i 0.761034 0.315230i
\(540\) 0.608314i 0.0261777i
\(541\) −4.13701 9.98762i −0.177864 0.429401i 0.809654 0.586907i \(-0.199655\pi\)
−0.987518 + 0.157506i \(0.949655\pi\)
\(542\) 0.226358 + 0.226358i 0.00972291 + 0.00972291i
\(543\) −1.28967 −0.0553451
\(544\) −14.4111 + 7.63186i −0.617871 + 0.327213i
\(545\) −5.15037 −0.220618
\(546\) 0.00817000 + 0.00817000i 0.000349644 + 0.000349644i
\(547\) −2.78305 6.71889i −0.118995 0.287279i 0.853148 0.521669i \(-0.174691\pi\)
−0.972143 + 0.234391i \(0.924691\pi\)
\(548\) 26.1353i 1.11644i
\(549\) 30.9950 12.8386i 1.32284 0.547937i
\(550\) 0.381510 0.921046i 0.0162676 0.0392735i
\(551\) −12.3085 5.09835i −0.524360 0.217197i
\(552\) 0.360389 0.360389i 0.0153392 0.0153392i
\(553\) −2.25073 + 2.25073i −0.0957108 + 0.0957108i
\(554\) 2.05648 + 0.851821i 0.0873714 + 0.0361904i
\(555\) 0.195545 0.472089i 0.00830044 0.0200390i
\(556\) −6.25589 + 2.59128i −0.265309 + 0.109895i
\(557\) 18.3930i 0.779335i 0.920956 + 0.389667i \(0.127410\pi\)
−0.920956 + 0.389667i \(0.872590\pi\)
\(558\) −1.25038 3.01868i −0.0529328 0.127791i
\(559\) 11.4571 + 11.4571i 0.484584 + 0.484584i
\(560\) −0.967293 −0.0408756
\(561\) 0.181914 0.591499i 0.00768041 0.0249731i
\(562\) 10.0495 0.423911
\(563\) 0.317586 + 0.317586i 0.0133847 + 0.0133847i 0.713767 0.700383i \(-0.246987\pi\)
−0.700383 + 0.713767i \(0.746987\pi\)
\(564\) −0.0420555 0.101531i −0.00177086 0.00427522i
\(565\) 11.0065i 0.463049i
\(566\) −9.88909 + 4.09620i −0.415670 + 0.172176i
\(567\) 1.02581 2.47651i 0.0430798 0.104004i
\(568\) 7.58423 + 3.14149i 0.318227 + 0.131814i
\(569\) 10.1299 10.1299i 0.424669 0.424669i −0.462138 0.886808i \(-0.652918\pi\)
0.886808 + 0.462138i \(0.152918\pi\)
\(570\) −0.0389477 + 0.0389477i −0.00163134 + 0.00163134i
\(571\) 25.8617 + 10.7123i 1.08228 + 0.448294i 0.851307 0.524667i \(-0.175810\pi\)
0.230970 + 0.972961i \(0.425810\pi\)
\(572\) −3.92063 + 9.46525i −0.163930 + 0.395762i
\(573\) 0.364318 0.150905i 0.0152196 0.00630417i
\(574\) 0.334651i 0.0139681i
\(575\) 2.57919 + 6.22672i 0.107560 + 0.259672i
\(576\) 10.7052 + 10.7052i 0.446052 + 0.446052i
\(577\) −6.76924 −0.281807 −0.140904 0.990023i \(-0.545001\pi\)
−0.140904 + 0.990023i \(0.545001\pi\)
\(578\) 1.14861 + 6.01565i 0.0477757 + 0.250218i
\(579\) −1.20403 −0.0500376
\(580\) −6.24996 6.24996i −0.259516 0.259516i
\(581\) −1.78041 4.29829i −0.0738638 0.178323i
\(582\) 0.175274i 0.00726533i
\(583\) 6.86461 2.84342i 0.284303 0.117762i
\(584\) 0.115605 0.279094i 0.00478375 0.0115490i
\(585\) 5.48124 + 2.27040i 0.226621 + 0.0938696i
\(586\) 5.72209 5.72209i 0.236377 0.236377i
\(587\) 17.4713 17.4713i 0.721117 0.721117i −0.247715 0.968833i \(-0.579680\pi\)
0.968833 + 0.247715i \(0.0796798\pi\)
\(588\) −0.647637 0.268260i −0.0267081 0.0110628i
\(589\) 3.26458 7.88139i 0.134515 0.324747i
\(590\) 3.04686 1.26205i 0.125437 0.0519577i
\(591\) 0.243059i 0.00999810i
\(592\) 11.6747 + 28.1852i 0.479828 + 1.15841i
\(593\) −15.8749 15.8749i −0.651905 0.651905i 0.301547 0.953451i \(-0.402497\pi\)
−0.953451 + 0.301547i \(0.902497\pi\)
\(594\) 0.324266 0.0133048
\(595\) −0.362054 + 1.17723i −0.0148428 + 0.0482617i
\(596\) −24.0472 −0.985010
\(597\) −0.0153172 0.0153172i −0.000626889 0.000626889i
\(598\) 1.83934 + 4.44055i 0.0752161 + 0.181588i
\(599\) 19.1639i 0.783018i −0.920174 0.391509i \(-0.871953\pi\)
0.920174 0.391509i \(-0.128047\pi\)
\(600\) −0.0698647 + 0.0289389i −0.00285221 + 0.00118143i
\(601\) −8.87947 + 21.4369i −0.362201 + 0.874431i 0.632777 + 0.774334i \(0.281915\pi\)
−0.994978 + 0.100096i \(0.968085\pi\)
\(602\) −0.813782 0.337080i −0.0331673 0.0137383i
\(603\) −26.6145 + 26.6145i −1.08383 + 1.08383i
\(604\) 25.3435 25.3435i 1.03121 1.03121i
\(605\) 3.08764 + 1.27894i 0.125530 + 0.0519964i
\(606\) −0.0517530 + 0.124943i −0.00210232 + 0.00507546i
\(607\) 1.72244 0.713459i 0.0699118 0.0289584i −0.347454 0.937697i \(-0.612954\pi\)
0.417365 + 0.908739i \(0.362954\pi\)
\(608\) 11.1492i 0.452161i
\(609\) 0.0293022 + 0.0707417i 0.00118738 + 0.00286660i
\(610\) −2.85152 2.85152i −0.115455 0.115455i
\(611\) 2.14468 0.0867643
\(612\) 20.4235 10.8159i 0.825569 0.437206i
\(613\) −0.383092 −0.0154729 −0.00773647 0.999970i \(-0.502463\pi\)
−0.00773647 + 0.999970i \(0.502463\pi\)
\(614\) −1.41088 1.41088i −0.0569384 0.0569384i
\(615\) 0.0645444 + 0.155824i 0.00260268 + 0.00628343i
\(616\) 1.15256i 0.0464379i
\(617\) 10.7794 4.46499i 0.433964 0.179754i −0.154997 0.987915i \(-0.549537\pi\)
0.588962 + 0.808161i \(0.299537\pi\)
\(618\) 0.0969375 0.234028i 0.00389940 0.00941398i
\(619\) −12.4590 5.16070i −0.500771 0.207426i 0.117976 0.993016i \(-0.462359\pi\)
−0.618747 + 0.785590i \(0.712359\pi\)
\(620\) 4.00198 4.00198i 0.160723 0.160723i
\(621\) −1.55012 + 1.55012i −0.0622041 + 0.0622041i
\(622\) 7.51165 + 3.11143i 0.301190 + 0.124757i
\(623\) −0.177489 + 0.428497i −0.00711096 + 0.0171674i
\(624\) 0.321201 0.133046i 0.0128583 0.00532610i
\(625\) 1.00000i 0.0400000i
\(626\) 1.67996 + 4.05578i 0.0671446 + 0.162101i
\(627\) 0.299178 + 0.299178i 0.0119480 + 0.0119480i
\(628\) −5.05373 −0.201666
\(629\) 38.6723 3.65892i 1.54196 0.145891i
\(630\) −0.322527 −0.0128498
\(631\) −33.1913 33.1913i −1.32132 1.32132i −0.912706 0.408617i \(-0.866011\pi\)
−0.408617 0.912706i \(-0.633989\pi\)
\(632\) −5.68540 13.7258i −0.226153 0.545982i
\(633\) 0.105771i 0.00420403i
\(634\) 7.31470 3.02985i 0.290504 0.120331i
\(635\) 2.80595 6.77417i 0.111351 0.268825i
\(636\) −0.251622 0.104225i −0.00997747 0.00413280i
\(637\) 9.67341 9.67341i 0.383274 0.383274i
\(638\) 3.33159 3.33159i 0.131899 0.131899i
\(639\) −16.3028 6.75284i −0.644928 0.267138i
\(640\) 3.72350 8.98932i 0.147184 0.355334i
\(641\) 36.5657 15.1460i 1.44426 0.598232i 0.483433 0.875382i \(-0.339390\pi\)
0.960827 + 0.277150i \(0.0893898\pi\)
\(642\) 0.0708028i 0.00279436i
\(643\) 6.78010 + 16.3686i 0.267381 + 0.645515i 0.999358 0.0358141i \(-0.0114024\pi\)
−0.731978 + 0.681329i \(0.761402\pi\)
\(644\) 2.66246 + 2.66246i 0.104916 + 0.104916i
\(645\) 0.443935 0.0174799
\(646\) −4.00220 1.23087i −0.157464 0.0484278i
\(647\) −14.8304 −0.583045 −0.291522 0.956564i \(-0.594162\pi\)
−0.291522 + 0.956564i \(0.594162\pi\)
\(648\) 8.84694 + 8.84694i 0.347541 + 0.347541i
\(649\) −9.69446 23.4045i −0.380541 0.918707i
\(650\) 0.713144i 0.0279718i
\(651\) −0.0452973 + 0.0187628i −0.00177534 + 0.000735370i
\(652\) −12.2426 + 29.5562i −0.479457 + 1.15751i
\(653\) 9.42227 + 3.90283i 0.368722 + 0.152730i 0.559348 0.828933i \(-0.311052\pi\)
−0.190626 + 0.981663i \(0.561052\pi\)
\(654\) −0.0711591 + 0.0711591i −0.00278254 + 0.00278254i
\(655\) 12.2485 12.2485i 0.478589 0.478589i
\(656\) −9.30321 3.85352i −0.363229 0.150455i
\(657\) −0.248499 + 0.599931i −0.00969488 + 0.0234055i
\(658\) −0.107716 + 0.0446174i −0.00419920 + 0.00173937i
\(659\) 45.4453i 1.77030i −0.465309 0.885148i \(-0.654057\pi\)
0.465309 0.885148i \(-0.345943\pi\)
\(660\) 0.107420 + 0.259335i 0.00418133 + 0.0100946i
\(661\) −5.62214 5.62214i −0.218676 0.218676i 0.589264 0.807940i \(-0.299418\pi\)
−0.807940 + 0.589264i \(0.799418\pi\)
\(662\) −5.21001 −0.202493
\(663\) −0.0416973 0.440712i −0.00161939 0.0171158i
\(664\) 21.7152 0.842712
\(665\) −0.595438 0.595438i −0.0230901 0.0230901i
\(666\) 3.89273 + 9.39789i 0.150840 + 0.364161i
\(667\) 31.8526i 1.23334i
\(668\) 15.2960 6.33579i 0.591818 0.245139i
\(669\) −0.492545 + 1.18911i −0.0190429 + 0.0459736i
\(670\) 4.17987 + 1.73136i 0.161482 + 0.0668882i
\(671\) −21.9040 + 21.9040i −0.845594 + 0.845594i
\(672\) −0.0453106 + 0.0453106i −0.00174789 + 0.00174789i
\(673\) 20.3139 + 8.41428i 0.783042 + 0.324347i 0.738142 0.674645i \(-0.235703\pi\)
0.0448994 + 0.998992i \(0.485703\pi\)
\(674\) −3.34263 + 8.06983i −0.128753 + 0.310838i
\(675\) 0.300505 0.124473i 0.0115664 0.00479097i
\(676\) 16.9841i 0.653234i
\(677\) −6.97899 16.8488i −0.268224 0.647551i 0.731176 0.682189i \(-0.238972\pi\)
−0.999400 + 0.0346387i \(0.988972\pi\)
\(678\) −0.152070 0.152070i −0.00584021 0.00584021i
\(679\) 2.67961 0.102834
\(680\) −4.42976 3.66398i −0.169873 0.140507i
\(681\) 1.11511 0.0427310
\(682\) 2.13328 + 2.13328i 0.0816876 + 0.0816876i
\(683\) −6.96604 16.8175i −0.266548 0.643504i 0.732768 0.680478i \(-0.238228\pi\)
−0.999316 + 0.0369746i \(0.988228\pi\)
\(684\) 15.8007i 0.604156i
\(685\) −12.9107 + 5.34779i −0.493293 + 0.204329i
\(686\) −0.572878 + 1.38305i −0.0218726 + 0.0528051i
\(687\) 1.33272 + 0.552029i 0.0508463 + 0.0210612i
\(688\) −18.7414 + 18.7414i −0.714511 + 0.714511i
\(689\) 3.75835 3.75835i 0.143182 0.143182i
\(690\) 0.121665 + 0.0503954i 0.00463172 + 0.00191852i
\(691\) 5.95556 14.3780i 0.226560 0.546965i −0.769194 0.639015i \(-0.779342\pi\)
0.995754 + 0.0920503i \(0.0293421\pi\)
\(692\) 33.1488 13.7307i 1.26013 0.521962i
\(693\) 2.47750i 0.0941124i
\(694\) 2.96354 + 7.15462i 0.112494 + 0.271586i
\(695\) −2.56016 2.56016i −0.0971124 0.0971124i
\(696\) −0.357391 −0.0135469
\(697\) −8.17202 + 9.87999i −0.309537 + 0.374231i
\(698\) 8.69519 0.329118
\(699\) −0.901230 0.901230i −0.0340876 0.0340876i
\(700\) −0.213793 0.516142i −0.00808061 0.0195083i
\(701\) 8.07561i 0.305011i 0.988303 + 0.152506i \(0.0487342\pi\)
−0.988303 + 0.152506i \(0.951266\pi\)
\(702\) 0.214303 0.0887673i 0.00808836 0.00335031i
\(703\) −10.1634 + 24.5367i −0.383320 + 0.925417i
\(704\) −12.9148 5.34949i −0.486745 0.201617i
\(705\) 0.0415505 0.0415505i 0.00156488 0.00156488i
\(706\) 1.84544 1.84544i 0.0694540 0.0694540i
\(707\) −1.91014 0.791208i −0.0718384 0.0297564i
\(708\) −0.355350 + 0.857891i −0.0133549 + 0.0322415i
\(709\) −4.88749 + 2.02447i −0.183554 + 0.0760304i −0.472567 0.881295i \(-0.656673\pi\)
0.289014 + 0.957325i \(0.406673\pi\)
\(710\) 2.12110i 0.0796034i
\(711\) 12.2211 + 29.5044i 0.458329 + 1.10650i
\(712\) −1.53074 1.53074i −0.0573668 0.0573668i
\(713\) −20.3958 −0.763830
\(714\) 0.0112627 + 0.0212672i 0.000421497 + 0.000795906i
\(715\) −5.47803 −0.204867
\(716\) 5.73323 + 5.73323i 0.214261 + 0.214261i
\(717\) 0.109120 + 0.263440i 0.00407518 + 0.00983835i
\(718\) 6.21964i 0.232115i
\(719\) −8.27731 + 3.42857i −0.308691 + 0.127864i −0.531651 0.846964i \(-0.678428\pi\)
0.222960 + 0.974828i \(0.428428\pi\)
\(720\) −3.71391 + 8.96616i −0.138409 + 0.334149i
\(721\) 3.57785 + 1.48199i 0.133246 + 0.0551923i
\(722\) −2.81573 + 2.81573i −0.104791 + 0.104791i
\(723\) −0.208598 + 0.208598i −0.00775786 + 0.00775786i
\(724\) 41.0855 + 17.0182i 1.52693 + 0.632476i
\(725\) 1.80859 4.36632i 0.0671694 0.162161i
\(726\) 0.0603301 0.0249895i 0.00223906 0.000927449i
\(727\) 29.9868i 1.11215i 0.831133 + 0.556074i \(0.187693\pi\)
−0.831133 + 0.556074i \(0.812307\pi\)
\(728\) −0.315511 0.761710i −0.0116936 0.0282309i
\(729\) −18.9797 18.9797i −0.702950 0.702950i
\(730\) 0.0780548 0.00288894
\(731\) 15.7942 + 29.8239i 0.584168 + 1.10308i
\(732\) 1.13546 0.0419678
\(733\) −19.0696 19.0696i −0.704352 0.704352i 0.260990 0.965342i \(-0.415951\pi\)
−0.965342 + 0.260990i \(0.915951\pi\)
\(734\) −5.16205 12.4623i −0.190535 0.459992i
\(735\) 0.374821i 0.0138255i
\(736\) −24.6272 + 10.2009i −0.907770 + 0.376011i
\(737\) 13.2995 32.1078i 0.489892 1.18270i
\(738\) −3.10200 1.28489i −0.114186 0.0472974i
\(739\) −24.6401 + 24.6401i −0.906400 + 0.906400i −0.995980 0.0895798i \(-0.971448\pi\)
0.0895798 + 0.995980i \(0.471448\pi\)
\(740\) −12.4591 + 12.4591i −0.458006 + 0.458006i
\(741\) 0.279622 + 0.115823i 0.0102722 + 0.00425487i
\(742\) −0.110574 + 0.266950i −0.00405932 + 0.00980006i
\(743\) −15.7918 + 6.54116i −0.579344 + 0.239972i −0.653059 0.757307i \(-0.726514\pi\)
0.0737150 + 0.997279i \(0.476514\pi\)
\(744\) 0.228844i 0.00838984i
\(745\) −4.92053 11.8792i −0.180274 0.435220i
\(746\) −7.61380 7.61380i −0.278761 0.278761i
\(747\) −46.6781 −1.70786
\(748\) −13.6006 + 16.4431i −0.497286 + 0.601219i
\(749\) −1.08244 −0.0395516
\(750\) −0.0138163 0.0138163i −0.000504500 0.000504500i
\(751\) −12.5831 30.3783i −0.459165 1.10852i −0.968736 0.248093i \(-0.920196\pi\)
0.509572 0.860428i \(-0.329804\pi\)
\(752\) 3.50824i 0.127932i
\(753\) 1.32219 0.547669i 0.0481833 0.0199582i
\(754\) 1.28979 3.11382i 0.0469713 0.113399i
\(755\) 17.7054 + 7.33381i 0.644365 + 0.266905i
\(756\) 0.128492 0.128492i 0.00467319 0.00467319i
\(757\) 12.3728 12.3728i 0.449698 0.449698i −0.445556 0.895254i \(-0.646994\pi\)
0.895254 + 0.445556i \(0.146994\pi\)
\(758\) 9.99176 + 4.13872i 0.362917 + 0.150325i
\(759\) 0.387113 0.934574i 0.0140513 0.0339229i
\(760\) 3.63120 1.50409i 0.131717 0.0545591i
\(761\) 10.8439i 0.393092i 0.980495 + 0.196546i \(0.0629724\pi\)
−0.980495 + 0.196546i \(0.937028\pi\)
\(762\) −0.0548261 0.132362i −0.00198614 0.00479497i
\(763\) −1.08789 1.08789i −0.0393843 0.0393843i
\(764\) −13.5975 −0.491941
\(765\) 9.52205 + 7.87596i 0.344270 + 0.284756i
\(766\) −7.10543 −0.256730
\(767\) −12.8139 12.8139i −0.462682 0.462682i
\(768\) 0.136939 + 0.330599i 0.00494135 + 0.0119295i
\(769\) 14.8775i 0.536497i 0.963350 + 0.268248i \(0.0864448\pi\)
−0.963350 + 0.268248i \(0.913555\pi\)
\(770\) 0.275133 0.113964i 0.00991511 0.00410697i
\(771\) −0.389187 + 0.939581i −0.0140162 + 0.0338382i
\(772\) 38.3571 + 15.8880i 1.38050 + 0.571822i
\(773\) 5.45537 5.45537i 0.196216 0.196216i −0.602160 0.798376i \(-0.705693\pi\)
0.798376 + 0.602160i \(0.205693\pi\)
\(774\) −6.24901 + 6.24901i −0.224616 + 0.224616i
\(775\) 2.79584 + 1.15808i 0.100430 + 0.0415993i
\(776\) −4.78623 + 11.5550i −0.171816 + 0.414800i
\(777\) 0.141021 0.0584130i 0.00505912 0.00209555i
\(778\) 1.33839i 0.0479836i
\(779\) −3.35468 8.09891i −0.120194 0.290173i
\(780\) 0.141985 + 0.141985i 0.00508388 + 0.00508388i
\(781\) 16.2933 0.583019
\(782\) 0.942965 + 9.96650i 0.0337204 + 0.356401i
\(783\) 1.53722 0.0549358
\(784\) 15.8237 + 15.8237i 0.565131 + 0.565131i
\(785\) −1.03409 2.49652i −0.0369084 0.0891048i
\(786\) 0.338459i 0.0120724i
\(787\) −35.3404 + 14.6385i −1.25975 + 0.521805i −0.909833 0.414975i \(-0.863790\pi\)
−0.349917 + 0.936781i \(0.613790\pi\)
\(788\) 3.20734 7.74321i 0.114257 0.275840i
\(789\) 0.801792 + 0.332113i 0.0285446 + 0.0118235i
\(790\) 2.71438 2.71438i 0.0965735 0.0965735i
\(791\) 2.32487 2.32487i 0.0826627 0.0826627i
\(792\) −10.6835 4.42523i −0.379620 0.157244i
\(793\) −8.47987 + 20.4722i −0.301129 + 0.726990i
\(794\) 1.72134 0.713003i 0.0610881 0.0253035i
\(795\) 0.145627i 0.00516486i
\(796\) 0.285843 + 0.690085i 0.0101314 + 0.0244594i
\(797\) −18.8205 18.8205i −0.666657 0.666657i 0.290284 0.956941i \(-0.406250\pi\)
−0.956941 + 0.290284i \(0.906250\pi\)
\(798\) −0.0164535 −0.000582448
\(799\) 4.26966 + 1.31312i 0.151050 + 0.0464549i
\(800\) 3.95508 0.139833
\(801\) 3.29042 + 3.29042i 0.116261 + 0.116261i
\(802\) −0.0544211 0.131384i −0.00192168 0.00463934i
\(803\) 0.599580i 0.0211587i
\(804\) −1.17691 + 0.487492i −0.0415064 + 0.0171925i
\(805\) −0.770452 + 1.86004i −0.0271549 + 0.0655576i
\(806\) 1.99384 + 0.825876i 0.0702300 + 0.0290902i
\(807\) −0.0458831 + 0.0458831i −0.00161516 + 0.00161516i
\(808\) 6.82368 6.82368i 0.240056 0.240056i
\(809\) 15.1856 + 6.29009i 0.533898 + 0.221148i 0.633309 0.773899i \(-0.281696\pi\)
−0.0994117 + 0.995046i \(0.531696\pi\)
\(810\) −1.23712 + 2.98668i −0.0434680 + 0.104941i
\(811\) −3.36428 + 1.39353i −0.118136 + 0.0489335i −0.440968 0.897523i \(-0.645365\pi\)
0.322833 + 0.946456i \(0.395365\pi\)
\(812\) 2.64031i 0.0926566i
\(813\) −0.0184433 0.0445261i −0.000646835 0.00156160i
\(814\) −6.64143 6.64143i −0.232782 0.232782i
\(815\) −17.1057 −0.599188
\(816\) 0.720914 0.0682081i 0.0252370 0.00238776i
\(817\) −23.0734 −0.807236
\(818\) −0.132739 0.132739i −0.00464111 0.00464111i
\(819\) 0.678211 + 1.63735i 0.0236986 + 0.0572135i
\(820\) 5.81585i 0.203098i
\(821\) 32.8228 13.5957i 1.14552 0.474492i 0.272494 0.962158i \(-0.412152\pi\)
0.873030 + 0.487666i \(0.162152\pi\)
\(822\) −0.104492 + 0.252265i −0.00364457 + 0.00879876i
\(823\) 4.63438 + 1.91962i 0.161544 + 0.0669138i 0.461990 0.886885i \(-0.347136\pi\)
−0.300446 + 0.953799i \(0.597136\pi\)
\(824\) −12.7813 + 12.7813i −0.445257 + 0.445257i
\(825\) −0.106130 + 0.106130i −0.00369498 + 0.00369498i
\(826\) 0.910152 + 0.376997i 0.0316682 + 0.0131174i
\(827\) 14.9585 36.1131i 0.520159 1.25578i −0.417645 0.908610i \(-0.637144\pi\)
0.937804 0.347165i \(-0.112856\pi\)
\(828\) 34.9017 14.4568i 1.21292 0.502407i
\(829\) 16.3998i 0.569587i 0.958589 + 0.284794i \(0.0919250\pi\)
−0.958589 + 0.284794i \(0.908075\pi\)
\(830\) 2.14718 + 5.18374i 0.0745295 + 0.179930i
\(831\) −0.236964 0.236964i −0.00822019 0.00822019i
\(832\) −9.99964 −0.346675
\(833\) 25.1807 13.3352i 0.872461 0.462039i
\(834\) −0.0707439 −0.00244966
\(835\) 6.25971 + 6.25971i 0.216626 + 0.216626i
\(836\) −5.58313 13.4789i −0.193097 0.466177i
\(837\) 0.984314i 0.0340229i
\(838\) −1.52178 + 0.630344i −0.0525692 + 0.0217749i
\(839\) −11.4471 + 27.6357i −0.395197 + 0.954090i 0.593591 + 0.804767i \(0.297710\pi\)
−0.988788 + 0.149324i \(0.952290\pi\)
\(840\) −0.0208699 0.00864458i −0.000720078 0.000298266i
\(841\) −4.71231 + 4.71231i −0.162493 + 0.162493i
\(842\) −1.92387 + 1.92387i −0.0663009 + 0.0663009i
\(843\) −1.39780 0.578989i −0.0481429 0.0199414i
\(844\) −1.39573 + 3.36959i −0.0480431 + 0.115986i
\(845\) 8.39008 3.47528i 0.288627 0.119553i
\(846\) 1.16976i 0.0402173i
\(847\) 0.382043 + 0.922334i 0.0131272 + 0.0316918i
\(848\) 6.14788 + 6.14788i 0.211119 + 0.211119i
\(849\) 1.61150 0.0553064
\(850\) 0.436637 1.41974i 0.0149765 0.0486967i
\(851\) 63.4972 2.17666
\(852\) −0.422305 0.422305i −0.0144679 0.0144679i
\(853\) −13.7430 33.1784i −0.470550 1.13601i −0.963921 0.266189i \(-0.914235\pi\)
0.493371 0.869819i \(-0.335765\pi\)
\(854\) 1.20463i 0.0412215i
\(855\) −7.80549 + 3.23314i −0.266942 + 0.110571i
\(856\) 1.93343 4.66771i 0.0660832 0.159539i
\(857\) 19.4676 + 8.06374i 0.665000 + 0.275452i 0.689541 0.724247i \(-0.257812\pi\)
−0.0245406 + 0.999699i \(0.507812\pi\)
\(858\) −0.0756862 + 0.0756862i −0.00258389 + 0.00258389i
\(859\) −11.2104 + 11.2104i −0.382494 + 0.382494i −0.872000 0.489506i \(-0.837177\pi\)
0.489506 + 0.872000i \(0.337177\pi\)
\(860\) −14.1426 5.85805i −0.482258 0.199758i
\(861\) −0.0192806 + 0.0465475i −0.000657081 + 0.00158633i
\(862\) −6.95238 + 2.87977i −0.236799 + 0.0980853i
\(863\) 23.8125i 0.810587i −0.914187 0.405294i \(-0.867169\pi\)
0.914187 0.405294i \(-0.132831\pi\)
\(864\) 0.492301 + 1.18852i 0.0167484 + 0.0404343i
\(865\) 13.5658 + 13.5658i 0.461251 + 0.461251i
\(866\) −11.8347 −0.402160
\(867\) 0.186823 0.902908i 0.00634486 0.0306644i
\(868\) 1.69064 0.0573841
\(869\) −20.8506 20.8506i −0.707308 0.707308i
\(870\) −0.0353384 0.0853146i −0.00119809 0.00289243i
\(871\) 24.8603i 0.842359i
\(872\) 6.63435 2.74804i 0.224667 0.0930603i
\(873\) 10.2883 24.8382i 0.348207 0.840645i
\(874\) −6.32351 2.61929i −0.213896 0.0885987i
\(875\) 0.211226 0.211226i 0.00714073 0.00714073i
\(876\) −0.0155405 + 0.0155405i −0.000525065 + 0.000525065i
\(877\) 16.5557 + 6.85759i 0.559046 + 0.231564i 0.644271 0.764797i \(-0.277161\pi\)
−0.0852252 + 0.996362i \(0.527161\pi\)
\(878\) 3.31099 7.99343i 0.111740 0.269765i
\(879\) −1.12557 + 0.466228i −0.0379646 + 0.0157255i
\(880\) 8.96092i 0.302073i
\(881\) −12.9301 31.2159i −0.435625 1.05169i −0.977444 0.211196i \(-0.932264\pi\)
0.541819 0.840495i \(-0.317736\pi\)
\(882\) 5.27613 + 5.27613i 0.177657 + 0.177657i
\(883\) 26.0211 0.875680 0.437840 0.899053i \(-0.355744\pi\)
0.437840 + 0.899053i \(0.355744\pi\)
\(884\) −4.48716 + 14.5901i −0.150920 + 0.490720i
\(885\) −0.496507 −0.0166899
\(886\) −2.13189 2.13189i −0.0716222 0.0716222i
\(887\) −11.3477 27.3959i −0.381020 0.919863i −0.991769 0.128039i \(-0.959132\pi\)
0.610749 0.791824i \(-0.290868\pi\)
\(888\) 0.712447i 0.0239082i
\(889\) 2.02357 0.838189i 0.0678683 0.0281120i
\(890\) 0.214052 0.516768i 0.00717505 0.0173221i
\(891\) 22.9422 + 9.50298i 0.768593 + 0.318362i
\(892\) 31.3823 31.3823i 1.05076 1.05076i
\(893\) −2.15957 + 2.15957i −0.0722674 + 0.0722674i
\(894\) −0.232110 0.0961433i −0.00776293 0.00321551i
\(895\) −1.65906 + 4.00532i −0.0554562 + 0.133883i
\(896\) 2.68527 1.11228i 0.0897087 0.0371586i
\(897\) 0.723619i 0.0241609i
\(898\) −3.39095 8.18648i −0.113157 0.273186i
\(899\) 10.1131 + 10.1131i 0.337290 + 0.337290i
\(900\) −5.60515 −0.186838
\(901\) 9.78332 5.18106i 0.325930 0.172606i
\(902\) 3.10018 0.103225
\(903\) 0.0937705 + 0.0937705i 0.00312049 + 0.00312049i
\(904\) 5.87267 + 14.1779i 0.195322 + 0.471549i
\(905\) 23.7783i 0.790419i
\(906\) 0.345949 0.143297i 0.0114934 0.00476072i
\(907\) −2.30095 + 5.55499i −0.0764018 + 0.184450i −0.957466 0.288547i \(-0.906828\pi\)
0.881064 + 0.472997i \(0.156828\pi\)
\(908\) −35.5244 14.7147i −1.17892 0.488324i
\(909\) −14.6679 + 14.6679i −0.486505 + 0.486505i
\(910\) 0.150634 0.150634i 0.00499348 0.00499348i
\(911\) −33.5802 13.9094i −1.11256 0.460839i −0.250744 0.968054i \(-0.580675\pi\)
−0.861820 + 0.507215i \(0.830675\pi\)
\(912\) −0.189462 + 0.457403i −0.00627373 + 0.0151461i
\(913\) 39.8190 16.4936i 1.31782 0.545858i
\(914\) 2.74173i 0.0906883i
\(915\) 0.232337 + 0.560912i 0.00768084 + 0.0185432i
\(916\) −35.1724 35.1724i −1.16213 1.16213i
\(917\) 5.17440 0.170874
\(918\) 0.480989 0.0455080i 0.0158750 0.00150199i
\(919\) 31.4827 1.03852 0.519259 0.854617i \(-0.326208\pi\)
0.519259 + 0.854617i \(0.326208\pi\)
\(920\) −6.64468 6.64468i −0.219068 0.219068i
\(921\) 0.114956 + 0.277529i 0.00378794 + 0.00914489i
\(922\) 2.60127i 0.0856684i
\(923\) 10.7680 4.46025i 0.354433 0.146811i
\(924\) −0.0320884 + 0.0774682i −0.00105563 + 0.00254852i
\(925\) −8.70414 3.60537i −0.286190 0.118544i
\(926\) −5.86821 + 5.86821i −0.192841 + 0.192841i
\(927\) 27.4742 27.4742i 0.902371 0.902371i
\(928\) 17.2692 + 7.15312i 0.566888 + 0.234813i
\(929\) −16.5321 + 39.9121i −0.542402 + 1.30947i 0.380622 + 0.924731i \(0.375710\pi\)
−0.923024 + 0.384743i \(0.874290\pi\)
\(930\) 0.0546286 0.0226279i 0.00179134 0.000741998i
\(931\) 19.4812i 0.638471i
\(932\) 16.8184 + 40.6032i 0.550905 + 1.33000i
\(933\) −0.865552 0.865552i −0.0283369 0.0283369i
\(934\) 10.7732 0.352511
\(935\) −10.9058 3.35404i −0.356657 0.109689i
\(936\) −8.27195 −0.270377
\(937\) 8.15745 + 8.15745i 0.266492 + 0.266492i 0.827685 0.561193i \(-0.189657\pi\)
−0.561193 + 0.827685i \(0.689657\pi\)
\(938\) 0.517188 + 1.24860i 0.0168868 + 0.0407683i
\(939\) 0.660917i 0.0215682i
\(940\) −1.87198 + 0.775399i −0.0610572 + 0.0252907i
\(941\) −10.4367 + 25.1965i −0.340227 + 0.821382i 0.657465 + 0.753485i \(0.271629\pi\)
−0.997692 + 0.0678965i \(0.978371\pi\)
\(942\) −0.0487801 0.0202054i −0.00158934 0.000658327i
\(943\) −14.8201 + 14.8201i −0.482608 + 0.482608i
\(944\) 20.9608 20.9608i 0.682217 0.682217i
\(945\) 0.0897663 + 0.0371824i 0.00292010 + 0.00120954i
\(946\) 3.12268 7.53882i 0.101527 0.245108i
\(947\) −21.0575 + 8.72231i −0.684278 + 0.283437i −0.697614 0.716474i \(-0.745755\pi\)
0.0133362 + 0.999911i \(0.495755\pi\)
\(948\) 1.08085i 0.0351045i
\(949\) −0.164134 0.396254i −0.00532801 0.0128630i
\(950\) 0.718099 + 0.718099i 0.0232982 + 0.0232982i
\(951\) −1.19198 −0.0386527
\(952\) −0.161752 1.70960i −0.00524240 0.0554086i
\(953\) −28.9548 −0.937938 −0.468969 0.883215i \(-0.655374\pi\)
−0.468969 + 0.883215i \(0.655374\pi\)
\(954\) 2.04990 + 2.04990i 0.0663681 + 0.0663681i
\(955\) −2.78232 6.71712i −0.0900338 0.217361i
\(956\) 9.83243i 0.318003i
\(957\) −0.655346 + 0.271453i −0.0211843 + 0.00877483i
\(958\) 1.33139 3.21425i 0.0430152 0.103848i
\(959\) −3.85667 1.59748i −0.124538 0.0515854i
\(960\) −0.193731 + 0.193731i −0.00625264 + 0.00625264i
\(961\) 15.4447 15.4447i 0.498216 0.498216i
\(962\) −6.20731 2.57115i −0.200132 0.0828972i
\(963\) −4.15603 + 10.0335i −0.133926 + 0.323326i
\(964\) 9.39800 3.89278i 0.302689 0.125378i
\(965\) 22.1992i 0.714619i
\(966\) 0.0150540 + 0.0363436i 0.000484355 + 0.00116934i
\(967\) 35.7870 + 35.7870i 1.15083 + 1.15083i 0.986386 + 0.164447i \(0.0525841\pi\)
0.164447 + 0.986386i \(0.447416\pi\)
\(968\) −4.65968 −0.149768
\(969\) 0.485761 + 0.401787i 0.0156049 + 0.0129073i
\(970\) −3.23161 −0.103761
\(971\) 23.2222 + 23.2222i 0.745236 + 0.745236i 0.973580 0.228344i \(-0.0733312\pi\)
−0.228344 + 0.973580i \(0.573331\pi\)
\(972\) −1.04671 2.52697i −0.0335731 0.0810527i
\(973\) 1.08154i 0.0346727i
\(974\) 1.60761 0.665895i 0.0515112 0.0213366i
\(975\) −0.0410871 + 0.0991930i −0.00131584 + 0.00317672i
\(976\) −33.4883 13.8713i −1.07193 0.444010i
\(977\) −15.2966 + 15.2966i −0.489381 + 0.489381i −0.908111 0.418730i \(-0.862475\pi\)
0.418730 + 0.908111i \(0.362475\pi\)
\(978\) −0.236338 + 0.236338i −0.00755727 + 0.00755727i
\(979\) −3.96956 1.64425i −0.126868 0.0525503i
\(980\) −4.94604 + 11.9408i −0.157996 + 0.381435i
\(981\) −14.2610 + 5.90708i −0.455317 + 0.188599i
\(982\) 7.73637i 0.246878i
\(983\) 1.95570 + 4.72148i 0.0623771 + 0.150592i 0.951995 0.306115i \(-0.0990291\pi\)
−0.889618 + 0.456706i \(0.849029\pi\)
\(984\) −0.166283 0.166283i −0.00530092 0.00530092i
\(985\) 4.48140 0.142789
\(986\) 4.47423 5.40935i 0.142489 0.172269i
\(987\) 0.0175531 0.000558720
\(988\) −7.37963 7.37963i −0.234777 0.234777i
\(989\) 21.1108 + 50.9661i 0.671286 + 1.62063i
\(990\) 2.98787i 0.0949606i
\(991\) 2.32187 0.961750i 0.0737566 0.0305510i −0.345500 0.938419i \(-0.612291\pi\)
0.419257 + 0.907868i \(0.362291\pi\)
\(992\) −4.58029 + 11.0578i −0.145424 + 0.351085i
\(993\) 0.724673 + 0.300170i 0.0229968 + 0.00952559i
\(994\) −0.448030 + 0.448030i −0.0142107 + 0.0142107i
\(995\) −0.282410 + 0.282410i −0.00895300 + 0.00895300i
\(996\) −1.45957 0.604572i −0.0462481 0.0191566i
\(997\) 13.7947 33.3033i 0.436882 1.05473i −0.540138 0.841576i \(-0.681628\pi\)
0.977020 0.213149i \(-0.0683720\pi\)
\(998\) 6.20336 2.56951i 0.196364 0.0813366i
\(999\) 3.06441i 0.0969535i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.l.a.66.3 24
3.2 odd 2 765.2.be.b.406.4 24
5.2 odd 4 425.2.n.c.49.4 24
5.3 odd 4 425.2.n.f.49.3 24
5.4 even 2 425.2.m.b.151.4 24
17.3 odd 16 1445.2.d.j.866.10 24
17.5 odd 16 1445.2.a.q.1.8 12
17.8 even 8 inner 85.2.l.a.76.3 yes 24
17.12 odd 16 1445.2.a.p.1.8 12
17.14 odd 16 1445.2.d.j.866.9 24
51.8 odd 8 765.2.be.b.586.4 24
85.8 odd 8 425.2.n.c.399.4 24
85.29 odd 16 7225.2.a.bs.1.5 12
85.39 odd 16 7225.2.a.bq.1.5 12
85.42 odd 8 425.2.n.f.399.3 24
85.59 even 8 425.2.m.b.76.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.3 24 1.1 even 1 trivial
85.2.l.a.76.3 yes 24 17.8 even 8 inner
425.2.m.b.76.4 24 85.59 even 8
425.2.m.b.151.4 24 5.4 even 2
425.2.n.c.49.4 24 5.2 odd 4
425.2.n.c.399.4 24 85.8 odd 8
425.2.n.f.49.3 24 5.3 odd 4
425.2.n.f.399.3 24 85.42 odd 8
765.2.be.b.406.4 24 3.2 odd 2
765.2.be.b.586.4 24 51.8 odd 8
1445.2.a.p.1.8 12 17.12 odd 16
1445.2.a.q.1.8 12 17.5 odd 16
1445.2.d.j.866.9 24 17.14 odd 16
1445.2.d.j.866.10 24 17.3 odd 16
7225.2.a.bq.1.5 12 85.39 odd 16
7225.2.a.bs.1.5 12 85.29 odd 16