Properties

Label 85.2.l.a.36.5
Level $85$
Weight $2$
Character 85.36
Analytic conductor $0.679$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,2,Mod(26,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.l (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 36.5
Character \(\chi\) \(=\) 85.36
Dual form 85.2.l.a.26.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.01710 + 1.01710i) q^{2} +(-0.101541 + 0.0420595i) q^{3} +0.0689897i q^{4} +(0.382683 + 0.923880i) q^{5} +(-0.146056 - 0.0604983i) q^{6} +(-0.265997 + 0.642174i) q^{7} +(1.96403 - 1.96403i) q^{8} +(-2.11278 + 2.11278i) q^{9} +(-0.550451 + 1.32891i) q^{10} +(-4.48163 - 1.85635i) q^{11} +(-0.00290167 - 0.00700526i) q^{12} -5.63906i q^{13} +(-0.923703 + 0.382610i) q^{14} +(-0.0777158 - 0.0777158i) q^{15} +4.13322 q^{16} +(1.63113 + 3.78674i) q^{17} -4.29782 q^{18} +(-1.64241 - 1.64241i) q^{19} +(-0.0637382 + 0.0264012i) q^{20} -0.0763945i q^{21} +(-2.67018 - 6.44637i) q^{22} +(4.28390 + 1.77445i) q^{23} +(-0.116823 + 0.282035i) q^{24} +(-0.707107 + 0.707107i) q^{25} +(5.73549 - 5.73549i) q^{26} +(0.251849 - 0.608017i) q^{27} +(-0.0443034 - 0.0183511i) q^{28} +(2.48981 + 6.01093i) q^{29} -0.158090i q^{30} +(-6.12711 + 2.53793i) q^{31} +(0.275837 + 0.275837i) q^{32} +0.533145 q^{33} +(-2.19248 + 5.51052i) q^{34} -0.695085 q^{35} +(-0.145760 - 0.145760i) q^{36} +(0.109595 - 0.0453958i) q^{37} -3.34100i q^{38} +(0.237176 + 0.572593i) q^{39} +(2.56613 + 1.06293i) q^{40} +(-0.412826 + 0.996650i) q^{41} +(0.0777010 - 0.0777010i) q^{42} +(-0.453332 + 0.453332i) q^{43} +(0.128069 - 0.309187i) q^{44} +(-2.76048 - 1.14343i) q^{45} +(2.55237 + 6.16195i) q^{46} -4.93703i q^{47} +(-0.419690 + 0.173841i) q^{48} +(4.60811 + 4.60811i) q^{49} -1.43840 q^{50} +(-0.324894 - 0.315904i) q^{51} +0.389037 q^{52} +(8.47565 + 8.47565i) q^{53} +(0.874571 - 0.362259i) q^{54} -4.85089i q^{55} +(0.738824 + 1.78368i) q^{56} +(0.235850 + 0.0976925i) q^{57} +(-3.58134 + 8.64611i) q^{58} +(7.01329 - 7.01329i) q^{59} +(0.00536159 - 0.00536159i) q^{60} +(0.613413 - 1.48091i) q^{61} +(-8.81322 - 3.65056i) q^{62} +(-0.794779 - 1.91877i) q^{63} -7.70533i q^{64} +(5.20981 - 2.15797i) q^{65} +(0.542263 + 0.542263i) q^{66} +2.99411 q^{67} +(-0.261246 + 0.112531i) q^{68} -0.509622 q^{69} +(-0.706971 - 0.706971i) q^{70} +(-4.33163 + 1.79422i) q^{71} +8.29913i q^{72} +(-2.10442 - 5.08052i) q^{73} +(0.157641 + 0.0652972i) q^{74} +(0.0420595 - 0.101541i) q^{75} +(0.113309 - 0.113309i) q^{76} +(2.38421 - 2.38421i) q^{77} +(-0.341153 + 0.823617i) q^{78} +(-13.7140 - 5.68053i) q^{79} +(1.58171 + 3.81860i) q^{80} -8.89143i q^{81} +(-1.43358 + 0.593808i) q^{82} +(-3.56033 - 3.56033i) q^{83} +0.00527044 q^{84} +(-2.87429 + 2.95609i) q^{85} -0.922169 q^{86} +(-0.505633 - 0.505633i) q^{87} +(-12.4480 + 5.15614i) q^{88} -2.35657i q^{89} +(-1.64470 - 3.97067i) q^{90} +(3.62126 + 1.49997i) q^{91} +(-0.122419 + 0.295545i) q^{92} +(0.515406 - 0.515406i) q^{93} +(5.02145 - 5.02145i) q^{94} +(0.888867 - 2.14591i) q^{95} +(-0.0396102 - 0.0164071i) q^{96} +(-1.03355 - 2.49522i) q^{97} +9.37384i q^{98} +(13.3908 - 5.54664i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{6} - 24 q^{9} - 8 q^{11} + 24 q^{12} - 8 q^{15} - 24 q^{16} - 8 q^{17} + 8 q^{18} - 8 q^{19} - 32 q^{22} - 16 q^{23} - 8 q^{24} + 16 q^{26} + 24 q^{27} + 48 q^{28} - 8 q^{29} + 16 q^{34} - 32 q^{35}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/85\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.01710 + 1.01710i 0.719199 + 0.719199i 0.968441 0.249242i \(-0.0801815\pi\)
−0.249242 + 0.968441i \(0.580181\pi\)
\(3\) −0.101541 + 0.0420595i −0.0586245 + 0.0242831i −0.411803 0.911273i \(-0.635101\pi\)
0.353179 + 0.935556i \(0.385101\pi\)
\(4\) 0.0689897i 0.0344949i
\(5\) 0.382683 + 0.923880i 0.171141 + 0.413171i
\(6\) −0.146056 0.0604983i −0.0596271 0.0246983i
\(7\) −0.265997 + 0.642174i −0.100538 + 0.242719i −0.966143 0.258008i \(-0.916934\pi\)
0.865605 + 0.500727i \(0.166934\pi\)
\(8\) 1.96403 1.96403i 0.694390 0.694390i
\(9\) −2.11278 + 2.11278i −0.704260 + 0.704260i
\(10\) −0.550451 + 1.32891i −0.174068 + 0.420237i
\(11\) −4.48163 1.85635i −1.35126 0.559712i −0.414620 0.909995i \(-0.636085\pi\)
−0.936644 + 0.350283i \(0.886085\pi\)
\(12\) −0.00290167 0.00700526i −0.000837641 0.00202224i
\(13\) 5.63906i 1.56399i −0.623283 0.781996i \(-0.714202\pi\)
0.623283 0.781996i \(-0.285798\pi\)
\(14\) −0.923703 + 0.382610i −0.246870 + 0.102257i
\(15\) −0.0777158 0.0777158i −0.0200661 0.0200661i
\(16\) 4.13322 1.03330
\(17\) 1.63113 + 3.78674i 0.395606 + 0.918420i
\(18\) −4.29782 −1.01301
\(19\) −1.64241 1.64241i −0.376795 0.376795i 0.493150 0.869945i \(-0.335846\pi\)
−0.869945 + 0.493150i \(0.835846\pi\)
\(20\) −0.0637382 + 0.0264012i −0.0142523 + 0.00590349i
\(21\) 0.0763945i 0.0166706i
\(22\) −2.67018 6.44637i −0.569283 1.37437i
\(23\) 4.28390 + 1.77445i 0.893255 + 0.369998i 0.781623 0.623751i \(-0.214392\pi\)
0.111632 + 0.993750i \(0.464392\pi\)
\(24\) −0.116823 + 0.282035i −0.0238464 + 0.0575702i
\(25\) −0.707107 + 0.707107i −0.141421 + 0.141421i
\(26\) 5.73549 5.73549i 1.12482 1.12482i
\(27\) 0.251849 0.608017i 0.0484684 0.117013i
\(28\) −0.0443034 0.0183511i −0.00837256 0.00346803i
\(29\) 2.48981 + 6.01093i 0.462346 + 1.11620i 0.967432 + 0.253132i \(0.0814608\pi\)
−0.505086 + 0.863069i \(0.668539\pi\)
\(30\) 0.158090i 0.0288631i
\(31\) −6.12711 + 2.53793i −1.10046 + 0.455826i −0.857643 0.514246i \(-0.828072\pi\)
−0.242819 + 0.970072i \(0.578072\pi\)
\(32\) 0.275837 + 0.275837i 0.0487616 + 0.0487616i
\(33\) 0.533145 0.0928087
\(34\) −2.19248 + 5.51052i −0.376008 + 0.945047i
\(35\) −0.695085 −0.117491
\(36\) −0.145760 0.145760i −0.0242933 0.0242933i
\(37\) 0.109595 0.0453958i 0.0180173 0.00746302i −0.373657 0.927567i \(-0.621896\pi\)
0.391674 + 0.920104i \(0.371896\pi\)
\(38\) 3.34100i 0.541981i
\(39\) 0.237176 + 0.572593i 0.0379785 + 0.0916883i
\(40\) 2.56613 + 1.06293i 0.405741 + 0.168064i
\(41\) −0.412826 + 0.996650i −0.0644726 + 0.155651i −0.952832 0.303498i \(-0.901845\pi\)
0.888359 + 0.459149i \(0.151845\pi\)
\(42\) 0.0777010 0.0777010i 0.0119895 0.0119895i
\(43\) −0.453332 + 0.453332i −0.0691325 + 0.0691325i −0.740828 0.671695i \(-0.765566\pi\)
0.671695 + 0.740828i \(0.265566\pi\)
\(44\) 0.128069 0.309187i 0.0193072 0.0466116i
\(45\) −2.76048 1.14343i −0.411508 0.170452i
\(46\) 2.55237 + 6.16195i 0.376326 + 0.908531i
\(47\) 4.93703i 0.720139i −0.932925 0.360070i \(-0.882753\pi\)
0.932925 0.360070i \(-0.117247\pi\)
\(48\) −0.419690 + 0.173841i −0.0605770 + 0.0250918i
\(49\) 4.60811 + 4.60811i 0.658302 + 0.658302i
\(50\) −1.43840 −0.203420
\(51\) −0.324894 0.315904i −0.0454943 0.0442354i
\(52\) 0.389037 0.0539497
\(53\) 8.47565 + 8.47565i 1.16422 + 1.16422i 0.983542 + 0.180678i \(0.0578292\pi\)
0.180678 + 0.983542i \(0.442171\pi\)
\(54\) 0.874571 0.362259i 0.119014 0.0492972i
\(55\) 4.85089i 0.654093i
\(56\) 0.738824 + 1.78368i 0.0987295 + 0.238354i
\(57\) 0.235850 + 0.0976925i 0.0312392 + 0.0129397i
\(58\) −3.58134 + 8.64611i −0.470252 + 1.13529i
\(59\) 7.01329 7.01329i 0.913053 0.913053i −0.0834587 0.996511i \(-0.526597\pi\)
0.996511 + 0.0834587i \(0.0265967\pi\)
\(60\) 0.00536159 0.00536159i 0.000692179 0.000692179i
\(61\) 0.613413 1.48091i 0.0785394 0.189611i −0.879733 0.475469i \(-0.842278\pi\)
0.958272 + 0.285858i \(0.0922785\pi\)
\(62\) −8.81322 3.65056i −1.11928 0.463621i
\(63\) −0.794779 1.91877i −0.100133 0.241742i
\(64\) 7.70533i 0.963166i
\(65\) 5.20981 2.15797i 0.646197 0.267664i
\(66\) 0.542263 + 0.542263i 0.0667479 + 0.0667479i
\(67\) 2.99411 0.365789 0.182894 0.983133i \(-0.441453\pi\)
0.182894 + 0.983133i \(0.441453\pi\)
\(68\) −0.261246 + 0.112531i −0.0316808 + 0.0136464i
\(69\) −0.509622 −0.0613513
\(70\) −0.706971 0.706971i −0.0844992 0.0844992i
\(71\) −4.33163 + 1.79422i −0.514070 + 0.212935i −0.624610 0.780937i \(-0.714742\pi\)
0.110540 + 0.993872i \(0.464742\pi\)
\(72\) 8.29913i 0.978062i
\(73\) −2.10442 5.08052i −0.246304 0.594629i 0.751581 0.659641i \(-0.229292\pi\)
−0.997885 + 0.0650115i \(0.979292\pi\)
\(74\) 0.157641 + 0.0652972i 0.0183254 + 0.00759065i
\(75\) 0.0420595 0.101541i 0.00485661 0.0117249i
\(76\) 0.113309 0.113309i 0.0129975 0.0129975i
\(77\) 2.38421 2.38421i 0.271705 0.271705i
\(78\) −0.341153 + 0.823617i −0.0386280 + 0.0932563i
\(79\) −13.7140 5.68053i −1.54295 0.639110i −0.560924 0.827867i \(-0.689554\pi\)
−0.982024 + 0.188757i \(0.939554\pi\)
\(80\) 1.58171 + 3.81860i 0.176841 + 0.426932i
\(81\) 8.89143i 0.987937i
\(82\) −1.43358 + 0.593808i −0.158312 + 0.0655752i
\(83\) −3.56033 3.56033i −0.390797 0.390797i 0.484175 0.874971i \(-0.339120\pi\)
−0.874971 + 0.484175i \(0.839120\pi\)
\(84\) 0.00527044 0.000575052
\(85\) −2.87429 + 2.95609i −0.311761 + 0.320633i
\(86\) −0.922169 −0.0994400
\(87\) −0.505633 0.505633i −0.0542096 0.0542096i
\(88\) −12.4480 + 5.15614i −1.32696 + 0.549646i
\(89\) 2.35657i 0.249796i −0.992170 0.124898i \(-0.960140\pi\)
0.992170 0.124898i \(-0.0398604\pi\)
\(90\) −1.64470 3.97067i −0.173367 0.418545i
\(91\) 3.62126 + 1.49997i 0.379611 + 0.157240i
\(92\) −0.122419 + 0.295545i −0.0127630 + 0.0308127i
\(93\) 0.515406 0.515406i 0.0534452 0.0534452i
\(94\) 5.02145 5.02145i 0.517924 0.517924i
\(95\) 0.888867 2.14591i 0.0911958 0.220166i
\(96\) −0.0396102 0.0164071i −0.00404270 0.00167454i
\(97\) −1.03355 2.49522i −0.104941 0.253351i 0.862683 0.505745i \(-0.168782\pi\)
−0.967625 + 0.252394i \(0.918782\pi\)
\(98\) 9.37384i 0.946900i
\(99\) 13.3908 5.54664i 1.34582 0.557458i
\(100\) −0.0487831 0.0487831i −0.00487831 0.00487831i
\(101\) −14.3025 −1.42315 −0.711575 0.702610i \(-0.752018\pi\)
−0.711575 + 0.702610i \(0.752018\pi\)
\(102\) −0.00914379 0.651756i −0.000905370 0.0645335i
\(103\) −10.8963 −1.07365 −0.536824 0.843694i \(-0.680376\pi\)
−0.536824 + 0.843694i \(0.680376\pi\)
\(104\) −11.0753 11.0753i −1.08602 1.08602i
\(105\) 0.0705793 0.0292349i 0.00688784 0.00285304i
\(106\) 17.2412i 1.67461i
\(107\) 6.36300 + 15.3616i 0.615134 + 1.48507i 0.857293 + 0.514829i \(0.172145\pi\)
−0.242158 + 0.970237i \(0.577855\pi\)
\(108\) 0.0419469 + 0.0173750i 0.00403635 + 0.00167191i
\(109\) 4.05640 9.79302i 0.388533 0.938002i −0.601718 0.798708i \(-0.705517\pi\)
0.990251 0.139293i \(-0.0444830\pi\)
\(110\) 4.93384 4.93384i 0.470423 0.470423i
\(111\) −0.00921903 + 0.00921903i −0.000875032 + 0.000875032i
\(112\) −1.09943 + 2.65425i −0.103886 + 0.250803i
\(113\) 10.6613 + 4.41604i 1.00293 + 0.415426i 0.822869 0.568230i \(-0.192372\pi\)
0.180057 + 0.983656i \(0.442372\pi\)
\(114\) 0.140521 + 0.339247i 0.0131610 + 0.0317734i
\(115\) 4.63686i 0.432389i
\(116\) −0.414692 + 0.171771i −0.0385032 + 0.0159485i
\(117\) 11.9141 + 11.9141i 1.10146 + 1.10146i
\(118\) 14.2665 1.31333
\(119\) −2.86563 + 0.0402032i −0.262691 + 0.00368542i
\(120\) −0.305273 −0.0278675
\(121\) 8.86082 + 8.86082i 0.805529 + 0.805529i
\(122\) 2.13014 0.882332i 0.192854 0.0798825i
\(123\) 0.118564i 0.0106905i
\(124\) −0.175091 0.422708i −0.0157237 0.0379603i
\(125\) −0.923880 0.382683i −0.0826343 0.0342282i
\(126\) 1.14321 2.75995i 0.101845 0.245876i
\(127\) 0.352520 0.352520i 0.0312811 0.0312811i −0.691293 0.722574i \(-0.742959\pi\)
0.722574 + 0.691293i \(0.242959\pi\)
\(128\) 8.38878 8.38878i 0.741470 0.741470i
\(129\) 0.0269647 0.0650985i 0.00237411 0.00573160i
\(130\) 7.49378 + 3.10402i 0.657248 + 0.272241i
\(131\) −7.47537 18.0471i −0.653126 1.57679i −0.808217 0.588885i \(-0.799567\pi\)
0.155091 0.987900i \(-0.450433\pi\)
\(132\) 0.0367815i 0.00320142i
\(133\) 1.49159 0.617838i 0.129337 0.0535733i
\(134\) 3.04531 + 3.04531i 0.263075 + 0.263075i
\(135\) 0.658113 0.0566414
\(136\) 10.6409 + 4.23371i 0.912447 + 0.363037i
\(137\) −3.81724 −0.326129 −0.163065 0.986615i \(-0.552138\pi\)
−0.163065 + 0.986615i \(0.552138\pi\)
\(138\) −0.518337 0.518337i −0.0441238 0.0441238i
\(139\) 12.2437 5.07150i 1.03850 0.430159i 0.202725 0.979236i \(-0.435020\pi\)
0.835772 + 0.549076i \(0.185020\pi\)
\(140\) 0.0479537i 0.00405283i
\(141\) 0.207649 + 0.501309i 0.0174872 + 0.0422178i
\(142\) −6.23061 2.58080i −0.522861 0.216576i
\(143\) −10.4681 + 25.2722i −0.875385 + 2.11337i
\(144\) −8.73258 + 8.73258i −0.727715 + 0.727715i
\(145\) −4.60056 + 4.60056i −0.382056 + 0.382056i
\(146\) 3.02699 7.30780i 0.250516 0.604798i
\(147\) −0.661726 0.274096i −0.0545782 0.0226070i
\(148\) 0.00313184 + 0.00756094i 0.000257436 + 0.000621505i
\(149\) 17.4543i 1.42991i 0.699171 + 0.714955i \(0.253553\pi\)
−0.699171 + 0.714955i \(0.746447\pi\)
\(150\) 0.146056 0.0604983i 0.0119254 0.00493967i
\(151\) 7.97016 + 7.97016i 0.648602 + 0.648602i 0.952655 0.304053i \(-0.0983400\pi\)
−0.304053 + 0.952655i \(0.598340\pi\)
\(152\) −6.45150 −0.523286
\(153\) −11.4468 4.55435i −0.925416 0.368197i
\(154\) 4.84996 0.390821
\(155\) −4.68949 4.68949i −0.376669 0.376669i
\(156\) −0.0395030 + 0.0163627i −0.00316277 + 0.00131006i
\(157\) 6.14541i 0.490457i −0.969465 0.245229i \(-0.921137\pi\)
0.969465 0.245229i \(-0.0788630\pi\)
\(158\) −8.17087 19.7262i −0.650039 1.56933i
\(159\) −1.21710 0.504141i −0.0965227 0.0399810i
\(160\) −0.149282 + 0.360399i −0.0118018 + 0.0284920i
\(161\) −2.27901 + 2.27901i −0.179611 + 0.179611i
\(162\) 9.04348 9.04348i 0.710523 0.710523i
\(163\) 4.28650 10.3485i 0.335745 0.810560i −0.662369 0.749177i \(-0.730449\pi\)
0.998114 0.0613824i \(-0.0195509\pi\)
\(164\) −0.0687586 0.0284808i −0.00536915 0.00222397i
\(165\) 0.204026 + 0.492562i 0.0158834 + 0.0383459i
\(166\) 7.24243i 0.562121i
\(167\) −5.27168 + 2.18360i −0.407935 + 0.168972i −0.577208 0.816597i \(-0.695858\pi\)
0.169273 + 0.985569i \(0.445858\pi\)
\(168\) −0.150041 0.150041i −0.0115759 0.0115759i
\(169\) −18.7989 −1.44607
\(170\) −5.93008 + 0.0831959i −0.454817 + 0.00638083i
\(171\) 6.94010 0.530723
\(172\) −0.0312752 0.0312752i −0.00238471 0.00238471i
\(173\) −4.19214 + 1.73644i −0.318722 + 0.132019i −0.536309 0.844022i \(-0.680182\pi\)
0.217586 + 0.976041i \(0.430182\pi\)
\(174\) 1.02856i 0.0779750i
\(175\) −0.265997 0.642174i −0.0201075 0.0485438i
\(176\) −18.5236 7.67272i −1.39627 0.578353i
\(177\) −0.417158 + 1.00711i −0.0313555 + 0.0756990i
\(178\) 2.39687 2.39687i 0.179653 0.179653i
\(179\) −12.9935 + 12.9935i −0.971179 + 0.971179i −0.999596 0.0284174i \(-0.990953\pi\)
0.0284174 + 0.999596i \(0.490953\pi\)
\(180\) 0.0788847 0.190445i 0.00587972 0.0141949i
\(181\) −9.90234 4.10168i −0.736035 0.304876i −0.0170058 0.999855i \(-0.505413\pi\)
−0.719029 + 0.694980i \(0.755413\pi\)
\(182\) 2.15756 + 5.20881i 0.159929 + 0.386103i
\(183\) 0.176172i 0.0130230i
\(184\) 11.8988 4.92864i 0.877191 0.363344i
\(185\) 0.0838805 + 0.0838805i 0.00616702 + 0.00616702i
\(186\) 1.04844 0.0768754
\(187\) −0.280571 19.9987i −0.0205174 1.46245i
\(188\) 0.340604 0.0248411
\(189\) 0.323462 + 0.323462i 0.0235284 + 0.0235284i
\(190\) 3.08668 1.27854i 0.223931 0.0927553i
\(191\) 18.5397i 1.34149i 0.741690 + 0.670743i \(0.234024\pi\)
−0.741690 + 0.670743i \(0.765976\pi\)
\(192\) 0.324082 + 0.782404i 0.0233886 + 0.0564652i
\(193\) 9.13339 + 3.78317i 0.657435 + 0.272319i 0.686359 0.727263i \(-0.259208\pi\)
−0.0289235 + 0.999582i \(0.509208\pi\)
\(194\) 1.48666 3.58912i 0.106736 0.257684i
\(195\) −0.438244 + 0.438244i −0.0313833 + 0.0313833i
\(196\) −0.317912 + 0.317912i −0.0227080 + 0.0227080i
\(197\) 5.33973 12.8913i 0.380440 0.918464i −0.611440 0.791291i \(-0.709410\pi\)
0.991881 0.127173i \(-0.0405905\pi\)
\(198\) 19.2613 + 7.97827i 1.36884 + 0.566991i
\(199\) 4.87410 + 11.7671i 0.345516 + 0.834148i 0.997138 + 0.0756048i \(0.0240887\pi\)
−0.651622 + 0.758544i \(0.725911\pi\)
\(200\) 2.77756i 0.196403i
\(201\) −0.304024 + 0.125931i −0.0214442 + 0.00888248i
\(202\) −14.5471 14.5471i −1.02353 1.02353i
\(203\) −4.52235 −0.317407
\(204\) 0.0217941 0.0224143i 0.00152589 0.00156932i
\(205\) −1.07877 −0.0753443
\(206\) −11.0827 11.0827i −0.772167 0.772167i
\(207\) −12.8000 + 5.30191i −0.889658 + 0.368509i
\(208\) 23.3075i 1.61608i
\(209\) 4.31179 + 10.4096i 0.298253 + 0.720046i
\(210\) 0.101521 + 0.0420515i 0.00700563 + 0.00290183i
\(211\) 4.92813 11.8976i 0.339266 0.819061i −0.658520 0.752563i \(-0.728817\pi\)
0.997787 0.0664982i \(-0.0211827\pi\)
\(212\) −0.584733 + 0.584733i −0.0401596 + 0.0401596i
\(213\) 0.364372 0.364372i 0.0249664 0.0249664i
\(214\) −9.15253 + 22.0962i −0.625654 + 1.51046i
\(215\) −0.592307 0.245341i −0.0403950 0.0167321i
\(216\) −0.699526 1.68881i −0.0475967 0.114909i
\(217\) 4.60976i 0.312931i
\(218\) 14.0863 5.83472i 0.954042 0.395177i
\(219\) 0.427368 + 0.427368i 0.0288788 + 0.0288788i
\(220\) 0.334661 0.0225629
\(221\) 21.3537 9.19801i 1.43640 0.618725i
\(222\) −0.0187534 −0.00125864
\(223\) 14.4397 + 14.4397i 0.966952 + 0.966952i 0.999471 0.0325195i \(-0.0103531\pi\)
−0.0325195 + 0.999471i \(0.510353\pi\)
\(224\) −0.250507 + 0.103764i −0.0167377 + 0.00693300i
\(225\) 2.98792i 0.199195i
\(226\) 6.35202 + 15.3351i 0.422530 + 1.02008i
\(227\) 1.12740 + 0.466985i 0.0748282 + 0.0309949i 0.419784 0.907624i \(-0.362106\pi\)
−0.344955 + 0.938619i \(0.612106\pi\)
\(228\) −0.00673977 + 0.0162713i −0.000446352 + 0.00107759i
\(229\) −2.48862 + 2.48862i −0.164453 + 0.164453i −0.784536 0.620083i \(-0.787099\pi\)
0.620083 + 0.784536i \(0.287099\pi\)
\(230\) −4.71616 + 4.71616i −0.310974 + 0.310974i
\(231\) −0.141815 + 0.342372i −0.00933076 + 0.0225264i
\(232\) 16.6957 + 6.91560i 1.09613 + 0.454031i
\(233\) −11.0988 26.7949i −0.727107 1.75539i −0.652005 0.758215i \(-0.726072\pi\)
−0.0751019 0.997176i \(-0.523928\pi\)
\(234\) 24.2356i 1.58433i
\(235\) 4.56122 1.88932i 0.297541 0.123246i
\(236\) 0.483845 + 0.483845i 0.0314956 + 0.0314956i
\(237\) 1.63145 0.105974
\(238\) −2.95552 2.87374i −0.191578 0.186277i
\(239\) 7.87133 0.509154 0.254577 0.967053i \(-0.418064\pi\)
0.254577 + 0.967053i \(0.418064\pi\)
\(240\) −0.321217 0.321217i −0.0207344 0.0207344i
\(241\) 10.7419 4.44945i 0.691947 0.286614i −0.00886385 0.999961i \(-0.502821\pi\)
0.700811 + 0.713347i \(0.252821\pi\)
\(242\) 18.0247i 1.15867i
\(243\) 1.12952 + 2.72689i 0.0724585 + 0.174930i
\(244\) 0.102167 + 0.0423192i 0.00654060 + 0.00270921i
\(245\) −2.49389 + 6.02079i −0.159329 + 0.384654i
\(246\) 0.120591 0.120591i 0.00768862 0.00768862i
\(247\) −9.26165 + 9.26165i −0.589305 + 0.589305i
\(248\) −7.04926 + 17.0184i −0.447629 + 1.08067i
\(249\) 0.511263 + 0.211772i 0.0324000 + 0.0134205i
\(250\) −0.550451 1.32891i −0.0348136 0.0840474i
\(251\) 7.94692i 0.501605i 0.968038 + 0.250803i \(0.0806945\pi\)
−0.968038 + 0.250803i \(0.919306\pi\)
\(252\) 0.132375 0.0548316i 0.00833885 0.00345406i
\(253\) −15.9049 15.9049i −0.999930 0.999930i
\(254\) 0.717097 0.0449947
\(255\) 0.167526 0.421054i 0.0104909 0.0263674i
\(256\) 1.65381 0.103363
\(257\) −5.60542 5.60542i −0.349657 0.349657i 0.510325 0.859982i \(-0.329525\pi\)
−0.859982 + 0.510325i \(0.829525\pi\)
\(258\) 0.0936376 0.0387860i 0.00582962 0.00241471i
\(259\) 0.0824544i 0.00512347i
\(260\) 0.148878 + 0.359423i 0.00923302 + 0.0222905i
\(261\) −17.9602 7.43935i −1.11171 0.460484i
\(262\) 10.7526 25.9590i 0.664295 1.60375i
\(263\) −6.03602 + 6.03602i −0.372197 + 0.372197i −0.868277 0.496080i \(-0.834772\pi\)
0.496080 + 0.868277i \(0.334772\pi\)
\(264\) 1.04711 1.04711i 0.0644454 0.0644454i
\(265\) −4.58699 + 11.0740i −0.281777 + 0.680269i
\(266\) 2.14550 + 0.888696i 0.131549 + 0.0544895i
\(267\) 0.0991163 + 0.239288i 0.00606582 + 0.0146442i
\(268\) 0.206563i 0.0126178i
\(269\) −14.7662 + 6.11636i −0.900311 + 0.372921i −0.784340 0.620331i \(-0.786998\pi\)
−0.115971 + 0.993253i \(0.536998\pi\)
\(270\) 0.669368 + 0.669368i 0.0407364 + 0.0407364i
\(271\) 22.5289 1.36853 0.684266 0.729232i \(-0.260123\pi\)
0.684266 + 0.729232i \(0.260123\pi\)
\(272\) 6.74180 + 15.6514i 0.408782 + 0.949008i
\(273\) −0.430793 −0.0260728
\(274\) −3.88252 3.88252i −0.234552 0.234552i
\(275\) 4.48163 1.85635i 0.270253 0.111942i
\(276\) 0.0351587i 0.00211630i
\(277\) 2.64132 + 6.37672i 0.158702 + 0.383140i 0.983151 0.182796i \(-0.0585149\pi\)
−0.824449 + 0.565936i \(0.808515\pi\)
\(278\) 17.6113 + 7.29484i 1.05626 + 0.437516i
\(279\) 7.58314 18.3073i 0.453991 1.09603i
\(280\) −1.36517 + 1.36517i −0.0815845 + 0.0815845i
\(281\) 6.63310 6.63310i 0.395698 0.395698i −0.481015 0.876712i \(-0.659732\pi\)
0.876712 + 0.481015i \(0.159732\pi\)
\(282\) −0.298682 + 0.721082i −0.0177862 + 0.0429398i
\(283\) 19.0106 + 7.87443i 1.13006 + 0.468086i 0.867802 0.496911i \(-0.165532\pi\)
0.262259 + 0.964997i \(0.415532\pi\)
\(284\) −0.123783 0.298838i −0.00734515 0.0177328i
\(285\) 0.255283i 0.0151216i
\(286\) −36.3515 + 15.0573i −2.14951 + 0.890355i
\(287\) −0.530213 0.530213i −0.0312975 0.0312975i
\(288\) −1.16557 −0.0686816
\(289\) −11.6789 + 12.3533i −0.686992 + 0.726665i
\(290\) −9.35848 −0.549549
\(291\) 0.209895 + 0.209895i 0.0123043 + 0.0123043i
\(292\) 0.350503 0.145183i 0.0205117 0.00849620i
\(293\) 23.4539i 1.37019i −0.728452 0.685097i \(-0.759760\pi\)
0.728452 0.685097i \(-0.240240\pi\)
\(294\) −0.394259 0.951825i −0.0229936 0.0555116i
\(295\) 9.16330 + 3.79557i 0.533508 + 0.220986i
\(296\) 0.126090 0.304407i 0.00732881 0.0176933i
\(297\) −2.25739 + 2.25739i −0.130987 + 0.130987i
\(298\) −17.7528 + 17.7528i −1.02839 + 1.02839i
\(299\) 10.0062 24.1572i 0.578675 1.39704i
\(300\) 0.00700526 + 0.00290167i 0.000404449 + 0.000167528i
\(301\) −0.170533 0.411703i −0.00982936 0.0237302i
\(302\) 16.2129i 0.932948i
\(303\) 1.45228 0.601555i 0.0834315 0.0345585i
\(304\) −6.78845 6.78845i −0.389344 0.389344i
\(305\) 1.60292 0.0917832
\(306\) −7.01028 16.2747i −0.400751 0.930365i
\(307\) 30.4260 1.73650 0.868251 0.496126i \(-0.165244\pi\)
0.868251 + 0.496126i \(0.165244\pi\)
\(308\) 0.164486 + 0.164486i 0.00937244 + 0.00937244i
\(309\) 1.10642 0.458294i 0.0629421 0.0260715i
\(310\) 9.53937i 0.541800i
\(311\) 0.413255 + 0.997685i 0.0234335 + 0.0565735i 0.935163 0.354217i \(-0.115253\pi\)
−0.911730 + 0.410791i \(0.865253\pi\)
\(312\) 1.59041 + 0.658771i 0.0900394 + 0.0372955i
\(313\) 1.38743 3.34956i 0.0784224 0.189328i −0.879806 0.475333i \(-0.842327\pi\)
0.958228 + 0.286005i \(0.0923274\pi\)
\(314\) 6.25051 6.25051i 0.352737 0.352737i
\(315\) 1.46856 1.46856i 0.0827440 0.0827440i
\(316\) 0.391898 0.946126i 0.0220460 0.0532238i
\(317\) −8.12537 3.36564i −0.456366 0.189033i 0.142645 0.989774i \(-0.454439\pi\)
−0.599011 + 0.800741i \(0.704439\pi\)
\(318\) −0.725156 1.75068i −0.0406647 0.0981733i
\(319\) 31.5607i 1.76706i
\(320\) 7.11880 2.94870i 0.397953 0.164837i
\(321\) −1.29221 1.29221i −0.0721239 0.0721239i
\(322\) −4.63597 −0.258353
\(323\) 3.54041 8.89837i 0.196994 0.495119i
\(324\) 0.613417 0.0340787
\(325\) 3.98741 + 3.98741i 0.221182 + 0.221182i
\(326\) 14.8853 6.16570i 0.824421 0.341486i
\(327\) 1.16500i 0.0644246i
\(328\) 1.14665 + 2.76826i 0.0633132 + 0.152851i
\(329\) 3.17043 + 1.31324i 0.174792 + 0.0724010i
\(330\) −0.293470 + 0.708500i −0.0161550 + 0.0390017i
\(331\) −24.8643 + 24.8643i −1.36666 + 1.36666i −0.501515 + 0.865149i \(0.667224\pi\)
−0.865149 + 0.501515i \(0.832776\pi\)
\(332\) 0.245626 0.245626i 0.0134805 0.0134805i
\(333\) −0.135639 + 0.327462i −0.00743297 + 0.0179448i
\(334\) −7.58278 3.14089i −0.414911 0.171862i
\(335\) 1.14580 + 2.76620i 0.0626016 + 0.151134i
\(336\) 0.315755i 0.0172259i
\(337\) −29.1162 + 12.0603i −1.58606 + 0.656968i −0.989359 0.145494i \(-0.953523\pi\)
−0.596702 + 0.802463i \(0.703523\pi\)
\(338\) −19.1204 19.1204i −1.04001 1.04001i
\(339\) −1.26829 −0.0688839
\(340\) −0.203940 0.198296i −0.0110602 0.0107541i
\(341\) 32.1708 1.74214
\(342\) 7.05879 + 7.05879i 0.381696 + 0.381696i
\(343\) −8.68018 + 3.59545i −0.468686 + 0.194136i
\(344\) 1.78072i 0.0960098i
\(345\) −0.195024 0.470830i −0.0104997 0.0253486i
\(346\) −6.02997 2.49769i −0.324173 0.134277i
\(347\) −0.168500 + 0.406795i −0.00904556 + 0.0218379i −0.928338 0.371738i \(-0.878762\pi\)
0.919292 + 0.393576i \(0.128762\pi\)
\(348\) 0.0348835 0.0348835i 0.00186995 0.00186995i
\(349\) −8.78380 + 8.78380i −0.470186 + 0.470186i −0.901975 0.431789i \(-0.857883\pi\)
0.431789 + 0.901975i \(0.357883\pi\)
\(350\) 0.382610 0.923703i 0.0204514 0.0493740i
\(351\) −3.42864 1.42019i −0.183007 0.0758041i
\(352\) −0.724150 1.74825i −0.0385973 0.0931821i
\(353\) 7.38055i 0.392827i 0.980521 + 0.196414i \(0.0629295\pi\)
−0.980521 + 0.196414i \(0.937071\pi\)
\(354\) −1.44862 + 0.600040i −0.0769935 + 0.0318918i
\(355\) −3.31529 3.31529i −0.175957 0.175957i
\(356\) 0.162579 0.00861668
\(357\) 0.289286 0.124609i 0.0153107 0.00659501i
\(358\) −26.4314 −1.39694
\(359\) −4.98636 4.98636i −0.263170 0.263170i 0.563171 0.826341i \(-0.309581\pi\)
−0.826341 + 0.563171i \(0.809581\pi\)
\(360\) −7.66740 + 3.17594i −0.404107 + 0.167387i
\(361\) 13.6050i 0.716051i
\(362\) −5.89986 14.2435i −0.310090 0.748622i
\(363\) −1.27241 0.527051i −0.0667844 0.0276630i
\(364\) −0.103483 + 0.249830i −0.00542397 + 0.0130946i
\(365\) 3.88846 3.88846i 0.203531 0.203531i
\(366\) −0.179185 + 0.179185i −0.00936615 + 0.00936615i
\(367\) −6.24413 + 15.0747i −0.325941 + 0.786891i 0.672945 + 0.739693i \(0.265029\pi\)
−0.998886 + 0.0471982i \(0.984971\pi\)
\(368\) 17.7063 + 7.33419i 0.923005 + 0.382321i
\(369\) −1.23349 2.97791i −0.0642130 0.155024i
\(370\) 0.170630i 0.00887063i
\(371\) −7.69735 + 3.18835i −0.399626 + 0.165531i
\(372\) 0.0355577 + 0.0355577i 0.00184358 + 0.00184358i
\(373\) 18.3821 0.951787 0.475893 0.879503i \(-0.342125\pi\)
0.475893 + 0.879503i \(0.342125\pi\)
\(374\) 20.0554 20.6261i 1.03704 1.06655i
\(375\) 0.109907 0.00567556
\(376\) −9.69648 9.69648i −0.500058 0.500058i
\(377\) 33.8960 14.0402i 1.74573 0.723105i
\(378\) 0.657987i 0.0338432i
\(379\) −6.31254 15.2398i −0.324253 0.782817i −0.998998 0.0447652i \(-0.985746\pi\)
0.674744 0.738052i \(-0.264254\pi\)
\(380\) 0.148046 + 0.0613226i 0.00759460 + 0.00314579i
\(381\) −0.0209683 + 0.0506219i −0.00107424 + 0.00259344i
\(382\) −18.8567 + 18.8567i −0.964795 + 0.964795i
\(383\) −25.6981 + 25.6981i −1.31311 + 1.31311i −0.394002 + 0.919110i \(0.628910\pi\)
−0.919110 + 0.394002i \(0.871090\pi\)
\(384\) −0.498974 + 1.20463i −0.0254631 + 0.0614735i
\(385\) 3.11511 + 1.29032i 0.158761 + 0.0657609i
\(386\) 5.44171 + 13.1374i 0.276976 + 0.668678i
\(387\) 1.91558i 0.0973744i
\(388\) 0.172144 0.0713045i 0.00873930 0.00361994i
\(389\) −4.50312 4.50312i −0.228317 0.228317i 0.583672 0.811989i \(-0.301615\pi\)
−0.811989 + 0.583672i \(0.801615\pi\)
\(390\) −0.891477 −0.0451417
\(391\) 0.268192 + 19.1164i 0.0135631 + 0.966757i
\(392\) 18.1010 0.914237
\(393\) 1.51811 + 1.51811i 0.0765784 + 0.0765784i
\(394\) 18.5428 7.68066i 0.934171 0.386946i
\(395\) 14.8439i 0.746880i
\(396\) 0.382661 + 0.923825i 0.0192294 + 0.0464240i
\(397\) −30.8370 12.7731i −1.54767 0.641065i −0.564774 0.825245i \(-0.691037\pi\)
−0.982892 + 0.184181i \(0.941037\pi\)
\(398\) −7.01089 + 16.9258i −0.351424 + 0.848413i
\(399\) −0.125471 + 0.125471i −0.00628142 + 0.00628142i
\(400\) −2.92263 + 2.92263i −0.146131 + 0.146131i
\(401\) −4.49654 + 10.8556i −0.224547 + 0.542104i −0.995497 0.0947914i \(-0.969782\pi\)
0.770950 + 0.636895i \(0.219782\pi\)
\(402\) −0.437307 0.181139i −0.0218109 0.00903438i
\(403\) 14.3115 + 34.5511i 0.712909 + 1.72111i
\(404\) 0.986724i 0.0490914i
\(405\) 8.21461 3.40260i 0.408187 0.169077i
\(406\) −4.59968 4.59968i −0.228278 0.228278i
\(407\) −0.575436 −0.0285233
\(408\) −1.25855 + 0.0176567i −0.0623074 + 0.000874139i
\(409\) 12.6834 0.627154 0.313577 0.949563i \(-0.398473\pi\)
0.313577 + 0.949563i \(0.398473\pi\)
\(410\) −1.09721 1.09721i −0.0541876 0.0541876i
\(411\) 0.387605 0.160551i 0.0191192 0.00791941i
\(412\) 0.751735i 0.0370353i
\(413\) 2.63824 + 6.36927i 0.129819 + 0.313411i
\(414\) −18.4114 7.62626i −0.904872 0.374810i
\(415\) 1.92684 4.65179i 0.0945846 0.228347i
\(416\) 1.55546 1.55546i 0.0762627 0.0762627i
\(417\) −1.02993 + 1.02993i −0.0504358 + 0.0504358i
\(418\) −6.20207 + 14.9731i −0.303353 + 0.732359i
\(419\) 32.3564 + 13.4025i 1.58072 + 0.654754i 0.988527 0.151045i \(-0.0482639\pi\)
0.592189 + 0.805799i \(0.298264\pi\)
\(420\) 0.00201691 + 0.00486925i 9.84150e−5 + 0.000237595i
\(421\) 10.0231i 0.488497i 0.969713 + 0.244248i \(0.0785412\pi\)
−0.969713 + 0.244248i \(0.921459\pi\)
\(422\) 17.1134 7.08861i 0.833068 0.345068i
\(423\) 10.4308 + 10.4308i 0.507165 + 0.507165i
\(424\) 33.2929 1.61685
\(425\) −3.83101 1.52425i −0.185831 0.0739371i
\(426\) 0.741207 0.0359116
\(427\) 0.787836 + 0.787836i 0.0381260 + 0.0381260i
\(428\) −1.05980 + 0.438982i −0.0512271 + 0.0212190i
\(429\) 3.00643i 0.145152i
\(430\) −0.352899 0.851973i −0.0170183 0.0410858i
\(431\) 21.9385 + 9.08724i 1.05674 + 0.437717i 0.842294 0.539019i \(-0.181205\pi\)
0.214448 + 0.976735i \(0.431205\pi\)
\(432\) 1.04095 2.51307i 0.0500826 0.120910i
\(433\) 22.8337 22.8337i 1.09732 1.09732i 0.102592 0.994724i \(-0.467286\pi\)
0.994724 0.102592i \(-0.0327135\pi\)
\(434\) 4.68859 4.68859i 0.225059 0.225059i
\(435\) 0.273647 0.660642i 0.0131204 0.0316753i
\(436\) 0.675618 + 0.279850i 0.0323562 + 0.0134024i
\(437\) −4.12155 9.95030i −0.197160 0.475987i
\(438\) 0.869353i 0.0415393i
\(439\) −19.7035 + 8.16145i −0.940396 + 0.389525i −0.799613 0.600515i \(-0.794962\pi\)
−0.140783 + 0.990040i \(0.544962\pi\)
\(440\) −9.52730 9.52730i −0.454196 0.454196i
\(441\) −19.4719 −0.927231
\(442\) 31.0741 + 12.3635i 1.47805 + 0.588073i
\(443\) −13.8187 −0.656546 −0.328273 0.944583i \(-0.606467\pi\)
−0.328273 + 0.944583i \(0.606467\pi\)
\(444\) −0.000636019 0 0.000636019i −3.01841e−5 0 3.01841e-5i
\(445\) 2.17719 0.901821i 0.103209 0.0427504i
\(446\) 29.3732i 1.39086i
\(447\) −0.734118 1.77232i −0.0347226 0.0838277i
\(448\) 4.94817 + 2.04960i 0.233779 + 0.0968344i
\(449\) −2.53099 + 6.11035i −0.119445 + 0.288365i −0.972282 0.233812i \(-0.924880\pi\)
0.852837 + 0.522177i \(0.174880\pi\)
\(450\) 3.03902 3.03902i 0.143261 0.143261i
\(451\) 3.70027 3.70027i 0.174239 0.174239i
\(452\) −0.304661 + 0.735517i −0.0143301 + 0.0345958i
\(453\) −1.14452 0.474074i −0.0537740 0.0222739i
\(454\) 0.671710 + 1.62165i 0.0315249 + 0.0761079i
\(455\) 3.91962i 0.183755i
\(456\) 0.655089 0.271347i 0.0306774 0.0127070i
\(457\) −3.54288 3.54288i −0.165729 0.165729i 0.619370 0.785099i \(-0.287388\pi\)
−0.785099 + 0.619370i \(0.787388\pi\)
\(458\) −5.06236 −0.236548
\(459\) 2.71320 0.0380648i 0.126641 0.00177671i
\(460\) −0.319896 −0.0149152
\(461\) 11.5839 + 11.5839i 0.539518 + 0.539518i 0.923387 0.383869i \(-0.125409\pi\)
−0.383869 + 0.923387i \(0.625409\pi\)
\(462\) −0.492468 + 0.203987i −0.0229117 + 0.00949032i
\(463\) 27.3768i 1.27231i −0.771563 0.636153i \(-0.780525\pi\)
0.771563 0.636153i \(-0.219475\pi\)
\(464\) 10.2909 + 24.8445i 0.477744 + 1.15338i
\(465\) 0.673411 + 0.278936i 0.0312287 + 0.0129353i
\(466\) 15.9645 38.5417i 0.739541 1.78541i
\(467\) 0.457032 0.457032i 0.0211489 0.0211489i −0.696453 0.717602i \(-0.745240\pi\)
0.717602 + 0.696453i \(0.245240\pi\)
\(468\) −0.821949 + 0.821949i −0.0379946 + 0.0379946i
\(469\) −0.796426 + 1.92274i −0.0367755 + 0.0887840i
\(470\) 6.56085 + 2.71759i 0.302629 + 0.125353i
\(471\) 0.258473 + 0.624009i 0.0119098 + 0.0287528i
\(472\) 27.5487i 1.26803i
\(473\) 2.87321 1.19012i 0.132110 0.0547219i
\(474\) 1.65935 + 1.65935i 0.0762165 + 0.0762165i
\(475\) 2.32272 0.106574
\(476\) −0.00277360 0.197699i −0.000127128 0.00906150i
\(477\) −35.8144 −1.63983
\(478\) 8.00594 + 8.00594i 0.366183 + 0.366183i
\(479\) −12.5323 + 5.19106i −0.572616 + 0.237185i −0.650152 0.759804i \(-0.725295\pi\)
0.0775357 + 0.996990i \(0.475295\pi\)
\(480\) 0.0428738i 0.00195691i
\(481\) −0.255989 0.618013i −0.0116721 0.0281790i
\(482\) 15.4511 + 6.40008i 0.703781 + 0.291515i
\(483\) 0.135558 0.327266i 0.00616811 0.0148911i
\(484\) −0.611305 + 0.611305i −0.0277866 + 0.0277866i
\(485\) 1.90976 1.90976i 0.0867176 0.0867176i
\(486\) −1.62469 + 3.92236i −0.0736976 + 0.177922i
\(487\) −26.8238 11.1108i −1.21550 0.503478i −0.319527 0.947577i \(-0.603524\pi\)
−0.895978 + 0.444099i \(0.853524\pi\)
\(488\) −1.70379 4.11332i −0.0771270 0.186201i
\(489\) 1.23108i 0.0556716i
\(490\) −8.66030 + 3.58721i −0.391232 + 0.162054i
\(491\) −9.28419 9.28419i −0.418990 0.418990i 0.465866 0.884855i \(-0.345743\pi\)
−0.884855 + 0.465866i \(0.845743\pi\)
\(492\) 0.00817968 0.000368768
\(493\) −18.7007 + 19.2328i −0.842235 + 0.866204i
\(494\) −18.8401 −0.847655
\(495\) 10.2488 + 10.2488i 0.460651 + 0.460651i
\(496\) −25.3247 + 10.4898i −1.13711 + 0.471007i
\(497\) 3.25892i 0.146183i
\(498\) 0.304613 + 0.735400i 0.0136500 + 0.0329541i
\(499\) 10.4777 + 4.34000i 0.469045 + 0.194285i 0.604671 0.796475i \(-0.293305\pi\)
−0.135626 + 0.990760i \(0.543305\pi\)
\(500\) 0.0264012 0.0637382i 0.00118070 0.00285046i
\(501\) 0.443449 0.443449i 0.0198118 0.0198118i
\(502\) −8.08282 + 8.08282i −0.360754 + 0.360754i
\(503\) 7.86171 18.9798i 0.350536 0.846269i −0.646018 0.763322i \(-0.723567\pi\)
0.996554 0.0829468i \(-0.0264332\pi\)
\(504\) −5.32949 2.20755i −0.237394 0.0983320i
\(505\) −5.47332 13.2138i −0.243560 0.588005i
\(506\) 32.3537i 1.43830i
\(507\) 1.90886 0.790674i 0.0847753 0.0351151i
\(508\) 0.0243203 + 0.0243203i 0.00107904 + 0.00107904i
\(509\) −8.40900 −0.372722 −0.186361 0.982481i \(-0.559669\pi\)
−0.186361 + 0.982481i \(0.559669\pi\)
\(510\) 0.598645 0.257864i 0.0265085 0.0114184i
\(511\) 3.82235 0.169091
\(512\) −15.0955 15.0955i −0.667132 0.667132i
\(513\) −1.41225 + 0.584975i −0.0623525 + 0.0258273i
\(514\) 11.4026i 0.502946i
\(515\) −4.16985 10.0669i −0.183745 0.443601i
\(516\) 0.00449113 + 0.00186029i 0.000197711 + 8.18945e-5i
\(517\) −9.16486 + 22.1259i −0.403070 + 0.973098i
\(518\) −0.0838644 + 0.0838644i −0.00368479 + 0.00368479i
\(519\) 0.352639 0.352639i 0.0154791 0.0154791i
\(520\) 5.99390 14.4706i 0.262850 0.634576i
\(521\) −19.7304 8.17262i −0.864406 0.358049i −0.0939770 0.995574i \(-0.529958\pi\)
−0.770429 + 0.637526i \(0.779958\pi\)
\(522\) −10.7007 25.8339i −0.468359 1.13072i
\(523\) 24.4644i 1.06975i 0.844930 + 0.534877i \(0.179642\pi\)
−0.844930 + 0.534877i \(0.820358\pi\)
\(524\) 1.24507 0.515723i 0.0543910 0.0225295i
\(525\) 0.0540191 + 0.0540191i 0.00235759 + 0.00235759i
\(526\) −12.2785 −0.535367
\(527\) −19.6046 19.0621i −0.853989 0.830359i
\(528\) 2.20361 0.0958996
\(529\) −1.06033 1.06033i −0.0461012 0.0461012i
\(530\) −15.9288 + 6.59792i −0.691902 + 0.286595i
\(531\) 29.6351i 1.28605i
\(532\) 0.0426244 + 0.102904i 0.00184800 + 0.00446148i
\(533\) 5.62017 + 2.32795i 0.243436 + 0.100835i
\(534\) −0.142569 + 0.344191i −0.00616955 + 0.0148946i
\(535\) −11.7573 + 11.7573i −0.508312 + 0.508312i
\(536\) 5.88053 5.88053i 0.254000 0.254000i
\(537\) 0.772867 1.86587i 0.0333517 0.0805181i
\(538\) −21.2397 8.79776i −0.915708 0.379299i
\(539\) −12.0976 29.2062i −0.521080 1.25800i
\(540\) 0.0454030i 0.00195384i
\(541\) 1.77760 0.736307i 0.0764251 0.0316563i −0.344143 0.938917i \(-0.611831\pi\)
0.420569 + 0.907261i \(0.361831\pi\)
\(542\) 22.9142 + 22.9142i 0.984248 + 0.984248i
\(543\) 1.17800 0.0505530
\(544\) −0.594600 + 1.49445i −0.0254932 + 0.0640740i
\(545\) 10.5999 0.454049
\(546\) −0.438160 0.438160i −0.0187515 0.0187515i
\(547\) 13.6015 5.63393i 0.581559 0.240890i −0.0724556 0.997372i \(-0.523084\pi\)
0.654014 + 0.756482i \(0.273084\pi\)
\(548\) 0.263350i 0.0112498i
\(549\) 1.83283 + 4.42484i 0.0782232 + 0.188847i
\(550\) 6.44637 + 2.67018i 0.274874 + 0.113857i
\(551\) 5.78313 13.9617i 0.246369 0.594789i
\(552\) −1.00092 + 1.00092i −0.0426018 + 0.0426018i
\(553\) 7.29579 7.29579i 0.310248 0.310248i
\(554\) −3.79928 + 9.17226i −0.161416 + 0.389692i
\(555\) −0.0120452 0.00498931i −0.000511292 0.000211784i
\(556\) 0.349882 + 0.844689i 0.0148383 + 0.0358228i
\(557\) 24.3617i 1.03224i 0.856517 + 0.516119i \(0.172624\pi\)
−0.856517 + 0.516119i \(0.827376\pi\)
\(558\) 26.3332 10.9076i 1.11477 0.461754i
\(559\) 2.55636 + 2.55636i 0.108123 + 0.108123i
\(560\) −2.87294 −0.121404
\(561\) 0.869627 + 2.01888i 0.0367157 + 0.0852374i
\(562\) 13.4931 0.569171
\(563\) −21.7224 21.7224i −0.915488 0.915488i 0.0812090 0.996697i \(-0.474122\pi\)
−0.996697 + 0.0812090i \(0.974122\pi\)
\(564\) −0.0345851 + 0.0143256i −0.00145630 + 0.000603218i
\(565\) 11.5397i 0.485477i
\(566\) 11.3266 + 27.3448i 0.476091 + 1.14939i
\(567\) 5.70985 + 2.36510i 0.239791 + 0.0993247i
\(568\) −4.98356 + 12.0314i −0.209105 + 0.504825i
\(569\) −3.78820 + 3.78820i −0.158809 + 0.158809i −0.782039 0.623230i \(-0.785820\pi\)
0.623230 + 0.782039i \(0.285820\pi\)
\(570\) −0.259648 + 0.259648i −0.0108755 + 0.0108755i
\(571\) 13.7904 33.2930i 0.577110 1.39327i −0.318285 0.947995i \(-0.603107\pi\)
0.895395 0.445272i \(-0.146893\pi\)
\(572\) −1.74352 0.722190i −0.0729003 0.0301963i
\(573\) −0.779770 1.88253i −0.0325754 0.0786439i
\(574\) 1.07856i 0.0450182i
\(575\) −4.28390 + 1.77445i −0.178651 + 0.0739997i
\(576\) 16.2797 + 16.2797i 0.678319 + 0.678319i
\(577\) 39.5472 1.64637 0.823186 0.567772i \(-0.192194\pi\)
0.823186 + 0.567772i \(0.192194\pi\)
\(578\) −24.4431 + 0.685983i −1.01670 + 0.0285331i
\(579\) −1.08653 −0.0451546
\(580\) −0.317392 0.317392i −0.0131790 0.0131790i
\(581\) 3.23339 1.33931i 0.134144 0.0555641i
\(582\) 0.426969i 0.0176984i
\(583\) −22.2510 53.7186i −0.921541 2.22480i
\(584\) −14.1114 5.84515i −0.583936 0.241874i
\(585\) −6.44785 + 15.5665i −0.266586 + 0.643595i
\(586\) 23.8550 23.8550i 0.985442 0.985442i
\(587\) 12.6771 12.6771i 0.523242 0.523242i −0.395307 0.918549i \(-0.629362\pi\)
0.918549 + 0.395307i \(0.129362\pi\)
\(588\) 0.0189098 0.0456523i 0.000779827 0.00188267i
\(589\) 14.2316 + 5.89491i 0.586401 + 0.242895i
\(590\) 5.45953 + 13.1805i 0.224765 + 0.542632i
\(591\) 1.53357i 0.0630827i
\(592\) 0.452981 0.187631i 0.0186174 0.00771158i
\(593\) 10.8169 + 10.8169i 0.444199 + 0.444199i 0.893420 0.449222i \(-0.148299\pi\)
−0.449222 + 0.893420i \(0.648299\pi\)
\(594\) −4.59199 −0.188412
\(595\) −1.13377 2.63211i −0.0464800 0.107906i
\(596\) −1.20416 −0.0493245
\(597\) −0.989838 0.989838i −0.0405114 0.0405114i
\(598\) 34.7476 14.3929i 1.42094 0.588571i
\(599\) 34.6498i 1.41575i 0.706336 + 0.707877i \(0.250347\pi\)
−0.706336 + 0.707877i \(0.749653\pi\)
\(600\) −0.116823 0.282035i −0.00476927 0.0115140i
\(601\) −14.8154 6.13675i −0.604333 0.250323i 0.0594701 0.998230i \(-0.481059\pi\)
−0.663804 + 0.747907i \(0.731059\pi\)
\(602\) 0.245294 0.592193i 0.00999746 0.0241360i
\(603\) −6.32590 + 6.32590i −0.257610 + 0.257610i
\(604\) −0.549859 + 0.549859i −0.0223734 + 0.0223734i
\(605\) −4.79544 + 11.5772i −0.194962 + 0.470681i
\(606\) 2.08896 + 0.865276i 0.0848583 + 0.0351494i
\(607\) 13.9725 + 33.7326i 0.567126 + 1.36916i 0.903967 + 0.427602i \(0.140641\pi\)
−0.336841 + 0.941561i \(0.609359\pi\)
\(608\) 0.906076i 0.0367462i
\(609\) 0.459202 0.190208i 0.0186078 0.00770760i
\(610\) 1.63034 + 1.63034i 0.0660104 + 0.0660104i
\(611\) −27.8402 −1.12629
\(612\) 0.314203 0.789709i 0.0127009 0.0319221i
\(613\) 33.2758 1.34400 0.671998 0.740553i \(-0.265436\pi\)
0.671998 + 0.740553i \(0.265436\pi\)
\(614\) 30.9463 + 30.9463i 1.24889 + 1.24889i
\(615\) 0.109539 0.0453724i 0.00441702 0.00182959i
\(616\) 9.36532i 0.377339i
\(617\) 12.1343 + 29.2948i 0.488508 + 1.17936i 0.955471 + 0.295086i \(0.0953483\pi\)
−0.466963 + 0.884277i \(0.654652\pi\)
\(618\) 1.59147 + 0.659210i 0.0640185 + 0.0265173i
\(619\) −15.6250 + 37.7222i −0.628023 + 1.51618i 0.214052 + 0.976822i \(0.431334\pi\)
−0.842075 + 0.539360i \(0.818666\pi\)
\(620\) 0.323526 0.323526i 0.0129931 0.0129931i
\(621\) 2.15779 2.15779i 0.0865892 0.0865892i
\(622\) −0.594425 + 1.43507i −0.0238343 + 0.0575410i
\(623\) 1.51333 + 0.626842i 0.0606303 + 0.0251139i
\(624\) 0.980300 + 2.36665i 0.0392434 + 0.0947420i
\(625\) 1.00000i 0.0400000i
\(626\) 4.81800 1.99568i 0.192566 0.0797635i
\(627\) −0.875644 0.875644i −0.0349698 0.0349698i
\(628\) 0.423970 0.0169183
\(629\) 0.350666 + 0.340963i 0.0139820 + 0.0135951i
\(630\) 2.98735 0.119019
\(631\) −11.1724 11.1724i −0.444764 0.444764i 0.448845 0.893610i \(-0.351835\pi\)
−0.893610 + 0.448845i \(0.851835\pi\)
\(632\) −38.0915 + 15.7780i −1.51520 + 0.627616i
\(633\) 1.41536i 0.0562555i
\(634\) −4.84113 11.6875i −0.192266 0.464171i
\(635\) 0.460590 + 0.190782i 0.0182779 + 0.00757097i
\(636\) 0.0347806 0.0839677i 0.00137914 0.00332954i
\(637\) 25.9854 25.9854i 1.02958 1.02958i
\(638\) 32.1005 32.1005i 1.27087 1.27087i
\(639\) 5.36099 12.9426i 0.212077 0.512000i
\(640\) 10.9605 + 4.53997i 0.433250 + 0.179458i
\(641\) 9.54180 + 23.0359i 0.376878 + 0.909865i 0.992547 + 0.121860i \(0.0388859\pi\)
−0.615669 + 0.788005i \(0.711114\pi\)
\(642\) 2.62861i 0.103743i
\(643\) 22.1880 9.19057i 0.875009 0.362441i 0.100450 0.994942i \(-0.467972\pi\)
0.774559 + 0.632501i \(0.217972\pi\)
\(644\) −0.157228 0.157228i −0.00619567 0.00619567i
\(645\) 0.0704621 0.00277444
\(646\) 12.6515 5.44959i 0.497767 0.214411i
\(647\) −23.8307 −0.936882 −0.468441 0.883495i \(-0.655184\pi\)
−0.468441 + 0.883495i \(0.655184\pi\)
\(648\) −17.4631 17.4631i −0.686014 0.686014i
\(649\) −44.4501 + 18.4119i −1.74482 + 0.722728i
\(650\) 8.11121i 0.318148i
\(651\) 0.193884 + 0.468078i 0.00759892 + 0.0183454i
\(652\) 0.713942 + 0.295725i 0.0279601 + 0.0115815i
\(653\) 6.32157 15.2616i 0.247382 0.597234i −0.750598 0.660759i \(-0.770234\pi\)
0.997980 + 0.0635255i \(0.0202344\pi\)
\(654\) −1.18492 + 1.18492i −0.0463341 + 0.0463341i
\(655\) 13.8127 13.8127i 0.539706 0.539706i
\(656\) −1.70630 + 4.11938i −0.0666199 + 0.160835i
\(657\) 15.1802 + 6.28783i 0.592235 + 0.245312i
\(658\) 1.88896 + 4.56034i 0.0736392 + 0.177781i
\(659\) 10.2510i 0.399324i −0.979865 0.199662i \(-0.936016\pi\)
0.979865 0.199662i \(-0.0639843\pi\)
\(660\) −0.0339817 + 0.0140757i −0.00132274 + 0.000547895i
\(661\) 15.0908 + 15.0908i 0.586962 + 0.586962i 0.936808 0.349845i \(-0.113766\pi\)
−0.349845 + 0.936808i \(0.613766\pi\)
\(662\) −50.5790 −1.96581
\(663\) −1.78140 + 1.83210i −0.0691839 + 0.0711527i
\(664\) −13.9852 −0.542731
\(665\) 1.14161 + 1.14161i 0.0442699 + 0.0442699i
\(666\) −0.471020 + 0.195103i −0.0182517 + 0.00756009i
\(667\) 30.1683i 1.16812i
\(668\) −0.150646 0.363692i −0.00582867 0.0140717i
\(669\) −2.07354 0.858887i −0.0801676 0.0332065i
\(670\) −1.64811 + 3.97889i −0.0636721 + 0.153718i
\(671\) −5.49818 + 5.49818i −0.212255 + 0.212255i
\(672\) 0.0210724 0.0210724i 0.000812887 0.000812887i
\(673\) −10.5299 + 25.4214i −0.405898 + 0.979924i 0.580308 + 0.814397i \(0.302932\pi\)
−0.986205 + 0.165526i \(0.947068\pi\)
\(674\) −41.8807 17.3476i −1.61319 0.668203i
\(675\) 0.251849 + 0.608017i 0.00969367 + 0.0234026i
\(676\) 1.29693i 0.0498821i
\(677\) 15.7463 6.52233i 0.605180 0.250674i −0.0589863 0.998259i \(-0.518787\pi\)
0.664166 + 0.747585i \(0.268787\pi\)
\(678\) −1.28998 1.28998i −0.0495412 0.0495412i
\(679\) 1.87729 0.0720437
\(680\) 0.160652 + 11.4511i 0.00616072 + 0.439128i
\(681\) −0.134118 −0.00513942
\(682\) 32.7209 + 32.7209i 1.25295 + 1.25295i
\(683\) −2.88510 + 1.19505i −0.110395 + 0.0457273i −0.437198 0.899366i \(-0.644029\pi\)
0.326802 + 0.945093i \(0.394029\pi\)
\(684\) 0.478796i 0.0183072i
\(685\) −1.46080 3.52667i −0.0558141 0.134747i
\(686\) −12.4856 5.17169i −0.476701 0.197456i
\(687\) 0.148026 0.357366i 0.00564754 0.0136344i
\(688\) −1.87372 + 1.87372i −0.0714349 + 0.0714349i
\(689\) 47.7947 47.7947i 1.82083 1.82083i
\(690\) 0.280522 0.677241i 0.0106793 0.0257821i
\(691\) −33.3778 13.8255i −1.26975 0.525948i −0.356862 0.934157i \(-0.616153\pi\)
−0.912888 + 0.408210i \(0.866153\pi\)
\(692\) −0.119797 0.289214i −0.00455398 0.0109943i
\(693\) 10.0746i 0.382702i
\(694\) −0.585134 + 0.242370i −0.0222114 + 0.00920025i
\(695\) 9.37092 + 9.37092i 0.355459 + 0.355459i
\(696\) −1.98616 −0.0752852
\(697\) −4.44743 + 0.0623950i −0.168458 + 0.00236338i
\(698\) −17.8680 −0.676315
\(699\) 2.25396 + 2.25396i 0.0852525 + 0.0852525i
\(700\) 0.0443034 0.0183511i 0.00167451 0.000693606i
\(701\) 18.1677i 0.686185i −0.939302 0.343093i \(-0.888526\pi\)
0.939302 0.343093i \(-0.111474\pi\)
\(702\) −2.04280 4.93175i −0.0771005 0.186137i
\(703\) −0.254559 0.105442i −0.00960087 0.00397681i
\(704\) −14.3038 + 34.5325i −0.539095 + 1.30149i
\(705\) −0.383685 + 0.383685i −0.0144504 + 0.0144504i
\(706\) −7.50677 + 7.50677i −0.282521 + 0.282521i
\(707\) 3.80442 9.18469i 0.143080 0.345426i
\(708\) −0.0694802 0.0287796i −0.00261123 0.00108160i
\(709\) 4.44086 + 10.7212i 0.166780 + 0.402643i 0.985068 0.172166i \(-0.0550765\pi\)
−0.818288 + 0.574809i \(0.805077\pi\)
\(710\) 6.74396i 0.253096i
\(711\) 40.9764 16.9730i 1.53674 0.636536i
\(712\) −4.62839 4.62839i −0.173456 0.173456i
\(713\) −30.7514 −1.15165
\(714\) 0.420974 + 0.167494i 0.0157545 + 0.00626829i
\(715\) −27.3544 −1.02300
\(716\) −0.896417 0.896417i −0.0335007 0.0335007i
\(717\) −0.799260 + 0.331064i −0.0298489 + 0.0123638i
\(718\) 10.1433i 0.378543i
\(719\) −9.86790 23.8232i −0.368011 0.888456i −0.994076 0.108686i \(-0.965336\pi\)
0.626066 0.779770i \(-0.284664\pi\)
\(720\) −11.4097 4.72604i −0.425213 0.176129i
\(721\) 2.89840 6.99735i 0.107942 0.260595i
\(722\) 13.8376 13.8376i 0.514983 0.514983i
\(723\) −0.903599 + 0.903599i −0.0336052 + 0.0336052i
\(724\) 0.282974 0.683160i 0.0105166 0.0253894i
\(725\) −6.01093 2.48981i −0.223240 0.0924691i
\(726\) −0.758110 1.83024i −0.0281361 0.0679265i
\(727\) 17.7430i 0.658051i −0.944321 0.329025i \(-0.893280\pi\)
0.944321 0.329025i \(-0.106720\pi\)
\(728\) 10.0583 4.16627i 0.372784 0.154412i
\(729\) 18.6322 + 18.6322i 0.690081 + 0.690081i
\(730\) 7.90991 0.292759
\(731\) −2.45609 0.977211i −0.0908419 0.0361434i
\(732\) −0.0121541 −0.000449227
\(733\) −18.9661 18.9661i −0.700527 0.700527i 0.263996 0.964524i \(-0.414959\pi\)
−0.964524 + 0.263996i \(0.914959\pi\)
\(734\) −21.6834 + 8.98155i −0.800348 + 0.331515i
\(735\) 0.716247i 0.0264192i
\(736\) 0.692200 + 1.67112i 0.0255148 + 0.0615982i
\(737\) −13.4185 5.55813i −0.494277 0.204736i
\(738\) 1.77425 4.28342i 0.0653111 0.157675i
\(739\) −0.319229 + 0.319229i −0.0117430 + 0.0117430i −0.712954 0.701211i \(-0.752643\pi\)
0.701211 + 0.712954i \(0.252643\pi\)
\(740\) −0.00578689 + 0.00578689i −0.000212730 + 0.000212730i
\(741\) 0.550893 1.32997i 0.0202376 0.0488578i
\(742\) −11.0719 4.58611i −0.406460 0.168361i
\(743\) 7.90111 + 19.0750i 0.289864 + 0.699793i 0.999991 0.00428071i \(-0.00136260\pi\)
−0.710127 + 0.704073i \(0.751363\pi\)
\(744\) 2.02455i 0.0742236i
\(745\) −16.1256 + 6.67946i −0.590798 + 0.244716i
\(746\) 18.6964 + 18.6964i 0.684524 + 0.684524i
\(747\) 15.0444 0.550445
\(748\) 1.37971 0.0193565i 0.0504471 0.000707745i
\(749\) −11.5574 −0.422298
\(750\) 0.111786 + 0.111786i 0.00408186 + 0.00408186i
\(751\) 24.6731 10.2199i 0.900333 0.372930i 0.115985 0.993251i \(-0.462998\pi\)
0.784348 + 0.620321i \(0.212998\pi\)
\(752\) 20.4058i 0.744123i
\(753\) −0.334243 0.806935i −0.0121805 0.0294064i
\(754\) 48.7559 + 20.1953i 1.77558 + 0.735471i
\(755\) −4.31342 + 10.4135i −0.156981 + 0.378986i
\(756\) −0.0223155 + 0.0223155i −0.000811609 + 0.000811609i
\(757\) 13.6672 13.6672i 0.496742 0.496742i −0.413680 0.910422i \(-0.635757\pi\)
0.910422 + 0.413680i \(0.135757\pi\)
\(758\) 9.07995 21.9209i 0.329799 0.796204i
\(759\) 2.28394 + 0.946039i 0.0829018 + 0.0343390i
\(760\) −2.46888 5.96041i −0.0895558 0.216207i
\(761\) 9.52382i 0.345238i 0.984989 + 0.172619i \(0.0552230\pi\)
−0.984989 + 0.172619i \(0.944777\pi\)
\(762\) −0.0728145 + 0.0301607i −0.00263779 + 0.00109261i
\(763\) 5.20984 + 5.20984i 0.188609 + 0.188609i
\(764\) −1.27905 −0.0462743
\(765\) −0.172819 12.3183i −0.00624828 0.445369i
\(766\) −52.2751 −1.88878
\(767\) −39.5483 39.5483i −1.42801 1.42801i
\(768\) −0.167928 + 0.0695582i −0.00605960 + 0.00250997i
\(769\) 21.8393i 0.787544i 0.919208 + 0.393772i \(0.128830\pi\)
−0.919208 + 0.393772i \(0.871170\pi\)
\(770\) 1.85600 + 4.48078i 0.0668855 + 0.161476i
\(771\) 0.804939 + 0.333417i 0.0289892 + 0.0120077i
\(772\) −0.261000 + 0.630110i −0.00939359 + 0.0226781i
\(773\) 12.8920 12.8920i 0.463693 0.463693i −0.436171 0.899864i \(-0.643666\pi\)
0.899864 + 0.436171i \(0.143666\pi\)
\(774\) 1.94834 1.94834i 0.0700316 0.0700316i
\(775\) 2.53793 6.12711i 0.0911652 0.220092i
\(776\) −6.93062 2.87076i −0.248795 0.103054i
\(777\) −0.00346799 0.00837247i −0.000124413 0.000300361i
\(778\) 9.16025i 0.328411i
\(779\) 2.31494 0.958880i 0.0829413 0.0343554i
\(780\) −0.0302343 0.0302343i −0.00108256 0.00108256i
\(781\) 22.7435 0.813826
\(782\) −19.1705 + 19.7161i −0.685536 + 0.705045i
\(783\) 4.28180 0.153019
\(784\) 19.0463 + 19.0463i 0.680227 + 0.680227i
\(785\) 5.67762 2.35175i 0.202643 0.0839375i
\(786\) 3.08814i 0.110150i
\(787\) 3.86446 + 9.32964i 0.137753 + 0.332566i 0.977669 0.210151i \(-0.0673956\pi\)
−0.839916 + 0.542717i \(0.817396\pi\)
\(788\) 0.889364 + 0.368387i 0.0316823 + 0.0131232i
\(789\) 0.359029 0.866773i 0.0127818 0.0308579i
\(790\) 15.0978 15.0978i 0.537156 0.537156i
\(791\) −5.67173 + 5.67173i −0.201664 + 0.201664i
\(792\) 15.4061 37.1937i 0.547433 1.32162i
\(793\) −8.35093 3.45907i −0.296550 0.122835i
\(794\) −18.3728 44.3559i −0.652028 1.57413i
\(795\) 1.31738i 0.0467228i
\(796\) −0.811810 + 0.336263i −0.0287738 + 0.0119185i
\(797\) 21.3651 + 21.3651i 0.756792 + 0.756792i 0.975737 0.218945i \(-0.0702615\pi\)
−0.218945 + 0.975737i \(0.570262\pi\)
\(798\) −0.255234 −0.00903518
\(799\) 18.6953 8.05291i 0.661390 0.284891i
\(800\) −0.390093 −0.0137919
\(801\) 4.97892 + 4.97892i 0.175921 + 0.175921i
\(802\) −15.6147 + 6.46782i −0.551374 + 0.228387i
\(803\) 26.6756i 0.941360i
\(804\) −0.00868793 0.0209745i −0.000306400 0.000739714i
\(805\) −2.97767 1.23339i −0.104949 0.0434714i
\(806\) −20.5857 + 49.6983i −0.725100 + 1.75055i
\(807\) 1.24212 1.24212i 0.0437246 0.0437246i
\(808\) −28.0905 + 28.0905i −0.988222 + 0.988222i
\(809\) 9.87604 23.8429i 0.347223 0.838270i −0.649723 0.760171i \(-0.725115\pi\)
0.996946 0.0780990i \(-0.0248850\pi\)
\(810\) 11.8159 + 4.89430i 0.415168 + 0.171968i
\(811\) −18.0534 43.5848i −0.633941 1.53047i −0.834628 0.550814i \(-0.814317\pi\)
0.200686 0.979656i \(-0.435683\pi\)
\(812\) 0.311995i 0.0109489i
\(813\) −2.28760 + 0.947554i −0.0802296 + 0.0332322i
\(814\) −0.585277 0.585277i −0.0205139 0.0205139i
\(815\) 11.2012 0.392360
\(816\) −1.34286 1.30570i −0.0470095 0.0457087i
\(817\) 1.48911 0.0520975
\(818\) 12.9003 + 12.9003i 0.451049 + 0.451049i
\(819\) −10.8200 + 4.48180i −0.378082 + 0.156607i
\(820\) 0.0744238i 0.00259899i
\(821\) −13.3232 32.1651i −0.464983 1.12257i −0.966326 0.257320i \(-0.917161\pi\)
0.501343 0.865249i \(-0.332839\pi\)
\(822\) 0.557531 + 0.230937i 0.0194461 + 0.00805484i
\(823\) 4.56508 11.0211i 0.159129 0.384171i −0.824126 0.566406i \(-0.808333\pi\)
0.983255 + 0.182236i \(0.0583334\pi\)
\(824\) −21.4008 + 21.4008i −0.745531 + 0.745531i
\(825\) −0.376991 + 0.376991i −0.0131251 + 0.0131251i
\(826\) −3.79484 + 9.16155i −0.132039 + 0.318771i
\(827\) −7.00545 2.90175i −0.243603 0.100904i 0.257541 0.966267i \(-0.417088\pi\)
−0.501145 + 0.865363i \(0.667088\pi\)
\(828\) −0.365778 0.883065i −0.0127116 0.0306886i
\(829\) 24.5064i 0.851141i −0.904925 0.425570i \(-0.860073\pi\)
0.904925 0.425570i \(-0.139927\pi\)
\(830\) 6.69113 2.77156i 0.232252 0.0962021i
\(831\) −0.536403 0.536403i −0.0186076 0.0186076i
\(832\) −43.4508 −1.50639
\(833\) −9.93334 + 24.9662i −0.344170 + 0.865026i
\(834\) −2.09508 −0.0725467
\(835\) −4.03477 4.03477i −0.139629 0.139629i
\(836\) −0.718154 + 0.297469i −0.0248379 + 0.0102882i
\(837\) 4.36456i 0.150861i
\(838\) 19.2781 + 46.5415i 0.665951 + 1.60775i
\(839\) −12.9110 5.34790i −0.445737 0.184630i 0.148514 0.988910i \(-0.452551\pi\)
−0.594250 + 0.804280i \(0.702551\pi\)
\(840\) 0.0812018 0.196038i 0.00280173 0.00676397i
\(841\) −9.42601 + 9.42601i −0.325035 + 0.325035i
\(842\) −10.1945 + 10.1945i −0.351326 + 0.351326i
\(843\) −0.394544 + 0.952514i −0.0135888 + 0.0328063i
\(844\) 0.820809 + 0.339990i 0.0282534 + 0.0117029i
\(845\) −7.19405 17.3680i −0.247483 0.597476i
\(846\) 21.2184i 0.729505i
\(847\) −8.04714 + 3.33324i −0.276503 + 0.114531i
\(848\) 35.0317 + 35.0317i 1.20299 + 1.20299i
\(849\) −2.26154 −0.0776158
\(850\) −2.34621 5.44685i −0.0804743 0.186825i
\(851\) 0.550047 0.0188554
\(852\) 0.0251379 + 0.0251379i 0.000861212 + 0.000861212i
\(853\) −6.83679 + 2.83189i −0.234087 + 0.0969621i −0.496644 0.867955i \(-0.665434\pi\)
0.262556 + 0.964917i \(0.415434\pi\)
\(854\) 1.60262i 0.0548404i
\(855\) 2.65586 + 6.41182i 0.0908286 + 0.219280i
\(856\) 42.6679 + 17.6736i 1.45836 + 0.604072i
\(857\) 18.4907 44.6404i 0.631629 1.52489i −0.205944 0.978564i \(-0.566027\pi\)
0.837574 0.546324i \(-0.183973\pi\)
\(858\) 3.05785 3.05785i 0.104393 0.104393i
\(859\) −3.68462 + 3.68462i −0.125718 + 0.125718i −0.767166 0.641448i \(-0.778334\pi\)
0.641448 + 0.767166i \(0.278334\pi\)
\(860\) 0.0169260 0.0408631i 0.000577173 0.00139342i
\(861\) 0.0761386 + 0.0315377i 0.00259480 + 0.00107480i
\(862\) 13.0711 + 31.5564i 0.445202 + 1.07481i
\(863\) 7.90307i 0.269024i −0.990912 0.134512i \(-0.957053\pi\)
0.990912 0.134512i \(-0.0429466\pi\)
\(864\) 0.237183 0.0982444i 0.00806913 0.00334234i
\(865\) −3.20852 3.20852i −0.109093 0.109093i
\(866\) 46.4483 1.57838
\(867\) 0.666305 1.74557i 0.0226289 0.0592827i
\(868\) 0.318026 0.0107945
\(869\) 50.9161 + 50.9161i 1.72721 + 1.72721i
\(870\) 0.950266 0.393613i 0.0322170 0.0133447i
\(871\) 16.8840i 0.572091i
\(872\) −11.2669 27.2007i −0.381546 0.921133i
\(873\) 7.45551 + 3.08817i 0.252331 + 0.104519i
\(874\) 5.92843 14.3125i 0.200532 0.484127i
\(875\) 0.491499 0.491499i 0.0166157 0.0166157i
\(876\) −0.0294840 + 0.0294840i −0.000996172 + 0.000996172i
\(877\) −10.5262 + 25.4126i −0.355445 + 0.858121i 0.640483 + 0.767972i \(0.278734\pi\)
−0.995928 + 0.0901488i \(0.971266\pi\)
\(878\) −28.3415 11.7394i −0.956478 0.396186i
\(879\) 0.986461 + 2.38153i 0.0332725 + 0.0803269i
\(880\) 20.0498i 0.675878i
\(881\) 18.2295 7.55089i 0.614166 0.254396i −0.0538426 0.998549i \(-0.517147\pi\)
0.668009 + 0.744154i \(0.267147\pi\)
\(882\) −19.8048 19.8048i −0.666864 0.666864i
\(883\) −21.8566 −0.735534 −0.367767 0.929918i \(-0.619878\pi\)
−0.367767 + 0.929918i \(0.619878\pi\)
\(884\) 0.634568 + 1.47318i 0.0213428 + 0.0495485i
\(885\) −1.09009 −0.0366429
\(886\) −14.0550 14.0550i −0.472187 0.472187i
\(887\) 2.56722 1.06338i 0.0861989 0.0357048i −0.339167 0.940726i \(-0.610145\pi\)
0.425366 + 0.905021i \(0.360145\pi\)
\(888\) 0.0362130i 0.00121523i
\(889\) 0.132610 + 0.320149i 0.00444759 + 0.0107374i
\(890\) 3.13167 + 1.29718i 0.104974 + 0.0434815i
\(891\) −16.5056 + 39.8481i −0.552960 + 1.33496i
\(892\) −0.996188 + 0.996188i −0.0333549 + 0.0333549i
\(893\) −8.10863 + 8.10863i −0.271345 + 0.271345i
\(894\) 1.05595 2.54930i 0.0353164 0.0852613i
\(895\) −16.9768 7.03202i −0.567472 0.235055i
\(896\) 3.15567 + 7.61845i 0.105423 + 0.254515i
\(897\) 2.87379i 0.0959530i
\(898\) −8.78912 + 3.64057i −0.293297 + 0.121488i
\(899\) −30.5107 30.5107i −1.01759 1.01759i
\(900\) 0.206136 0.00687119
\(901\) −18.2703 + 45.9200i −0.608671 + 1.52982i
\(902\) 7.52710 0.250625
\(903\) 0.0346321 + 0.0346321i 0.00115248 + 0.00115248i
\(904\) 29.6123 12.2658i 0.984890 0.407955i
\(905\) 10.7182i 0.356286i
\(906\) −0.681907 1.64627i −0.0226548 0.0546936i
\(907\) 39.2435 + 16.2552i 1.30306 + 0.539745i 0.922851 0.385156i \(-0.125853\pi\)
0.380208 + 0.924901i \(0.375853\pi\)
\(908\) −0.0322171 + 0.0777791i −0.00106916 + 0.00258119i
\(909\) 30.2180 30.2180i 1.00227 1.00227i
\(910\) −3.98665 + 3.98665i −0.132156 + 0.132156i
\(911\) −22.6043 + 54.5717i −0.748915 + 1.80804i −0.183933 + 0.982939i \(0.558883\pi\)
−0.564982 + 0.825103i \(0.691117\pi\)
\(912\) 0.974822 + 0.403784i 0.0322796 + 0.0133706i
\(913\) 9.34686 + 22.5653i 0.309336 + 0.746803i
\(914\) 7.20694i 0.238384i
\(915\) −0.162762 + 0.0674182i −0.00538074 + 0.00222878i
\(916\) −0.171689 0.171689i −0.00567277 0.00567277i
\(917\) 13.5778 0.448380
\(918\) 2.79832 + 2.72089i 0.0923582 + 0.0898026i
\(919\) 26.5657 0.876323 0.438161 0.898896i \(-0.355630\pi\)
0.438161 + 0.898896i \(0.355630\pi\)
\(920\) 9.10695 + 9.10695i 0.300247 + 0.300247i
\(921\) −3.08947 + 1.27970i −0.101802 + 0.0421676i
\(922\) 23.5641i 0.776042i
\(923\) 10.1177 + 24.4263i 0.333028 + 0.804001i
\(924\) −0.0236202 0.00978379i −0.000777046 0.000321863i
\(925\) −0.0453958 + 0.109595i −0.00149260 + 0.00360347i
\(926\) 27.8450 27.8450i 0.915042 0.915042i
\(927\) 23.0215 23.0215i 0.756127 0.756127i
\(928\) −0.971255 + 2.34482i −0.0318830 + 0.0769724i
\(929\) 36.0284 + 14.9234i 1.18205 + 0.489622i 0.885159 0.465288i \(-0.154049\pi\)
0.296894 + 0.954911i \(0.404049\pi\)
\(930\) 0.401221 + 0.968633i 0.0131566 + 0.0317627i
\(931\) 15.1368i 0.496090i
\(932\) 1.84857 0.765703i 0.0605519 0.0250814i
\(933\) −0.0839243 0.0839243i −0.00274756 0.00274756i
\(934\) 0.929695 0.0304206
\(935\) 18.3691 7.91240i 0.600732 0.258763i
\(936\) 46.7993 1.52968
\(937\) 6.93328 + 6.93328i 0.226500 + 0.226500i 0.811229 0.584729i \(-0.198799\pi\)
−0.584729 + 0.811229i \(0.698799\pi\)
\(938\) −2.76567 + 1.14558i −0.0903023 + 0.0374044i
\(939\) 0.398471i 0.0130036i
\(940\) 0.130344 + 0.314677i 0.00425134 + 0.0102636i
\(941\) −45.4770 18.8372i −1.48251 0.614075i −0.512837 0.858486i \(-0.671405\pi\)
−0.969672 + 0.244411i \(0.921405\pi\)
\(942\) −0.371787 + 0.897574i −0.0121135 + 0.0292445i
\(943\) −3.53701 + 3.53701i −0.115181 + 0.115181i
\(944\) 28.9875 28.9875i 0.943462 0.943462i
\(945\) −0.175056 + 0.422623i −0.00569458 + 0.0137479i
\(946\) 4.13282 + 1.71187i 0.134370 + 0.0556577i
\(947\) 6.96387 + 16.8123i 0.226295 + 0.546326i 0.995721 0.0924110i \(-0.0294574\pi\)
−0.769425 + 0.638737i \(0.779457\pi\)
\(948\) 0.112553i 0.00365556i
\(949\) −28.6493 + 11.8669i −0.929996 + 0.385217i
\(950\) 2.36244 + 2.36244i 0.0766477 + 0.0766477i
\(951\) 0.966612 0.0313445
\(952\) −5.54922 + 5.70714i −0.179851 + 0.184970i
\(953\) −5.23591 −0.169608 −0.0848039 0.996398i \(-0.527026\pi\)
−0.0848039 + 0.996398i \(0.527026\pi\)
\(954\) −36.4268 36.4268i −1.17936 1.17936i
\(955\) −17.1284 + 7.09483i −0.554263 + 0.229583i
\(956\) 0.543041i 0.0175632i
\(957\) 1.32743 + 3.20470i 0.0429097 + 0.103593i
\(958\) −18.0265 7.46681i −0.582409 0.241242i
\(959\) 1.01538 2.45134i 0.0327882 0.0791578i
\(960\) −0.598826 + 0.598826i −0.0193270 + 0.0193270i
\(961\) 9.18007 9.18007i 0.296131 0.296131i
\(962\) 0.368215 0.888949i 0.0118717 0.0286609i
\(963\) −45.8994 19.0121i −1.47909 0.612658i
\(964\) 0.306966 + 0.741081i 0.00988671 + 0.0238686i
\(965\) 9.88591i 0.318239i
\(966\) 0.470740 0.194987i 0.0151458 0.00627359i
\(967\) −2.25894 2.25894i −0.0726426 0.0726426i 0.669852 0.742495i \(-0.266358\pi\)
−0.742495 + 0.669852i \(0.766358\pi\)
\(968\) 34.8059 1.11870
\(969\) 0.0147654 + 1.05245i 0.000474332 + 0.0338097i
\(970\) 3.88483 0.124734
\(971\) −19.2766 19.2766i −0.618617 0.618617i 0.326560 0.945176i \(-0.394110\pi\)
−0.945176 + 0.326560i \(0.894110\pi\)
\(972\) −0.188128 + 0.0779250i −0.00603419 + 0.00249944i
\(973\) 9.21160i 0.295310i
\(974\) −15.9818 38.5834i −0.512089 1.23629i
\(975\) −0.572593 0.237176i −0.0183377 0.00759571i
\(976\) 2.53537 6.12092i 0.0811552 0.195926i
\(977\) −5.66117 + 5.66117i −0.181117 + 0.181117i −0.791842 0.610726i \(-0.790878\pi\)
0.610726 + 0.791842i \(0.290878\pi\)
\(978\) −1.25214 + 1.25214i −0.0400390 + 0.0400390i
\(979\) −4.37463 + 10.5613i −0.139814 + 0.337540i
\(980\) −0.415373 0.172053i −0.0132686 0.00549603i
\(981\) 12.1202 + 29.2608i 0.386969 + 0.934225i
\(982\) 18.8859i 0.602674i
\(983\) 10.1132 4.18902i 0.322561 0.133609i −0.215527 0.976498i \(-0.569147\pi\)
0.538088 + 0.842889i \(0.319147\pi\)
\(984\) −0.232863 0.232863i −0.00742341 0.00742341i
\(985\) 13.9534 0.444592
\(986\) −38.5822 + 0.541287i −1.22871 + 0.0172381i
\(987\) −0.377162 −0.0120052
\(988\) −0.638958 0.638958i −0.0203280 0.0203280i
\(989\) −2.74644 + 1.13761i −0.0873318 + 0.0361740i
\(990\) 20.8482i 0.662600i
\(991\) −11.1297 26.8695i −0.353547 0.853539i −0.996177 0.0873614i \(-0.972157\pi\)
0.642629 0.766177i \(-0.277843\pi\)
\(992\) −2.39014 0.990028i −0.0758870 0.0314334i
\(993\) 1.47895 3.57051i 0.0469332 0.113307i
\(994\) 3.31465 3.31465i 0.105134 0.105134i
\(995\) −9.00616 + 9.00616i −0.285514 + 0.285514i
\(996\) −0.0146101 + 0.0352719i −0.000462939 + 0.00111763i
\(997\) 12.6531 + 5.24110i 0.400728 + 0.165987i 0.573940 0.818898i \(-0.305414\pi\)
−0.173211 + 0.984885i \(0.555414\pi\)
\(998\) 6.24264 + 15.0711i 0.197607 + 0.477067i
\(999\) 0.0780686i 0.00246998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.l.a.36.5 yes 24
3.2 odd 2 765.2.be.b.631.2 24
5.2 odd 4 425.2.n.c.274.2 24
5.3 odd 4 425.2.n.f.274.5 24
5.4 even 2 425.2.m.b.376.2 24
17.3 odd 16 1445.2.a.q.1.10 12
17.5 odd 16 1445.2.d.j.866.5 24
17.9 even 8 inner 85.2.l.a.26.5 24
17.12 odd 16 1445.2.d.j.866.6 24
17.14 odd 16 1445.2.a.p.1.10 12
51.26 odd 8 765.2.be.b.451.2 24
85.9 even 8 425.2.m.b.26.2 24
85.14 odd 16 7225.2.a.bs.1.3 12
85.43 odd 8 425.2.n.c.349.2 24
85.54 odd 16 7225.2.a.bq.1.3 12
85.77 odd 8 425.2.n.f.349.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.5 24 17.9 even 8 inner
85.2.l.a.36.5 yes 24 1.1 even 1 trivial
425.2.m.b.26.2 24 85.9 even 8
425.2.m.b.376.2 24 5.4 even 2
425.2.n.c.274.2 24 5.2 odd 4
425.2.n.c.349.2 24 85.43 odd 8
425.2.n.f.274.5 24 5.3 odd 4
425.2.n.f.349.5 24 85.77 odd 8
765.2.be.b.451.2 24 51.26 odd 8
765.2.be.b.631.2 24 3.2 odd 2
1445.2.a.p.1.10 12 17.14 odd 16
1445.2.a.q.1.10 12 17.3 odd 16
1445.2.d.j.866.5 24 17.5 odd 16
1445.2.d.j.866.6 24 17.12 odd 16
7225.2.a.bq.1.3 12 85.54 odd 16
7225.2.a.bs.1.3 12 85.14 odd 16