Properties

Label 85.2.l
Level $85$
Weight $2$
Character orbit 85.l
Rep. character $\chi_{85}(26,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $24$
Newform subspaces $1$
Sturm bound $18$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.l (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 1 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(85, [\chi])\).

Total New Old
Modular forms 48 24 24
Cusp forms 32 24 8
Eisenstein series 16 0 16

Trace form

\( 24 q - 8 q^{6} - 24 q^{9} - 8 q^{11} + 24 q^{12} - 8 q^{15} - 24 q^{16} - 8 q^{17} + 8 q^{18} - 8 q^{19} - 32 q^{22} - 16 q^{23} - 8 q^{24} + 16 q^{26} + 24 q^{27} + 48 q^{28} - 8 q^{29} + 16 q^{34} - 32 q^{35}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(85, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
85.2.l.a 85.l 17.d $24$ $0.679$ None 85.2.l.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$

Decomposition of \(S_{2}^{\mathrm{old}}(85, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(85, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 2}\)