Properties

Label 85.2.j.c.64.6
Level $85$
Weight $2$
Character 85.64
Analytic conductor $0.679$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [85,2,Mod(4,85)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("85.4"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(85, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 188x^{8} + 572x^{6} + 776x^{4} + 464x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 64.6
Root \(-3.38621i\) of defining polynomial
Character \(\chi\) \(=\) 85.64
Dual form 85.2.j.c.4.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.38621 q^{2} +(-2.23065 + 2.23065i) q^{3} +3.69399 q^{4} +(-0.518989 - 2.17501i) q^{5} +(-5.32280 + 5.32280i) q^{6} +(-0.155559 - 0.155559i) q^{7} +4.04223 q^{8} -6.95160i q^{9} +(-1.23842 - 5.19002i) q^{10} +(0.371196 - 0.371196i) q^{11} +(-8.24001 + 8.24001i) q^{12} +1.96713i q^{13} +(-0.371196 - 0.371196i) q^{14} +(6.00936 + 3.69399i) q^{15} +2.25761 q^{16} +(-3.46759 - 2.23065i) q^{17} -16.5880i q^{18} +4.00000i q^{19} +(-1.91714 - 8.03446i) q^{20} +0.693995 q^{21} +(0.885751 - 0.885751i) q^{22} +(0.263516 + 0.263516i) q^{23} +(-9.01679 + 9.01679i) q^{24} +(-4.46130 + 2.25761i) q^{25} +4.69399i q^{26} +(8.81464 + 8.81464i) q^{27} +(-0.574634 - 0.574634i) q^{28} +(4.95160 + 4.95160i) q^{29} +(14.3396 + 8.81464i) q^{30} +(2.06519 + 2.06519i) q^{31} -2.69733 q^{32} +1.65602i q^{33} +(-8.27440 - 5.32280i) q^{34} +(-0.257608 + 0.419075i) q^{35} -25.6792i q^{36} +(4.04223 - 4.04223i) q^{37} +9.54484i q^{38} +(-4.38799 - 4.38799i) q^{39} +(-2.09787 - 8.79187i) q^{40} +(0.563613 - 0.563613i) q^{41} +1.65602 q^{42} -2.49417 q^{43} +(1.37120 - 1.37120i) q^{44} +(-15.1198 + 3.60781i) q^{45} +(0.628804 + 0.628804i) q^{46} -6.73955i q^{47} +(-5.03593 + 5.03593i) q^{48} -6.95160i q^{49} +(-10.6456 + 5.38713i) q^{50} +(12.7108 - 2.75919i) q^{51} +7.26658i q^{52} +5.92169 q^{53} +(21.0336 + 21.0336i) q^{54} +(-1.00000 - 0.614707i) q^{55} +(-0.628804 - 0.628804i) q^{56} +(-8.92260 - 8.92260i) q^{57} +(11.8156 + 11.8156i) q^{58} -6.00000i q^{59} +(22.1985 + 13.6456i) q^{60} +(-4.00000 + 4.00000i) q^{61} +(4.92798 + 4.92798i) q^{62} +(-1.08138 + 1.08138i) q^{63} -10.9516 q^{64} +(4.27853 - 1.02092i) q^{65} +3.95160i q^{66} +11.5120i q^{67} +(-12.8093 - 8.24001i) q^{68} -1.17562 q^{69} +(-0.614707 + 1.00000i) q^{70} +(-5.06519 - 5.06519i) q^{71} -28.1000i q^{72} +(0.838149 - 0.838149i) q^{73} +(9.64560 - 9.64560i) q^{74} +(4.91567 - 14.9875i) q^{75} +14.7760i q^{76} -0.115486 q^{77} +(-10.4707 - 10.4707i) q^{78} +(-4.75919 + 4.75919i) q^{79} +(-1.17167 - 4.91031i) q^{80} -18.4700 q^{81} +(1.34490 - 1.34490i) q^{82} +6.11732 q^{83} +2.56361 q^{84} +(-3.05204 + 8.69972i) q^{85} -5.95160 q^{86} -22.0906 q^{87} +(1.50046 - 1.50046i) q^{88} +15.9852 q^{89} +(-36.0790 + 8.60898i) q^{90} +(0.306005 - 0.306005i) q^{91} +(0.973426 + 0.973426i) q^{92} -9.21344 q^{93} -16.0820i q^{94} +(8.70002 - 2.07596i) q^{95} +(6.01679 - 6.01679i) q^{96} +(6.51611 - 6.51611i) q^{97} -16.5880i q^{98} +(-2.58041 - 2.58041i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{4} - 20 q^{6} - 4 q^{10} + 16 q^{11} - 16 q^{14} + 4 q^{16} - 32 q^{20} - 24 q^{21} - 32 q^{24} + 4 q^{29} + 52 q^{30} + 4 q^{31} + 20 q^{35} + 12 q^{39} + 24 q^{40} + 16 q^{41} + 28 q^{44}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/85\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.38621 1.68730 0.843652 0.536890i \(-0.180401\pi\)
0.843652 + 0.536890i \(0.180401\pi\)
\(3\) −2.23065 + 2.23065i −1.28787 + 1.28787i −0.351786 + 0.936080i \(0.614426\pi\)
−0.936080 + 0.351786i \(0.885574\pi\)
\(4\) 3.69399 1.84700
\(5\) −0.518989 2.17501i −0.232099 0.972692i
\(6\) −5.32280 + 5.32280i −2.17302 + 2.17302i
\(7\) −0.155559 0.155559i −0.0587957 0.0587957i 0.677098 0.735893i \(-0.263238\pi\)
−0.735893 + 0.677098i \(0.763238\pi\)
\(8\) 4.04223 1.42914
\(9\) 6.95160i 2.31720i
\(10\) −1.23842 5.19002i −0.391622 1.64123i
\(11\) 0.371196 0.371196i 0.111920 0.111920i −0.648929 0.760849i \(-0.724783\pi\)
0.760849 + 0.648929i \(0.224783\pi\)
\(12\) −8.24001 + 8.24001i −2.37869 + 2.37869i
\(13\) 1.96713i 0.545585i 0.962073 + 0.272792i \(0.0879472\pi\)
−0.962073 + 0.272792i \(0.912053\pi\)
\(14\) −0.371196 0.371196i −0.0992063 0.0992063i
\(15\) 6.00936 + 3.69399i 1.55161 + 0.953785i
\(16\) 2.25761 0.564402
\(17\) −3.46759 2.23065i −0.841015 0.541012i
\(18\) 16.5880i 3.90982i
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) −1.91714 8.03446i −0.428686 1.79656i
\(21\) 0.693995 0.151442
\(22\) 0.885751 0.885751i 0.188843 0.188843i
\(23\) 0.263516 + 0.263516i 0.0549469 + 0.0549469i 0.734046 0.679099i \(-0.237629\pi\)
−0.679099 + 0.734046i \(0.737629\pi\)
\(24\) −9.01679 + 9.01679i −1.84055 + 1.84055i
\(25\) −4.46130 + 2.25761i −0.892260 + 0.451522i
\(26\) 4.69399i 0.920568i
\(27\) 8.81464 + 8.81464i 1.69638 + 1.69638i
\(28\) −0.574634 0.574634i −0.108596 0.108596i
\(29\) 4.95160 + 4.95160i 0.919490 + 0.919490i 0.996992 0.0775026i \(-0.0246946\pi\)
−0.0775026 + 0.996992i \(0.524695\pi\)
\(30\) 14.3396 + 8.81464i 2.61804 + 1.60933i
\(31\) 2.06519 + 2.06519i 0.370919 + 0.370919i 0.867812 0.496893i \(-0.165526\pi\)
−0.496893 + 0.867812i \(0.665526\pi\)
\(32\) −2.69733 −0.476825
\(33\) 1.65602i 0.288276i
\(34\) −8.27440 5.32280i −1.41905 0.912852i
\(35\) −0.257608 + 0.419075i −0.0435437 + 0.0708366i
\(36\) 25.6792i 4.27986i
\(37\) 4.04223 4.04223i 0.664538 0.664538i −0.291908 0.956446i \(-0.594290\pi\)
0.956446 + 0.291908i \(0.0942902\pi\)
\(38\) 9.54484i 1.54838i
\(39\) −4.38799 4.38799i −0.702641 0.702641i
\(40\) −2.09787 8.79187i −0.331702 1.39012i
\(41\) 0.563613 0.563613i 0.0880216 0.0880216i −0.661725 0.749747i \(-0.730175\pi\)
0.749747 + 0.661725i \(0.230175\pi\)
\(42\) 1.65602 0.255529
\(43\) −2.49417 −0.380357 −0.190178 0.981750i \(-0.560907\pi\)
−0.190178 + 0.981750i \(0.560907\pi\)
\(44\) 1.37120 1.37120i 0.206716 0.206716i
\(45\) −15.1198 + 3.60781i −2.25392 + 0.537820i
\(46\) 0.628804 + 0.628804i 0.0927121 + 0.0927121i
\(47\) 6.73955i 0.983065i −0.870859 0.491532i \(-0.836437\pi\)
0.870859 0.491532i \(-0.163563\pi\)
\(48\) −5.03593 + 5.03593i −0.726875 + 0.726875i
\(49\) 6.95160i 0.993086i
\(50\) −10.6456 + 5.38713i −1.50551 + 0.761855i
\(51\) 12.7108 2.75919i 1.77987 0.386363i
\(52\) 7.26658i 1.00769i
\(53\) 5.92169 0.813406 0.406703 0.913560i \(-0.366678\pi\)
0.406703 + 0.913560i \(0.366678\pi\)
\(54\) 21.0336 + 21.0336i 2.86231 + 2.86231i
\(55\) −1.00000 0.614707i −0.134840 0.0828870i
\(56\) −0.628804 0.628804i −0.0840275 0.0840275i
\(57\) −8.92260 8.92260i −1.18183 1.18183i
\(58\) 11.8156 + 11.8156i 1.55146 + 1.55146i
\(59\) 6.00000i 0.781133i −0.920575 0.390567i \(-0.872279\pi\)
0.920575 0.390567i \(-0.127721\pi\)
\(60\) 22.1985 + 13.6456i 2.86582 + 1.76164i
\(61\) −4.00000 + 4.00000i −0.512148 + 0.512148i −0.915184 0.403036i \(-0.867955\pi\)
0.403036 + 0.915184i \(0.367955\pi\)
\(62\) 4.92798 + 4.92798i 0.625854 + 0.625854i
\(63\) −1.08138 + 1.08138i −0.136241 + 0.136241i
\(64\) −10.9516 −1.36895
\(65\) 4.27853 1.02092i 0.530686 0.126630i
\(66\) 3.95160i 0.486409i
\(67\) 11.5120i 1.40641i 0.710987 + 0.703206i \(0.248249\pi\)
−0.710987 + 0.703206i \(0.751751\pi\)
\(68\) −12.8093 8.24001i −1.55335 0.999248i
\(69\) −1.17562 −0.141528
\(70\) −0.614707 + 1.00000i −0.0734715 + 0.119523i
\(71\) −5.06519 5.06519i −0.601128 0.601128i 0.339484 0.940612i \(-0.389747\pi\)
−0.940612 + 0.339484i \(0.889747\pi\)
\(72\) 28.1000i 3.31161i
\(73\) 0.838149 0.838149i 0.0980980 0.0980980i −0.656355 0.754453i \(-0.727902\pi\)
0.754453 + 0.656355i \(0.227902\pi\)
\(74\) 9.64560 9.64560i 1.12128 1.12128i
\(75\) 4.91567 14.9875i 0.567612 1.73061i
\(76\) 14.7760i 1.69492i
\(77\) −0.115486 −0.0131608
\(78\) −10.4707 10.4707i −1.18557 1.18557i
\(79\) −4.75919 + 4.75919i −0.535450 + 0.535450i −0.922189 0.386739i \(-0.873601\pi\)
0.386739 + 0.922189i \(0.373601\pi\)
\(80\) −1.17167 4.91031i −0.130997 0.548989i
\(81\) −18.4700 −2.05222
\(82\) 1.34490 1.34490i 0.148519 0.148519i
\(83\) 6.11732 0.671463 0.335731 0.941958i \(-0.391017\pi\)
0.335731 + 0.941958i \(0.391017\pi\)
\(84\) 2.56361 0.279713
\(85\) −3.05204 + 8.69972i −0.331040 + 0.943617i
\(86\) −5.95160 −0.641778
\(87\) −22.0906 −2.36836
\(88\) 1.50046 1.50046i 0.159949 0.159949i
\(89\) 15.9852 1.69443 0.847213 0.531253i \(-0.178279\pi\)
0.847213 + 0.531253i \(0.178279\pi\)
\(90\) −36.0790 + 8.60898i −3.80306 + 0.907466i
\(91\) 0.306005 0.306005i 0.0320781 0.0320781i
\(92\) 0.973426 + 0.973426i 0.101487 + 0.101487i
\(93\) −9.21344 −0.955389
\(94\) 16.0820i 1.65873i
\(95\) 8.70002 2.07596i 0.892604 0.212989i
\(96\) 6.01679 6.01679i 0.614086 0.614086i
\(97\) 6.51611 6.51611i 0.661611 0.661611i −0.294149 0.955760i \(-0.595036\pi\)
0.955760 + 0.294149i \(0.0950361\pi\)
\(98\) 16.5880i 1.67564i
\(99\) −2.58041 2.58041i −0.259341 0.259341i
\(100\) −16.4800 + 8.33959i −1.64800 + 0.833959i
\(101\) −7.20921 −0.717343 −0.358672 0.933464i \(-0.616770\pi\)
−0.358672 + 0.933464i \(0.616770\pi\)
\(102\) 30.3306 6.58399i 3.00318 0.651913i
\(103\) 9.52456i 0.938482i 0.883070 + 0.469241i \(0.155472\pi\)
−0.883070 + 0.469241i \(0.844528\pi\)
\(104\) 7.95160i 0.779719i
\(105\) −0.360176 1.50944i −0.0351495 0.147307i
\(106\) 14.1304 1.37246
\(107\) 7.62530 7.62530i 0.737166 0.737166i −0.234863 0.972029i \(-0.575464\pi\)
0.972029 + 0.234863i \(0.0754640\pi\)
\(108\) 32.5613 + 32.5613i 3.13321 + 3.13321i
\(109\) −9.95160 + 9.95160i −0.953191 + 0.953191i −0.998952 0.0457617i \(-0.985429\pi\)
0.0457617 + 0.998952i \(0.485429\pi\)
\(110\) −2.38621 1.46682i −0.227516 0.139856i
\(111\) 18.0336i 1.71167i
\(112\) −0.351191 0.351191i −0.0331844 0.0331844i
\(113\) −5.08354 5.08354i −0.478219 0.478219i 0.426343 0.904562i \(-0.359802\pi\)
−0.904562 + 0.426343i \(0.859802\pi\)
\(114\) −21.2912 21.2912i −1.99410 1.99410i
\(115\) 0.436387 0.709910i 0.0406933 0.0661995i
\(116\) 18.2912 + 18.2912i 1.69829 + 1.69829i
\(117\) 13.6747 1.26423
\(118\) 14.3173i 1.31801i
\(119\) 0.192417 + 0.886412i 0.0176389 + 0.0812573i
\(120\) 24.2912 + 14.9320i 2.21747 + 1.36310i
\(121\) 10.7244i 0.974948i
\(122\) −9.54484 + 9.54484i −0.864149 + 0.864149i
\(123\) 2.51445i 0.226720i
\(124\) 7.62880 + 7.62880i 0.685087 + 0.685087i
\(125\) 7.22568 + 8.53168i 0.646284 + 0.763097i
\(126\) −2.58041 + 2.58041i −0.229881 + 0.229881i
\(127\) −9.74047 −0.864327 −0.432163 0.901795i \(-0.642250\pi\)
−0.432163 + 0.901795i \(0.642250\pi\)
\(128\) −20.7382 −1.83301
\(129\) 5.56361 5.56361i 0.489849 0.489849i
\(130\) 10.2095 2.43613i 0.895429 0.213663i
\(131\) −13.9200 13.9200i −1.21620 1.21620i −0.968954 0.247242i \(-0.920476\pi\)
−0.247242 0.968954i \(-0.579524\pi\)
\(132\) 6.11732i 0.532444i
\(133\) 0.622235 0.622235i 0.0539547 0.0539547i
\(134\) 27.4700i 2.37304i
\(135\) 14.5972 23.7466i 1.25633 2.04378i
\(136\) −14.0168 9.01679i −1.20193 0.773184i
\(137\) 4.65693i 0.397869i −0.980013 0.198934i \(-0.936252\pi\)
0.980013 0.198934i \(-0.0637480\pi\)
\(138\) −2.80528 −0.238802
\(139\) −3.71079 3.71079i −0.314745 0.314745i 0.532000 0.846745i \(-0.321441\pi\)
−0.846745 + 0.532000i \(0.821441\pi\)
\(140\) −0.951603 + 1.54806i −0.0804251 + 0.130835i
\(141\) 15.0336 + 15.0336i 1.26606 + 1.26606i
\(142\) −12.0866 12.0866i −1.01429 1.01429i
\(143\) 0.730192 + 0.730192i 0.0610618 + 0.0610618i
\(144\) 15.6940i 1.30783i
\(145\) 8.19994 13.3396i 0.680968 1.10779i
\(146\) 2.00000 2.00000i 0.165521 0.165521i
\(147\) 15.5066 + 15.5066i 1.27896 + 1.27896i
\(148\) 14.9320 14.9320i 1.22740 1.22740i
\(149\) 8.74239 0.716205 0.358102 0.933682i \(-0.383424\pi\)
0.358102 + 0.933682i \(0.383424\pi\)
\(150\) 11.7298 35.7634i 0.957735 2.92007i
\(151\) 15.9032i 1.29418i −0.762412 0.647092i \(-0.775985\pi\)
0.762412 0.647092i \(-0.224015\pi\)
\(152\) 16.1689i 1.31147i
\(153\) −15.5066 + 24.1053i −1.25363 + 1.94880i
\(154\) −0.275573 −0.0222063
\(155\) 3.41999 5.56361i 0.274700 0.446880i
\(156\) −16.2092 16.2092i −1.29778 1.29778i
\(157\) 10.0719i 0.803823i −0.915679 0.401911i \(-0.868346\pi\)
0.915679 0.401911i \(-0.131654\pi\)
\(158\) −11.3564 + 11.3564i −0.903468 + 0.903468i
\(159\) −13.2092 + 13.2092i −1.04756 + 1.04756i
\(160\) 1.39988 + 5.86670i 0.110670 + 0.463804i
\(161\) 0.0819845i 0.00646128i
\(162\) −44.0732 −3.46272
\(163\) 6.77963 + 6.77963i 0.531021 + 0.531021i 0.920876 0.389855i \(-0.127475\pi\)
−0.389855 + 0.920876i \(0.627475\pi\)
\(164\) 2.08198 2.08198i 0.162576 0.162576i
\(165\) 3.60185 0.859454i 0.280403 0.0669084i
\(166\) 14.5972 1.13296
\(167\) −3.77871 + 3.77871i −0.292405 + 0.292405i −0.838030 0.545624i \(-0.816293\pi\)
0.545624 + 0.838030i \(0.316293\pi\)
\(168\) 2.80528 0.216432
\(169\) 9.13038 0.702337
\(170\) −7.28280 + 20.7593i −0.558565 + 1.59217i
\(171\) 27.8064 2.12641
\(172\) −9.21344 −0.702518
\(173\) −12.3426 + 12.3426i −0.938390 + 0.938390i −0.998209 0.0598193i \(-0.980948\pi\)
0.0598193 + 0.998209i \(0.480948\pi\)
\(174\) −52.7128 −3.99614
\(175\) 1.04519 + 0.342804i 0.0790086 + 0.0259135i
\(176\) 0.838015 0.838015i 0.0631678 0.0631678i
\(177\) 13.3839 + 13.3839i 1.00600 + 1.00600i
\(178\) 38.1440 2.85901
\(179\) 21.3248i 1.59389i 0.604052 + 0.796945i \(0.293552\pi\)
−0.604052 + 0.796945i \(0.706448\pi\)
\(180\) −55.8524 + 13.3272i −4.16299 + 0.993352i
\(181\) 10.2092 10.2092i 0.758845 0.758845i −0.217267 0.976112i \(-0.569714\pi\)
0.976112 + 0.217267i \(0.0697144\pi\)
\(182\) 0.730192 0.730192i 0.0541255 0.0541255i
\(183\) 17.8452i 1.31916i
\(184\) 1.06519 + 1.06519i 0.0785269 + 0.0785269i
\(185\) −10.8897 6.69399i −0.800629 0.492152i
\(186\) −21.9852 −1.61203
\(187\) −2.11516 + 0.459148i −0.154676 + 0.0335762i
\(188\) 24.8959i 1.81572i
\(189\) 2.74239i 0.199480i
\(190\) 20.7601 4.95367i 1.50609 0.359377i
\(191\) −6.74239 −0.487862 −0.243931 0.969793i \(-0.578437\pi\)
−0.243931 + 0.969793i \(0.578437\pi\)
\(192\) 24.4292 24.4292i 1.76303 1.76303i
\(193\) −10.3627 10.3627i −0.745924 0.745924i 0.227787 0.973711i \(-0.426851\pi\)
−0.973711 + 0.227787i \(0.926851\pi\)
\(194\) 15.5488 15.5488i 1.11634 1.11634i
\(195\) −7.26658 + 11.8212i −0.520371 + 0.846535i
\(196\) 25.6792i 1.83423i
\(197\) −0.614707 0.614707i −0.0437960 0.0437960i 0.684870 0.728666i \(-0.259859\pi\)
−0.728666 + 0.684870i \(0.759859\pi\)
\(198\) −6.15739 6.15739i −0.437587 0.437587i
\(199\) 9.40478 + 9.40478i 0.666687 + 0.666687i 0.956948 0.290260i \(-0.0937419\pi\)
−0.290260 + 0.956948i \(0.593742\pi\)
\(200\) −18.0336 + 9.12576i −1.27517 + 0.645289i
\(201\) −25.6792 25.6792i −1.81127 1.81127i
\(202\) −17.2027 −1.21038
\(203\) 1.54053i 0.108124i
\(204\) 46.9536 10.1924i 3.28741 0.713612i
\(205\) −1.51837 0.933353i −0.106048 0.0651882i
\(206\) 22.7276i 1.58351i
\(207\) 1.83186 1.83186i 0.127323 0.127323i
\(208\) 4.44102i 0.307929i
\(209\) 1.48478 + 1.48478i 0.102705 + 0.102705i
\(210\) −0.859454 3.60185i −0.0593080 0.248551i
\(211\) −12.5804 + 12.5804i −0.866071 + 0.866071i −0.992035 0.125964i \(-0.959798\pi\)
0.125964 + 0.992035i \(0.459798\pi\)
\(212\) 21.8747 1.50236
\(213\) 22.5973 1.54834
\(214\) 18.1956 18.1956i 1.24382 1.24382i
\(215\) 1.29444 + 5.42483i 0.0882804 + 0.369970i
\(216\) 35.6308 + 35.6308i 2.42437 + 2.42437i
\(217\) 0.642517i 0.0436169i
\(218\) −23.7466 + 23.7466i −1.60832 + 1.60832i
\(219\) 3.73924i 0.252674i
\(220\) −3.69399 2.27072i −0.249049 0.153092i
\(221\) 4.38799 6.82122i 0.295168 0.458845i
\(222\) 43.0319i 2.88811i
\(223\) −1.96713 −0.131729 −0.0658645 0.997829i \(-0.520981\pi\)
−0.0658645 + 0.997829i \(0.520981\pi\)
\(224\) 0.419593 + 0.419593i 0.0280352 + 0.0280352i
\(225\) 15.6940 + 31.0132i 1.04627 + 2.06755i
\(226\) −12.1304 12.1304i −0.806901 0.806901i
\(227\) 8.45593 + 8.45593i 0.561239 + 0.561239i 0.929659 0.368420i \(-0.120101\pi\)
−0.368420 + 0.929659i \(0.620101\pi\)
\(228\) −32.9600 32.9600i −2.18283 2.18283i
\(229\) 9.30601i 0.614958i −0.951555 0.307479i \(-0.900515\pi\)
0.951555 0.307479i \(-0.0994854\pi\)
\(230\) 1.04131 1.69399i 0.0686620 0.111699i
\(231\) 0.257608 0.257608i 0.0169494 0.0169494i
\(232\) 20.0155 + 20.0155i 1.31408 + 1.31408i
\(233\) 18.2440 18.2440i 1.19520 1.19520i 0.219618 0.975586i \(-0.429519\pi\)
0.975586 0.219618i \(-0.0704811\pi\)
\(234\) 32.6308 2.13314
\(235\) −14.6586 + 3.49775i −0.956220 + 0.228168i
\(236\) 22.1640i 1.44275i
\(237\) 21.2322i 1.37918i
\(238\) 0.459148 + 2.11516i 0.0297621 + 0.137106i
\(239\) −29.2912 −1.89469 −0.947345 0.320215i \(-0.896245\pi\)
−0.947345 + 0.320215i \(0.896245\pi\)
\(240\) 13.5668 + 8.33959i 0.875732 + 0.538318i
\(241\) 6.00000 + 6.00000i 0.386494 + 0.386494i 0.873435 0.486941i \(-0.161887\pi\)
−0.486941 + 0.873435i \(0.661887\pi\)
\(242\) 25.5907i 1.64503i
\(243\) 14.7561 14.7561i 0.946606 0.946606i
\(244\) −14.7760 + 14.7760i −0.945935 + 0.945935i
\(245\) −15.1198 + 3.60781i −0.965967 + 0.230494i
\(246\) 6.00000i 0.382546i
\(247\) −7.86854 −0.500663
\(248\) 8.34797 + 8.34797i 0.530097 + 0.530097i
\(249\) −13.6456 + 13.6456i −0.864755 + 0.864755i
\(250\) 17.2420 + 20.3584i 1.09048 + 1.28758i
\(251\) −1.77282 −0.111900 −0.0559498 0.998434i \(-0.517819\pi\)
−0.0559498 + 0.998434i \(0.517819\pi\)
\(252\) −3.99462 + 3.99462i −0.251638 + 0.251638i
\(253\) 0.195632 0.0122993
\(254\) −23.2428 −1.45838
\(255\) −12.5980 26.2141i −0.788918 1.64159i
\(256\) −27.5824 −1.72390
\(257\) −7.40235 −0.461746 −0.230873 0.972984i \(-0.574158\pi\)
−0.230873 + 0.972984i \(0.574158\pi\)
\(258\) 13.2759 13.2759i 0.826524 0.826524i
\(259\) −1.25761 −0.0781440
\(260\) 15.8049 3.77128i 0.980176 0.233885i
\(261\) 34.4216 34.4216i 2.13064 2.13064i
\(262\) −33.2160 33.2160i −2.05209 2.05209i
\(263\) 7.67291 0.473132 0.236566 0.971615i \(-0.423978\pi\)
0.236566 + 0.971615i \(0.423978\pi\)
\(264\) 6.69399i 0.411987i
\(265\) −3.07329 12.8797i −0.188791 0.791194i
\(266\) 1.48478 1.48478i 0.0910379 0.0910379i
\(267\) −35.6574 + 35.6574i −2.18220 + 2.18220i
\(268\) 42.5252i 2.59764i
\(269\) −5.56677 5.56677i −0.339412 0.339412i 0.516734 0.856146i \(-0.327148\pi\)
−0.856146 + 0.516734i \(0.827148\pi\)
\(270\) 34.8320 56.6644i 2.11981 3.44848i
\(271\) 18.0672 1.09750 0.548751 0.835986i \(-0.315103\pi\)
0.548751 + 0.835986i \(0.315103\pi\)
\(272\) −7.82847 5.03593i −0.474670 0.305348i
\(273\) 1.36518i 0.0826245i
\(274\) 11.1124i 0.671326i
\(275\) −0.818002 + 2.49403i −0.0493274 + 0.150396i
\(276\) −4.34275 −0.261403
\(277\) −18.7786 + 18.7786i −1.12829 + 1.12829i −0.137840 + 0.990455i \(0.544016\pi\)
−0.990455 + 0.137840i \(0.955984\pi\)
\(278\) −8.85472 8.85472i −0.531071 0.531071i
\(279\) 14.3564 14.3564i 0.859494 0.859494i
\(280\) −1.04131 + 1.69399i −0.0622302 + 0.101236i
\(281\) 13.7728i 0.821618i 0.911721 + 0.410809i \(0.134754\pi\)
−0.911721 + 0.410809i \(0.865246\pi\)
\(282\) 35.8733 + 35.8733i 2.13622 + 2.13622i
\(283\) −9.72068 9.72068i −0.577834 0.577834i 0.356472 0.934306i \(-0.383980\pi\)
−0.934306 + 0.356472i \(0.883980\pi\)
\(284\) −18.7108 18.7108i −1.11028 1.11028i
\(285\) −14.7760 + 24.0374i −0.875253 + 1.42386i
\(286\) 1.74239 + 1.74239i 0.103030 + 0.103030i
\(287\) −0.175350 −0.0103506
\(288\) 18.7507i 1.10490i
\(289\) 7.04840 + 15.4700i 0.414612 + 0.909998i
\(290\) 19.5668 31.8311i 1.14900 1.86918i
\(291\) 29.0703i 1.70413i
\(292\) 3.09612 3.09612i 0.181187 0.181187i
\(293\) 19.8873i 1.16183i 0.813966 + 0.580913i \(0.197304\pi\)
−0.813966 + 0.580913i \(0.802696\pi\)
\(294\) 37.0020 + 37.0020i 2.15800 + 2.15800i
\(295\) −13.0500 + 3.11393i −0.759802 + 0.181300i
\(296\) 16.3396 16.3396i 0.949720 0.949720i
\(297\) 6.54392 0.379717
\(298\) 20.8612 1.20846
\(299\) −0.518371 + 0.518371i −0.0299782 + 0.0299782i
\(300\) 18.1585 55.3639i 1.04838 3.19644i
\(301\) 0.387990 + 0.387990i 0.0223634 + 0.0223634i
\(302\) 37.9484i 2.18368i
\(303\) 16.0812 16.0812i 0.923843 0.923843i
\(304\) 9.03043i 0.517931i
\(305\) 10.7760 + 6.62407i 0.617031 + 0.379293i
\(306\) −37.0020 + 57.5204i −2.11526 + 3.28822i
\(307\) 14.9598i 0.853799i −0.904299 0.426900i \(-0.859606\pi\)
0.904299 0.426900i \(-0.140394\pi\)
\(308\) −0.426603 −0.0243080
\(309\) −21.2460 21.2460i −1.20864 1.20864i
\(310\) 8.16081 13.2759i 0.463503 0.754023i
\(311\) −20.9684 20.9684i −1.18901 1.18901i −0.977342 0.211667i \(-0.932111\pi\)
−0.211667 0.977342i \(-0.567889\pi\)
\(312\) −17.7372 17.7372i −1.00417 1.00417i
\(313\) 10.1671 + 10.1671i 0.574677 + 0.574677i 0.933432 0.358755i \(-0.116799\pi\)
−0.358755 + 0.933432i \(0.616799\pi\)
\(314\) 24.0336i 1.35629i
\(315\) 2.91324 + 1.79079i 0.164143 + 0.100900i
\(316\) −17.5804 + 17.5804i −0.988975 + 0.988975i
\(317\) −9.74047 9.74047i −0.547079 0.547079i 0.378516 0.925595i \(-0.376435\pi\)
−0.925595 + 0.378516i \(0.876435\pi\)
\(318\) −31.5199 + 31.5199i −1.76755 + 1.76755i
\(319\) 3.67603 0.205818
\(320\) 5.68376 + 23.8198i 0.317732 + 1.33157i
\(321\) 34.0188i 1.89874i
\(322\) 0.195632i 0.0109021i
\(323\) 8.92260 13.8704i 0.496467 0.771768i
\(324\) −68.2280 −3.79044
\(325\) −4.44102 8.77598i −0.246343 0.486804i
\(326\) 16.1776 + 16.1776i 0.895995 + 0.895995i
\(327\) 44.3971i 2.45516i
\(328\) 2.27825 2.27825i 0.125795 0.125795i
\(329\) −1.04840 + 1.04840i −0.0578000 + 0.0578000i
\(330\) 8.59476 2.05084i 0.473126 0.112895i
\(331\) 20.1640i 1.10831i −0.832413 0.554156i \(-0.813041\pi\)
0.832413 0.554156i \(-0.186959\pi\)
\(332\) 22.5973 1.24019
\(333\) −28.1000 28.1000i −1.53987 1.53987i
\(334\) −9.01679 + 9.01679i −0.493377 + 0.493377i
\(335\) 25.0386 5.97459i 1.36801 0.326427i
\(336\) 1.56677 0.0854742
\(337\) 20.2111 20.2111i 1.10097 1.10097i 0.106677 0.994294i \(-0.465979\pi\)
0.994294 0.106677i \(-0.0340210\pi\)
\(338\) 21.7870 1.18506
\(339\) 22.6792 1.23176
\(340\) −11.2742 + 32.1367i −0.611430 + 1.74286i
\(341\) 1.53318 0.0830264
\(342\) 66.3519 3.58790
\(343\) −2.17030 + 2.17030i −0.117185 + 0.117185i
\(344\) −10.0820 −0.543584
\(345\) 0.610136 + 2.55699i 0.0328486 + 0.137664i
\(346\) −29.4520 + 29.4520i −1.58335 + 1.58335i
\(347\) 7.73326 + 7.73326i 0.415143 + 0.415143i 0.883526 0.468383i \(-0.155163\pi\)
−0.468383 + 0.883526i \(0.655163\pi\)
\(348\) −81.6025 −4.37435
\(349\) 0.645598i 0.0345581i −0.999851 0.0172790i \(-0.994500\pi\)
0.999851 0.0172790i \(-0.00550036\pi\)
\(350\) 2.49403 + 0.818002i 0.133312 + 0.0437240i
\(351\) −17.3396 + 17.3396i −0.925519 + 0.925519i
\(352\) −1.00124 + 1.00124i −0.0533661 + 0.0533661i
\(353\) 14.3022i 0.761229i 0.924734 + 0.380615i \(0.124288\pi\)
−0.924734 + 0.380615i \(0.875712\pi\)
\(354\) 31.9368 + 31.9368i 1.69742 + 1.69742i
\(355\) −8.38804 + 13.6456i −0.445191 + 0.724233i
\(356\) 59.0492 3.12960
\(357\) −2.40649 1.54806i −0.127365 0.0819320i
\(358\) 50.8854i 2.68938i
\(359\) 15.6760i 0.827349i −0.910425 0.413675i \(-0.864245\pi\)
0.910425 0.413675i \(-0.135755\pi\)
\(360\) −61.1176 + 14.5836i −3.22118 + 0.768621i
\(361\) 3.00000 0.157895
\(362\) 24.3613 24.3613i 1.28040 1.28040i
\(363\) −23.9224 23.9224i −1.25560 1.25560i
\(364\) 1.13038 1.13038i 0.0592481 0.0592481i
\(365\) −2.25797 1.38799i −0.118188 0.0726507i
\(366\) 42.5824i 2.22582i
\(367\) 15.4863 + 15.4863i 0.808379 + 0.808379i 0.984388 0.176009i \(-0.0563189\pi\)
−0.176009 + 0.984388i \(0.556319\pi\)
\(368\) 0.594916 + 0.594916i 0.0310121 + 0.0310121i
\(369\) −3.91802 3.91802i −0.203964 0.203964i
\(370\) −25.9852 15.9733i −1.35091 0.830411i
\(371\) −0.921171 0.921171i −0.0478248 0.0478248i
\(372\) −34.0344 −1.76460
\(373\) 6.50858i 0.337002i −0.985702 0.168501i \(-0.946107\pi\)
0.985702 0.168501i \(-0.0538926\pi\)
\(374\) −5.04723 + 1.09562i −0.260986 + 0.0566533i
\(375\) −35.1492 2.91324i −1.81509 0.150439i
\(376\) 27.2428i 1.40494i
\(377\) −9.74047 + 9.74047i −0.501660 + 0.501660i
\(378\) 6.54392i 0.336583i
\(379\) −5.32280 5.32280i −0.273414 0.273414i 0.557059 0.830473i \(-0.311930\pi\)
−0.830473 + 0.557059i \(0.811930\pi\)
\(380\) 32.1378 7.66857i 1.64864 0.393389i
\(381\) 21.7276 21.7276i 1.11314 1.11314i
\(382\) −16.0888 −0.823172
\(383\) −24.7752 −1.26595 −0.632976 0.774172i \(-0.718167\pi\)
−0.632976 + 0.774172i \(0.718167\pi\)
\(384\) 46.2596 46.2596i 2.36067 2.36067i
\(385\) 0.0599358 + 0.251182i 0.00305461 + 0.0128014i
\(386\) −24.7276 24.7276i −1.25860 1.25860i
\(387\) 17.3385i 0.881363i
\(388\) 24.0705 24.0705i 1.22199 1.22199i
\(389\) 23.6971i 1.20149i 0.799440 + 0.600747i \(0.205130\pi\)
−0.799440 + 0.600747i \(0.794870\pi\)
\(390\) −17.3396 + 28.2079i −0.878024 + 1.42836i
\(391\) −0.325954 1.50158i −0.0164842 0.0759380i
\(392\) 28.1000i 1.41926i
\(393\) 62.1013 3.13260
\(394\) −1.46682 1.46682i −0.0738973 0.0738973i
\(395\) 12.8212 + 7.88129i 0.645106 + 0.396551i
\(396\) −9.53201 9.53201i −0.479002 0.479002i
\(397\) 19.5964 + 19.5964i 0.983516 + 0.983516i 0.999866 0.0163500i \(-0.00520460\pi\)
−0.0163500 + 0.999866i \(0.505205\pi\)
\(398\) 22.4418 + 22.4418i 1.12490 + 1.12490i
\(399\) 2.77598i 0.138973i
\(400\) −10.0719 + 5.09679i −0.503593 + 0.254840i
\(401\) −21.5972 + 21.5972i −1.07851 + 1.07851i −0.0818697 + 0.996643i \(0.526089\pi\)
−0.996643 + 0.0818697i \(0.973911\pi\)
\(402\) −61.2759 61.2759i −3.05616 3.05616i
\(403\) −4.06251 + 4.06251i −0.202368 + 0.202368i
\(404\) −26.6308 −1.32493
\(405\) 9.58571 + 40.1723i 0.476318 + 1.99618i
\(406\) 3.67603i 0.182438i
\(407\) 3.00092i 0.148750i
\(408\) 51.3799 11.1533i 2.54368 0.552168i
\(409\) 5.90321 0.291895 0.145947 0.989292i \(-0.453377\pi\)
0.145947 + 0.989292i \(0.453377\pi\)
\(410\) −3.62315 2.22718i −0.178935 0.109992i
\(411\) 10.3880 + 10.3880i 0.512402 + 0.512402i
\(412\) 35.1837i 1.73337i
\(413\) −0.933353 + 0.933353i −0.0459273 + 0.0459273i
\(414\) 4.37120 4.37120i 0.214833 0.214833i
\(415\) −3.17482 13.3052i −0.155846 0.653127i
\(416\) 5.30601i 0.260148i
\(417\) 16.5549 0.810699
\(418\) 3.54301 + 3.54301i 0.173294 + 0.173294i
\(419\) 22.9716 22.9716i 1.12223 1.12223i 0.130829 0.991405i \(-0.458236\pi\)
0.991405 0.130829i \(-0.0417638\pi\)
\(420\) −1.33049 5.57587i −0.0649211 0.272075i
\(421\) 30.1156 1.46774 0.733872 0.679288i \(-0.237711\pi\)
0.733872 + 0.679288i \(0.237711\pi\)
\(422\) −30.0195 + 30.0195i −1.46133 + 1.46133i
\(423\) −46.8507 −2.27796
\(424\) 23.9368 1.16247
\(425\) 20.5059 + 2.12314i 0.994683 + 0.102987i
\(426\) 53.9220 2.61253
\(427\) 1.24447 0.0602242
\(428\) 28.1678 28.1678i 1.36154 1.36154i
\(429\) −3.25761 −0.157279
\(430\) 3.08882 + 12.9448i 0.148956 + 0.624252i
\(431\) −5.88641 + 5.88641i −0.283538 + 0.283538i −0.834518 0.550980i \(-0.814254\pi\)
0.550980 + 0.834518i \(0.314254\pi\)
\(432\) 19.9000 + 19.9000i 0.957440 + 0.957440i
\(433\) −13.5795 −0.652591 −0.326295 0.945268i \(-0.605800\pi\)
−0.326295 + 0.945268i \(0.605800\pi\)
\(434\) 1.53318i 0.0735950i
\(435\) 11.4648 + 48.0472i 0.549694 + 2.30369i
\(436\) −36.7612 + 36.7612i −1.76054 + 1.76054i
\(437\) −1.05406 + 1.05406i −0.0504227 + 0.0504227i
\(438\) 8.92260i 0.426338i
\(439\) 14.4048 + 14.4048i 0.687503 + 0.687503i 0.961679 0.274177i \(-0.0884053\pi\)
−0.274177 + 0.961679i \(0.588405\pi\)
\(440\) −4.04223 2.48478i −0.192706 0.118457i
\(441\) −48.3248 −2.30118
\(442\) 10.4707 16.2769i 0.498039 0.774211i
\(443\) 2.45360i 0.116574i −0.998300 0.0582871i \(-0.981436\pi\)
0.998300 0.0582871i \(-0.0185639\pi\)
\(444\) 66.6160i 3.16145i
\(445\) −8.29614 34.7679i −0.393275 1.64816i
\(446\) −4.69399 −0.222267
\(447\) −19.5012 + 19.5012i −0.922376 + 0.922376i
\(448\) 1.70362 + 1.70362i 0.0804884 + 0.0804884i
\(449\) 2.26076 2.26076i 0.106692 0.106692i −0.651746 0.758438i \(-0.725963\pi\)
0.758438 + 0.651746i \(0.225963\pi\)
\(450\) 37.4492 + 74.0040i 1.76537 + 3.48858i
\(451\) 0.418422i 0.0197027i
\(452\) −18.7786 18.7786i −0.883269 0.883269i
\(453\) 35.4745 + 35.4745i 1.66674 + 1.66674i
\(454\) 20.1776 + 20.1776i 0.946982 + 0.946982i
\(455\) −0.824376 0.506750i −0.0386474 0.0237568i
\(456\) −36.0672 36.0672i −1.68900 1.68900i
\(457\) 30.1803 1.41177 0.705887 0.708325i \(-0.250549\pi\)
0.705887 + 0.708325i \(0.250549\pi\)
\(458\) 22.2061i 1.03762i
\(459\) −10.9032 50.2280i −0.508918 2.34444i
\(460\) 1.61201 2.62241i 0.0751604 0.122270i
\(461\) 5.41527i 0.252214i −0.992017 0.126107i \(-0.959752\pi\)
0.992017 0.126107i \(-0.0402483\pi\)
\(462\) 0.614707 0.614707i 0.0285987 0.0285987i
\(463\) 15.7574i 0.732307i −0.930555 0.366153i \(-0.880675\pi\)
0.930555 0.366153i \(-0.119325\pi\)
\(464\) 11.1788 + 11.1788i 0.518962 + 0.518962i
\(465\) 4.78167 + 20.0393i 0.221745 + 0.929299i
\(466\) 43.5340 43.5340i 2.01667 2.01667i
\(467\) −10.7690 −0.498331 −0.249166 0.968461i \(-0.580156\pi\)
−0.249166 + 0.968461i \(0.580156\pi\)
\(468\) 50.5144 2.33503
\(469\) 1.79079 1.79079i 0.0826910 0.0826910i
\(470\) −34.9784 + 8.34637i −1.61343 + 0.384989i
\(471\) 22.4668 + 22.4668i 1.03522 + 1.03522i
\(472\) 24.2534i 1.11635i
\(473\) −0.925824 + 0.925824i −0.0425695 + 0.0425695i
\(474\) 50.6644i 2.32709i
\(475\) −9.03043 17.8452i −0.414345 0.818794i
\(476\) 0.710788 + 3.27440i 0.0325789 + 0.150082i
\(477\) 41.1652i 1.88483i
\(478\) −69.8949 −3.19692
\(479\) 26.0988 + 26.0988i 1.19248 + 1.19248i 0.976368 + 0.216116i \(0.0693389\pi\)
0.216116 + 0.976368i \(0.430661\pi\)
\(480\) −16.2092 9.96391i −0.739846 0.454788i
\(481\) 7.95160 + 7.95160i 0.362562 + 0.362562i
\(482\) 14.3173 + 14.3173i 0.652133 + 0.652133i
\(483\) 0.182879 + 0.182879i 0.00832127 + 0.00832127i
\(484\) 39.6160i 1.80073i
\(485\) −17.5544 10.7908i −0.797103 0.489984i
\(486\) 35.2112 35.2112i 1.59721 1.59721i
\(487\) 27.0987 + 27.0987i 1.22796 + 1.22796i 0.964734 + 0.263226i \(0.0847864\pi\)
0.263226 + 0.964734i \(0.415214\pi\)
\(488\) −16.1689 + 16.1689i −0.731932 + 0.731932i
\(489\) −30.2460 −1.36777
\(490\) −36.0790 + 8.60898i −1.62988 + 0.388914i
\(491\) 38.0336i 1.71643i −0.513289 0.858216i \(-0.671573\pi\)
0.513289 0.858216i \(-0.328427\pi\)
\(492\) 9.28836i 0.418752i
\(493\) −6.12485 28.2154i −0.275849 1.27076i
\(494\) −18.7760 −0.844771
\(495\) −4.27320 + 6.95160i −0.192066 + 0.312451i
\(496\) 4.66239 + 4.66239i 0.209348 + 0.209348i
\(497\) 1.57587i 0.0706875i
\(498\) −32.5613 + 32.5613i −1.45910 + 1.45910i
\(499\) 6.58041 6.58041i 0.294579 0.294579i −0.544307 0.838886i \(-0.683207\pi\)
0.838886 + 0.544307i \(0.183207\pi\)
\(500\) 26.6916 + 31.5160i 1.19369 + 1.40944i
\(501\) 16.8580i 0.753158i
\(502\) −4.23033 −0.188809
\(503\) −1.10919 1.10919i −0.0494565 0.0494565i 0.681946 0.731403i \(-0.261134\pi\)
−0.731403 + 0.681946i \(0.761134\pi\)
\(504\) −4.37120 + 4.37120i −0.194709 + 0.194709i
\(505\) 3.74150 + 15.6801i 0.166495 + 0.697754i
\(506\) 0.466819 0.0207526
\(507\) −20.3667 + 20.3667i −0.904516 + 0.904516i
\(508\) −35.9812 −1.59641
\(509\) −24.4247 −1.08261 −0.541304 0.840827i \(-0.682069\pi\)
−0.541304 + 0.840827i \(0.682069\pi\)
\(510\) −30.0615 62.5522i −1.33114 2.76986i
\(511\) −0.260763 −0.0115355
\(512\) −24.3410 −1.07573
\(513\) −35.2586 + 35.2586i −1.55670 + 1.55670i
\(514\) −17.6636 −0.779106
\(515\) 20.7160 4.94314i 0.912854 0.217821i
\(516\) 20.5520 20.5520i 0.904750 0.904750i
\(517\) −2.50169 2.50169i −0.110024 0.110024i
\(518\) −3.00092 −0.131853
\(519\) 55.0640i 2.41704i
\(520\) 17.2948 4.12679i 0.758426 0.180972i
\(521\) −5.30916 + 5.30916i −0.232599 + 0.232599i −0.813776 0.581178i \(-0.802592\pi\)
0.581178 + 0.813776i \(0.302592\pi\)
\(522\) 82.1371 82.1371i 3.59504 3.59504i
\(523\) 8.98247i 0.392776i −0.980526 0.196388i \(-0.937079\pi\)
0.980526 0.196388i \(-0.0629212\pi\)
\(524\) −51.4204 51.4204i −2.24631 2.24631i
\(525\) −3.09612 + 1.56677i −0.135126 + 0.0683794i
\(526\) 18.3092 0.798317
\(527\) −2.55452 11.7680i −0.111277 0.512620i
\(528\) 3.73864i 0.162703i
\(529\) 22.8611i 0.993962i
\(530\) −7.33351 30.7337i −0.318547 1.33498i
\(531\) −41.7096 −1.81004
\(532\) 2.29853 2.29853i 0.0996541 0.0996541i
\(533\) 1.10870 + 1.10870i 0.0480233 + 0.0480233i
\(534\) −85.0860 + 85.0860i −3.68203 + 3.68203i
\(535\) −20.5425 12.6276i −0.888131 0.545940i
\(536\) 46.5340i 2.00996i
\(537\) −47.5681 47.5681i −2.05272 2.05272i
\(538\) −13.2835 13.2835i −0.572691 0.572691i
\(539\) −2.58041 2.58041i −0.111146 0.111146i
\(540\) 53.9220 87.7198i 2.32043 3.77486i
\(541\) −9.00000 9.00000i −0.386940 0.386940i 0.486654 0.873595i \(-0.338217\pi\)
−0.873595 + 0.486654i \(0.838217\pi\)
\(542\) 43.1121 1.85182
\(543\) 45.5464i 1.95458i
\(544\) 9.35323 + 6.01679i 0.401016 + 0.257968i
\(545\) 26.8096 + 16.4800i 1.14840 + 0.705927i
\(546\) 3.25761i 0.139413i
\(547\) 1.81910 1.81910i 0.0777793 0.0777793i −0.667147 0.744926i \(-0.732485\pi\)
0.744926 + 0.667147i \(0.232485\pi\)
\(548\) 17.2027i 0.734862i
\(549\) 27.8064 + 27.8064i 1.18675 + 1.18675i
\(550\) −1.95192 + 5.95128i −0.0832303 + 0.253764i
\(551\) −19.8064 + 19.8064i −0.843782 + 0.843782i
\(552\) −4.75214 −0.202264
\(553\) 1.48067 0.0629644
\(554\) −44.8096 + 44.8096i −1.90378 + 1.90378i
\(555\) 39.2232 9.35923i 1.66493 0.397277i
\(556\) −13.7076 13.7076i −0.581333 0.581333i
\(557\) 21.0162i 0.890487i 0.895410 + 0.445243i \(0.146883\pi\)
−0.895410 + 0.445243i \(0.853117\pi\)
\(558\) 34.2573 34.2573i 1.45023 1.45023i
\(559\) 4.90636i 0.207517i
\(560\) −0.581578 + 0.946106i −0.0245762 + 0.0399803i
\(561\) 3.69399 5.74239i 0.155961 0.242444i
\(562\) 32.8648i 1.38632i
\(563\) 40.5377 1.70846 0.854231 0.519893i \(-0.174028\pi\)
0.854231 + 0.519893i \(0.174028\pi\)
\(564\) 55.5340 + 55.5340i 2.33840 + 2.33840i
\(565\) −8.41842 + 13.6950i −0.354166 + 0.576154i
\(566\) −23.1956 23.1956i −0.974983 0.974983i
\(567\) 2.87317 + 2.87317i 0.120662 + 0.120662i
\(568\) −20.4746 20.4746i −0.859097 0.859097i
\(569\) 0.612010i 0.0256568i 0.999918 + 0.0128284i \(0.00408352\pi\)
−0.999918 + 0.0128284i \(0.995916\pi\)
\(570\) −35.2586 + 57.3584i −1.47682 + 2.40248i
\(571\) −10.5320 + 10.5320i −0.440751 + 0.440751i −0.892264 0.451513i \(-0.850884\pi\)
0.451513 + 0.892264i \(0.350884\pi\)
\(572\) 2.69733 + 2.69733i 0.112781 + 0.112781i
\(573\) 15.0399 15.0399i 0.628302 0.628302i
\(574\) −0.418422 −0.0174646
\(575\) −1.77054 0.580708i −0.0738366 0.0242172i
\(576\) 76.1312i 3.17213i
\(577\) 37.2107i 1.54910i 0.632513 + 0.774550i \(0.282024\pi\)
−0.632513 + 0.774550i \(0.717976\pi\)
\(578\) 16.8190 + 36.9146i 0.699576 + 1.53544i
\(579\) 46.2311 1.92130
\(580\) 30.2905 49.2764i 1.25775 2.04609i
\(581\) −0.951603 0.951603i −0.0394791 0.0394791i
\(582\) 69.3679i 2.87539i
\(583\) 2.19811 2.19811i 0.0910362 0.0910362i
\(584\) 3.38799 3.38799i 0.140196 0.140196i
\(585\) −7.09704 29.7426i −0.293426 1.22971i
\(586\) 47.4552i 1.96035i
\(587\) −9.60470 −0.396428 −0.198214 0.980159i \(-0.563514\pi\)
−0.198214 + 0.980159i \(0.563514\pi\)
\(588\) 57.2813 + 57.2813i 2.36224 + 2.36224i
\(589\) −8.26076 + 8.26076i −0.340379 + 0.340379i
\(590\) −31.1401 + 7.43050i −1.28202 + 0.305909i
\(591\) 2.74239 0.112807
\(592\) 9.12576 9.12576i 0.375067 0.375067i
\(593\) −16.5206 −0.678419 −0.339210 0.940711i \(-0.610160\pi\)
−0.339210 + 0.940711i \(0.610160\pi\)
\(594\) 15.6152 0.640698
\(595\) 1.82809 0.878547i 0.0749443 0.0360169i
\(596\) 32.2944 1.32283
\(597\) −41.9576 −1.71721
\(598\) −1.23694 + 1.23694i −0.0505823 + 0.0505823i
\(599\) 34.8096 1.42228 0.711140 0.703050i \(-0.248179\pi\)
0.711140 + 0.703050i \(0.248179\pi\)
\(600\) 19.8702 60.5830i 0.811199 2.47329i
\(601\) −8.26076 + 8.26076i −0.336964 + 0.336964i −0.855223 0.518260i \(-0.826580\pi\)
0.518260 + 0.855223i \(0.326580\pi\)
\(602\) 0.925824 + 0.925824i 0.0377338 + 0.0377338i
\(603\) 80.0267 3.25894
\(604\) 58.7464i 2.39036i
\(605\) 23.3257 5.56586i 0.948324 0.226284i
\(606\) 38.3732 38.3732i 1.55880 1.55880i
\(607\) 19.0421 19.0421i 0.772894 0.772894i −0.205718 0.978611i \(-0.565953\pi\)
0.978611 + 0.205718i \(0.0659528\pi\)
\(608\) 10.7893i 0.437564i
\(609\) 3.43639 + 3.43639i 0.139249 + 0.139249i
\(610\) 25.7137 + 15.8064i 1.04112 + 0.639983i
\(611\) 13.2576 0.536345
\(612\) −57.2813 + 89.0450i −2.31546 + 3.59943i
\(613\) 5.43522i 0.219526i 0.993958 + 0.109763i \(0.0350092\pi\)
−0.993958 + 0.109763i \(0.964991\pi\)
\(614\) 35.6971i 1.44062i
\(615\) 5.46894 1.30497i 0.220529 0.0526215i
\(616\) −0.466819 −0.0188087
\(617\) 2.47388 2.47388i 0.0995948 0.0995948i −0.655554 0.755149i \(-0.727565\pi\)
0.755149 + 0.655554i \(0.227565\pi\)
\(618\) −50.6973 50.6973i −2.03934 2.03934i
\(619\) 8.57725 8.57725i 0.344749 0.344749i −0.513400 0.858149i \(-0.671614\pi\)
0.858149 + 0.513400i \(0.171614\pi\)
\(620\) 12.6334 20.5520i 0.507371 0.825387i
\(621\) 4.64560i 0.186421i
\(622\) −50.0350 50.0350i −2.00622 2.00622i
\(623\) −2.48664 2.48664i −0.0996250 0.0996250i
\(624\) −9.90636 9.90636i −0.396572 0.396572i
\(625\) 14.8064 20.1437i 0.592256 0.805750i
\(626\) 24.2608 + 24.2608i 0.969655 + 0.969655i
\(627\) −6.62407 −0.264540
\(628\) 37.2054i 1.48466i
\(629\) −23.0336 + 5.00000i −0.918409 + 0.199363i
\(630\) 6.95160 + 4.27320i 0.276958 + 0.170248i
\(631\) 12.6183i 0.502327i −0.967945 0.251164i \(-0.919187\pi\)
0.967945 0.251164i \(-0.0808132\pi\)
\(632\) −19.2377 + 19.2377i −0.765235 + 0.765235i
\(633\) 56.1250i 2.23077i
\(634\) −23.2428 23.2428i −0.923089 0.923089i
\(635\) 5.05520 + 21.1856i 0.200609 + 0.840724i
\(636\) −48.7948 + 48.7948i −1.93484 + 1.93484i
\(637\) 13.6747 0.541813
\(638\) 8.77178 0.347278
\(639\) −35.2112 + 35.2112i −1.39293 + 1.39293i
\(640\) 10.7629 + 45.1056i 0.425440 + 1.78296i
\(641\) 21.3544 + 21.3544i 0.843448 + 0.843448i 0.989306 0.145857i \(-0.0465941\pi\)
−0.145857 + 0.989306i \(0.546594\pi\)
\(642\) 81.1759i 3.20376i
\(643\) 13.9383 13.9383i 0.549671 0.549671i −0.376675 0.926346i \(-0.622932\pi\)
0.926346 + 0.376675i \(0.122932\pi\)
\(644\) 0.302850i 0.0119340i
\(645\) −14.9883 9.21344i −0.590166 0.362779i
\(646\) 21.2912 33.0976i 0.837691 1.30221i
\(647\) 21.0418i 0.827237i 0.910450 + 0.413618i \(0.135735\pi\)
−0.910450 + 0.413618i \(0.864265\pi\)
\(648\) −74.6598 −2.93291
\(649\) −2.22718 2.22718i −0.0874243 0.0874243i
\(650\) −10.5972 20.9413i −0.415656 0.821386i
\(651\) 1.43323 + 1.43323i 0.0561728 + 0.0561728i
\(652\) 25.0439 + 25.0439i 0.980795 + 0.980795i
\(653\) −27.3773 27.3773i −1.07136 1.07136i −0.997250 0.0741056i \(-0.976390\pi\)
−0.0741056 0.997250i \(-0.523610\pi\)
\(654\) 105.941i 4.14261i
\(655\) −23.0518 + 37.5004i −0.900707 + 1.46526i
\(656\) 1.27242 1.27242i 0.0496796 0.0496796i
\(657\) −5.82648 5.82648i −0.227313 0.227313i
\(658\) −2.50169 + 2.50169i −0.0975262 + 0.0975262i
\(659\) −24.1577 −0.941049 −0.470524 0.882387i \(-0.655935\pi\)
−0.470524 + 0.882387i \(0.655935\pi\)
\(660\) 13.3052 3.17482i 0.517904 0.123580i
\(661\) 25.7432i 1.00129i 0.865651 + 0.500647i \(0.166905\pi\)
−0.865651 + 0.500647i \(0.833095\pi\)
\(662\) 48.1155i 1.87006i
\(663\) 5.42769 + 25.0038i 0.210794 + 0.971068i
\(664\) 24.7276 0.959616
\(665\) −1.67630 1.03043i −0.0650041 0.0399585i
\(666\) −67.0524 67.0524i −2.59823 2.59823i
\(667\) 2.60965i 0.101046i
\(668\) −13.9585 + 13.9585i −0.540072 + 0.540072i
\(669\) 4.38799 4.38799i 0.169649 0.169649i
\(670\) 59.7474 14.2566i 2.30824 0.550781i
\(671\) 2.96957i 0.114639i
\(672\) −1.87193 −0.0722113
\(673\) −7.42165 7.42165i −0.286084 0.286084i 0.549446 0.835529i \(-0.314839\pi\)
−0.835529 + 0.549446i \(0.814839\pi\)
\(674\) 48.2280 48.2280i 1.85767 1.85767i
\(675\) −59.2248 19.4248i −2.27956 0.747660i
\(676\) 33.7276 1.29721
\(677\) −6.00183 + 6.00183i −0.230669 + 0.230669i −0.812972 0.582303i \(-0.802152\pi\)
0.582303 + 0.812972i \(0.302152\pi\)
\(678\) 54.1173 2.07836
\(679\) −2.02728 −0.0777998
\(680\) −12.3370 + 35.1662i −0.473103 + 1.34856i
\(681\) −37.7244 −1.44560
\(682\) 3.65849 0.140091
\(683\) 10.1044 10.1044i 0.386635 0.386635i −0.486851 0.873485i \(-0.661854\pi\)
0.873485 + 0.486851i \(0.161854\pi\)
\(684\) 102.717 3.92747
\(685\) −10.1289 + 2.41690i −0.387004 + 0.0923449i
\(686\) −5.17878 + 5.17878i −0.197727 + 0.197727i
\(687\) 20.7584 + 20.7584i 0.791984 + 0.791984i
\(688\) −5.63085 −0.214674
\(689\) 11.6488i 0.443782i
\(690\) 1.45591 + 6.10151i 0.0554256 + 0.232280i
\(691\) −6.24081 + 6.24081i −0.237412 + 0.237412i −0.815778 0.578366i \(-0.803691\pi\)
0.578366 + 0.815778i \(0.303691\pi\)
\(692\) −45.5935 + 45.5935i −1.73320 + 1.73320i
\(693\) 0.802810i 0.0304962i
\(694\) 18.4532 + 18.4532i 0.700473 + 0.700473i
\(695\) −6.14513 + 9.99684i −0.233098 + 0.379202i
\(696\) −89.2952 −3.38472
\(697\) −3.21161 + 0.697157i −0.121648 + 0.0264067i
\(698\) 1.54053i 0.0583100i
\(699\) 81.3920i 3.07853i
\(700\) 3.86091 + 1.26632i 0.145929 + 0.0478622i
\(701\) 18.5340 0.700019 0.350010 0.936746i \(-0.386178\pi\)
0.350010 + 0.936746i \(0.386178\pi\)
\(702\) −41.3759 + 41.3759i −1.56163 + 1.56163i
\(703\) 16.1689 + 16.1689i 0.609822 + 0.609822i
\(704\) −4.06519 + 4.06519i −0.153213 + 0.153213i
\(705\) 24.8959 40.5004i 0.937633 1.52533i
\(706\) 34.1280i 1.28443i
\(707\) 1.12146 + 1.12146i 0.0421767 + 0.0421767i
\(708\) 49.4401 + 49.4401i 1.85807 + 1.85807i
\(709\) −18.0304 18.0304i −0.677147 0.677147i 0.282207 0.959354i \(-0.408934\pi\)
−0.959354 + 0.282207i \(0.908934\pi\)
\(710\) −20.0156 + 32.5613i −0.751173 + 1.22200i
\(711\) 33.0840 + 33.0840i 1.24075 + 1.24075i
\(712\) 64.6158 2.42158
\(713\) 1.08842i 0.0407617i
\(714\) −5.74239 3.69399i −0.214904 0.138244i
\(715\) 1.20921 1.96713i 0.0452219 0.0735667i
\(716\) 78.7736i 2.94391i
\(717\) 65.3384 65.3384i 2.44011 2.44011i
\(718\) 37.4063i 1.39599i
\(719\) 3.36804 + 3.36804i 0.125607 + 0.125607i 0.767116 0.641509i \(-0.221691\pi\)
−0.641509 + 0.767116i \(0.721691\pi\)
\(720\) −34.1345 + 8.14501i −1.27212 + 0.303547i
\(721\) 1.48163 1.48163i 0.0551787 0.0551787i
\(722\) 7.15863 0.266417
\(723\) −26.7678 −0.995505
\(724\) 37.7128 37.7128i 1.40158 1.40158i
\(725\) −33.2694 10.9118i −1.23559 0.405255i
\(726\) −57.0840 57.0840i −2.11858 2.11858i
\(727\) 11.1858i 0.414858i −0.978250 0.207429i \(-0.933490\pi\)
0.978250 0.207429i \(-0.0665096\pi\)
\(728\) 1.23694 1.23694i 0.0458441 0.0458441i
\(729\) 10.4216i 0.385984i
\(730\) −5.38799 3.31203i −0.199418 0.122584i
\(731\) 8.64875 + 5.56361i 0.319886 + 0.205778i
\(732\) 65.9201i 2.43648i
\(733\) −26.2804 −0.970687 −0.485344 0.874324i \(-0.661305\pi\)
−0.485344 + 0.874324i \(0.661305\pi\)
\(734\) 36.9536 + 36.9536i 1.36398 + 1.36398i
\(735\) 25.6792 41.7747i 0.947191 1.54088i
\(736\) −0.710788 0.710788i −0.0262000 0.0262000i
\(737\) 4.27320 + 4.27320i 0.157405 + 0.157405i
\(738\) −9.34921 9.34921i −0.344149 0.344149i
\(739\) 6.00000i 0.220714i −0.993892 0.110357i \(-0.964801\pi\)
0.993892 0.110357i \(-0.0351994\pi\)
\(740\) −40.2266 24.7276i −1.47876 0.909004i
\(741\) 17.5520 17.5520i 0.644787 0.644787i
\(742\) −2.19811 2.19811i −0.0806950 0.0806950i
\(743\) −24.0700 + 24.0700i −0.883042 + 0.883042i −0.993843 0.110800i \(-0.964659\pi\)
0.110800 + 0.993843i \(0.464659\pi\)
\(744\) −37.2428 −1.36539
\(745\) −4.53720 19.0148i −0.166230 0.696647i
\(746\) 15.5308i 0.568624i
\(747\) 42.5252i 1.55591i
\(748\) −7.81341 + 1.69609i −0.285686 + 0.0620152i
\(749\) −2.37237 −0.0866844
\(750\) −83.8733 6.95160i −3.06262 0.253837i
\(751\) −9.22285 9.22285i −0.336547 0.336547i 0.518519 0.855066i \(-0.326483\pi\)
−0.855066 + 0.518519i \(0.826483\pi\)
\(752\) 15.2153i 0.554844i
\(753\) 3.95455 3.95455i 0.144112 0.144112i
\(754\) −23.2428 + 23.2428i −0.846453 + 0.846453i
\(755\) −34.5896 + 8.25359i −1.25884 + 0.300379i
\(756\) 10.1304i 0.368438i
\(757\) 31.8716 1.15839 0.579197 0.815188i \(-0.303366\pi\)
0.579197 + 0.815188i \(0.303366\pi\)
\(758\) −12.7013 12.7013i −0.461332 0.461332i
\(759\) −0.436387 + 0.436387i −0.0158398 + 0.0158398i
\(760\) 35.1675 8.39148i 1.27566 0.304391i
\(761\) 18.7549 0.679863 0.339932 0.940450i \(-0.389596\pi\)
0.339932 + 0.940450i \(0.389596\pi\)
\(762\) 51.8466 51.8466i 1.87820 1.87820i
\(763\) 3.09612 0.112087
\(764\) −24.9064 −0.901081
\(765\) 60.4770 + 21.2165i 2.18655 + 0.767086i
\(766\) −59.1187 −2.13605
\(767\) 11.8028 0.426175
\(768\) 61.5267 61.5267i 2.22015 2.22015i
\(769\) −47.7916 −1.72341 −0.861705 0.507410i \(-0.830603\pi\)
−0.861705 + 0.507410i \(0.830603\pi\)
\(770\) 0.143019 + 0.599373i 0.00515406 + 0.0215999i
\(771\) 16.5121 16.5121i 0.594667 0.594667i
\(772\) −38.2798 38.2798i −1.37772 1.37772i
\(773\) −28.3286 −1.01891 −0.509455 0.860497i \(-0.670153\pi\)
−0.509455 + 0.860497i \(0.670153\pi\)
\(774\) 41.3732i 1.48713i
\(775\) −13.8758 4.55105i −0.498434 0.163478i
\(776\) 26.3396 26.3396i 0.945536 0.945536i
\(777\) 2.80528 2.80528i 0.100639 0.100639i
\(778\) 56.5464i 2.02729i
\(779\) 2.25445 + 2.25445i 0.0807742 + 0.0807742i
\(780\) −26.8427 + 43.6675i −0.961124 + 1.56355i
\(781\) −3.76036 −0.134556
\(782\) −0.777794 3.58308i −0.0278139 0.128131i
\(783\) 87.2932i 3.11961i
\(784\) 15.6940i 0.560500i
\(785\) −21.9064 + 5.22719i −0.781872 + 0.186566i
\(786\) 148.187 5.28565
\(787\) −29.9191 + 29.9191i −1.06650 + 1.06650i −0.0688738 + 0.997625i \(0.521941\pi\)
−0.997625 + 0.0688738i \(0.978059\pi\)
\(788\) −2.27072 2.27072i −0.0808912 0.0808912i
\(789\) −17.1156 + 17.1156i −0.609330 + 0.609330i
\(790\) 30.5941 + 18.8064i 1.08849 + 0.669102i
\(791\) 1.58158i 0.0562344i
\(792\) −10.4306 10.4306i −0.370635 0.370635i
\(793\) −7.86854 7.86854i −0.279420 0.279420i
\(794\) 46.7612 + 46.7612i 1.65949 + 1.65949i
\(795\) 35.5855 + 21.8747i 1.26209 + 0.775815i
\(796\) 34.7412 + 34.7412i 1.23137 + 1.23137i
\(797\) −54.1578 −1.91837 −0.959185 0.282780i \(-0.908743\pi\)
−0.959185 + 0.282780i \(0.908743\pi\)
\(798\) 6.62407i 0.234489i
\(799\) −15.0336 + 23.3700i −0.531850 + 0.826772i
\(800\) 12.0336 6.08951i 0.425452 0.215297i
\(801\) 111.123i 3.92633i
\(802\) −51.5354 + 51.5354i −1.81978 + 1.81978i
\(803\) 0.622235i 0.0219582i
\(804\) −94.8588 94.8588i −3.34541 3.34541i
\(805\) −0.178317 + 0.0425490i −0.00628484 + 0.00149966i
\(806\) −9.69399 + 9.69399i −0.341456 + 0.341456i
\(807\) 24.8350 0.874234
\(808\) −29.1413 −1.02519
\(809\) 21.9064 21.9064i 0.770187 0.770187i −0.207952 0.978139i \(-0.566680\pi\)
0.978139 + 0.207952i \(0.0666799\pi\)
\(810\) 22.8735 + 95.8595i 0.803693 + 3.36816i
\(811\) −2.93481 2.93481i −0.103055 0.103055i 0.653699 0.756754i \(-0.273216\pi\)
−0.756754 + 0.653699i \(0.773216\pi\)
\(812\) 5.69071i 0.199705i
\(813\) −40.3016 + 40.3016i −1.41344 + 1.41344i
\(814\) 7.16081i 0.250986i
\(815\) 11.2272 18.2643i 0.393271 0.639770i
\(816\) 28.6960 6.22916i 1.00456 0.218064i
\(817\) 9.97667i 0.349039i
\(818\) 14.0863 0.492515
\(819\) −2.12723 2.12723i −0.0743313 0.0743313i
\(820\) −5.60886 3.44780i −0.195870 0.120402i
\(821\) −0.996845 0.996845i −0.0347901 0.0347901i 0.689498 0.724288i \(-0.257831\pi\)
−0.724288 + 0.689498i \(0.757831\pi\)
\(822\) 24.7879 + 24.7879i 0.864578 + 0.864578i
\(823\) 14.2899 + 14.2899i 0.498116 + 0.498116i 0.910851 0.412735i \(-0.135427\pi\)
−0.412735 + 0.910851i \(0.635427\pi\)
\(824\) 38.5004i 1.34123i
\(825\) −3.73864 7.38799i −0.130163 0.257217i
\(826\) −2.22718 + 2.22718i −0.0774934 + 0.0774934i
\(827\) −8.03163 8.03163i −0.279287 0.279287i 0.553537 0.832824i \(-0.313278\pi\)
−0.832824 + 0.553537i \(0.813278\pi\)
\(828\) 6.76687 6.76687i 0.235165 0.235165i
\(829\) −10.9336 −0.379741 −0.189870 0.981809i \(-0.560807\pi\)
−0.189870 + 0.981809i \(0.560807\pi\)
\(830\) −7.57579 31.7490i −0.262959 1.10202i
\(831\) 83.7768i 2.90618i
\(832\) 21.5433i 0.746879i
\(833\) −15.5066 + 24.1053i −0.537272 + 0.835200i
\(834\) 39.5036 1.36790
\(835\) 10.1798 + 6.25761i 0.352287 + 0.216553i
\(836\) 5.48478 + 5.48478i 0.189695 + 0.189695i
\(837\) 36.4078i 1.25844i
\(838\) 54.8149 54.8149i 1.89355 1.89355i
\(839\) 27.4836 27.4836i 0.948840 0.948840i −0.0499138 0.998754i \(-0.515895\pi\)
0.998754 + 0.0499138i \(0.0158947\pi\)
\(840\) −1.45591 6.10151i −0.0502337 0.210522i
\(841\) 20.0367i 0.690922i
\(842\) 71.8621 2.47653
\(843\) −30.7224 30.7224i −1.05813 1.05813i
\(844\) −46.4720 + 46.4720i −1.59963 + 1.59963i
\(845\) −4.73857 19.8586i −0.163012 0.683158i
\(846\) −111.796 −3.84361
\(847\) 1.66828 1.66828i 0.0573228 0.0573228i
\(848\) 13.3688 0.459088
\(849\) 43.3669 1.48835
\(850\) 48.9314 + 5.06625i 1.67833 + 0.173771i
\(851\) 2.13038 0.0730285
\(852\) 83.4745 2.85979
\(853\) −22.6454 + 22.6454i −0.775365 + 0.775365i −0.979039 0.203674i \(-0.934712\pi\)
0.203674 + 0.979039i \(0.434712\pi\)
\(854\) 2.96957 0.101617
\(855\) −14.4312 60.4791i −0.493537 2.06834i
\(856\) 30.8232 30.8232i 1.05352 1.05352i
\(857\) −18.1563 18.1563i −0.620208 0.620208i 0.325376 0.945585i \(-0.394509\pi\)
−0.945585 + 0.325376i \(0.894509\pi\)
\(858\) −7.77333 −0.265377
\(859\) 38.7065i 1.32065i 0.750981 + 0.660324i \(0.229581\pi\)
−0.750981 + 0.660324i \(0.770419\pi\)
\(860\) 4.78167 + 20.0393i 0.163054 + 0.683334i
\(861\) 0.391145 0.391145i 0.0133302 0.0133302i
\(862\) −14.0462 + 14.0462i −0.478416 + 0.478416i
\(863\) 29.5881i 1.00719i −0.863939 0.503596i \(-0.832010\pi\)
0.863939 0.503596i \(-0.167990\pi\)
\(864\) −23.7760 23.7760i −0.808875 0.808875i
\(865\) 33.2509 + 20.4395i 1.13056 + 0.694965i
\(866\) −32.4036 −1.10112
\(867\) −50.2306 18.7856i −1.70592 0.637992i
\(868\) 2.37346i 0.0805603i
\(869\) 3.53318i 0.119855i
\(870\) 27.3573 + 114.651i 0.927501 + 3.88702i
\(871\) −22.6456 −0.767317
\(872\) −40.2266 + 40.2266i −1.36225 + 1.36225i
\(873\) −45.2974 45.2974i −1.53309 1.53309i
\(874\) −2.51522 + 2.51522i −0.0850785 + 0.0850785i
\(875\) 0.203161 2.45120i 0.00686808 0.0828656i
\(876\) 13.8127i 0.466689i
\(877\) 18.7380 + 18.7380i 0.632737 + 0.632737i 0.948754 0.316017i \(-0.102346\pi\)
−0.316017 + 0.948754i \(0.602346\pi\)
\(878\) 34.3728 + 34.3728i 1.16003 + 1.16003i
\(879\) −44.3615 44.3615i −1.49628 1.49628i
\(880\) −2.25761 1.38777i −0.0761040 0.0467816i
\(881\) −7.77282 7.77282i −0.261873 0.261873i 0.563942 0.825815i \(-0.309284\pi\)
−0.825815 + 0.563942i \(0.809284\pi\)
\(882\) −115.313 −3.88279
\(883\) 56.2202i 1.89196i 0.324225 + 0.945980i \(0.394896\pi\)
−0.324225 + 0.945980i \(0.605104\pi\)
\(884\) 16.2092 25.1976i 0.545175 0.847486i
\(885\) 22.1640 36.0562i 0.745034 1.21201i
\(886\) 5.85481i 0.196696i
\(887\) 4.87988 4.87988i 0.163850 0.163850i −0.620420 0.784270i \(-0.713038\pi\)
0.784270 + 0.620420i \(0.213038\pi\)
\(888\) 72.8958i 2.44622i
\(889\) 1.51522 + 1.51522i 0.0508187 + 0.0508187i
\(890\) −19.7963 82.9634i −0.663574 2.78094i
\(891\) −6.85598 + 6.85598i −0.229684 + 0.229684i
\(892\) −7.26658 −0.243303
\(893\) 26.9582 0.902122
\(894\) −46.5340 + 46.5340i −1.55633 + 1.55633i
\(895\) 46.3815 11.0673i 1.55036 0.369940i
\(896\) 3.22600 + 3.22600i 0.107773 + 0.107773i
\(897\) 2.31261i 0.0772158i
\(898\) 5.39465 5.39465i 0.180022 0.180022i
\(899\) 20.4520i 0.682113i
\(900\) 57.9735 + 114.563i 1.93245 + 3.81875i
\(901\) −20.5340 13.2092i −0.684087 0.440063i
\(902\) 0.998442i 0.0332445i
\(903\) −1.73094 −0.0576020
\(904\) −20.5488 20.5488i −0.683443 0.683443i
\(905\) −27.5036 16.9066i −0.914249 0.561995i
\(906\) 84.6496 + 84.6496i 2.81229 + 2.81229i
\(907\) −22.0708 22.0708i −0.732849 0.732849i 0.238334 0.971183i \(-0.423399\pi\)
−0.971183 + 0.238334i \(0.923399\pi\)
\(908\) 31.2361 + 31.2361i 1.03661 + 1.03661i
\(909\) 50.1156i 1.66223i
\(910\) −1.96713 1.20921i −0.0652099 0.0400850i
\(911\) 30.0472 30.0472i 0.995509 0.995509i −0.00448095 0.999990i \(-0.501426\pi\)
0.999990 + 0.00448095i \(0.00142634\pi\)
\(912\) −20.1437 20.1437i −0.667026 0.667026i
\(913\) 2.27072 2.27072i 0.0751500 0.0751500i
\(914\) 72.0164 2.38209
\(915\) −38.8134 + 9.26146i −1.28313 + 0.306175i
\(916\) 34.3763i 1.13583i
\(917\) 4.33076i 0.143014i
\(918\) −26.0173 119.854i −0.858700 3.95579i
\(919\) −29.1312 −0.960949 −0.480475 0.877009i \(-0.659536\pi\)
−0.480475 + 0.877009i \(0.659536\pi\)
\(920\) 1.76397 2.86962i 0.0581565 0.0946085i
\(921\) 33.3700 + 33.3700i 1.09958 + 1.09958i
\(922\) 12.9220i 0.425562i
\(923\) 9.96391 9.96391i 0.327966 0.327966i
\(924\) 0.951603 0.951603i 0.0313054 0.0313054i
\(925\) −8.90782 + 27.1593i −0.292887 + 0.892994i
\(926\) 37.6004i 1.23562i
\(927\) 66.2109 2.17465
\(928\) −13.3561 13.3561i −0.438435 0.438435i
\(929\) 0.921171 0.921171i 0.0302226 0.0302226i −0.691834 0.722057i \(-0.743197\pi\)
0.722057 + 0.691834i \(0.243197\pi\)
\(930\) 11.4101 + 47.8179i 0.374151 + 1.56801i
\(931\) 27.8064 0.911318
\(932\) 67.3932 67.3932i 2.20754 2.20754i
\(933\) 93.5463 3.06257
\(934\) −25.6971 −0.840836
\(935\) 2.09640 + 4.36220i 0.0685595 + 0.142659i
\(936\) 55.2764 1.80677
\(937\) −9.43458 −0.308214 −0.154107 0.988054i \(-0.549250\pi\)
−0.154107 + 0.988054i \(0.549250\pi\)
\(938\) 4.27320 4.27320i 0.139525 0.139525i
\(939\) −45.3584 −1.48021
\(940\) −54.1487 + 12.9207i −1.76613 + 0.421426i
\(941\) −17.8033 + 17.8033i −0.580370 + 0.580370i −0.935005 0.354635i \(-0.884605\pi\)
0.354635 + 0.935005i \(0.384605\pi\)
\(942\) 53.6105 + 53.6105i 1.74673 + 1.74673i
\(943\) 0.297042 0.00967302
\(944\) 13.5456i 0.440873i
\(945\) −5.96472 + 1.42327i −0.194032 + 0.0462990i
\(946\) −2.20921 + 2.20921i −0.0718276 + 0.0718276i
\(947\) 19.5564 19.5564i 0.635496 0.635496i −0.313945 0.949441i \(-0.601651\pi\)
0.949441 + 0.313945i \(0.101651\pi\)
\(948\) 78.4315i 2.54734i
\(949\) 1.64875 + 1.64875i 0.0535208 + 0.0535208i
\(950\) −21.5485 42.5824i −0.699126 1.38156i
\(951\) 43.4552 1.40913
\(952\) 0.777794 + 3.58308i 0.0252085 + 0.116128i
\(953\) 16.0279i 0.519195i 0.965717 + 0.259598i \(0.0835899\pi\)
−0.965717 + 0.259598i \(0.916410\pi\)
\(954\) 98.2288i 3.18027i
\(955\) 3.49923 + 14.6647i 0.113232 + 0.474540i
\(956\) −108.202 −3.49949
\(957\) −8.19994 + 8.19994i −0.265066 + 0.265066i
\(958\) 62.2771 + 62.2771i 2.01208 + 2.01208i
\(959\) −0.724427 + 0.724427i −0.0233930 + 0.0233930i
\(960\) −65.8121 40.4552i −2.12408 1.30568i
\(961\) 22.4700i 0.724838i
\(962\) 18.9742 + 18.9742i 0.611752 + 0.611752i
\(963\) −53.0081 53.0081i −1.70816 1.70816i
\(964\) 22.1640 + 22.1640i 0.713853 + 0.713853i
\(965\) −17.1608 + 27.9171i −0.552426 + 0.898682i
\(966\) 0.436387 + 0.436387i 0.0140405 + 0.0140405i
\(967\) 10.9849 0.353252 0.176626 0.984278i \(-0.443482\pi\)
0.176626 + 0.984278i \(0.443482\pi\)
\(968\) 43.3506i 1.39334i
\(969\) 11.0367 + 50.8432i 0.354551 + 1.63332i
\(970\) −41.8884 25.7491i −1.34496 0.826753i
\(971\) 32.2944i 1.03638i −0.855267 0.518188i \(-0.826607\pi\)
0.855267 0.518188i \(-0.173393\pi\)
\(972\) 54.5090 54.5090i 1.74838 1.74838i
\(973\) 1.15449i 0.0370113i
\(974\) 64.6632 + 64.6632i 2.07194 + 2.07194i
\(975\) 29.4825 + 9.66978i 0.944196 + 0.309681i
\(976\) −9.03043 + 9.03043i −0.289057 + 0.289057i
\(977\) 2.59459 0.0830084 0.0415042 0.999138i \(-0.486785\pi\)
0.0415042 + 0.999138i \(0.486785\pi\)
\(978\) −72.1732 −2.30784
\(979\) 5.93364 5.93364i 0.189640 0.189640i
\(980\) −55.8524 + 13.3272i −1.78414 + 0.425722i
\(981\) 69.1796 + 69.1796i 2.20873 + 2.20873i
\(982\) 90.7561i 2.89614i
\(983\) −6.79991 + 6.79991i −0.216883 + 0.216883i −0.807184 0.590300i \(-0.799009\pi\)
0.590300 + 0.807184i \(0.299009\pi\)
\(984\) 10.1640i 0.324015i
\(985\) −1.01796 + 1.65602i −0.0324351 + 0.0527651i
\(986\) −14.6152 67.3279i −0.465442 2.14416i
\(987\) 4.67721i 0.148877i
\(988\) −29.0663 −0.924723
\(989\) −0.657252 0.657252i −0.0208994 0.0208994i
\(990\) −10.1967 + 16.5880i −0.324074 + 0.527201i
\(991\) 19.9864 + 19.9864i 0.634888 + 0.634888i 0.949290 0.314402i \(-0.101804\pi\)
−0.314402 + 0.949290i \(0.601804\pi\)
\(992\) −5.57049 5.57049i −0.176863 0.176863i
\(993\) 44.9788 + 44.9788i 1.42736 + 1.42736i
\(994\) 3.76036i 0.119271i
\(995\) 15.5745 25.3364i 0.493744 0.803219i
\(996\) −50.4068 + 50.4068i −1.59720 + 1.59720i
\(997\) −2.36593 2.36593i −0.0749297 0.0749297i 0.668649 0.743578i \(-0.266873\pi\)
−0.743578 + 0.668649i \(0.766873\pi\)
\(998\) 15.7022 15.7022i 0.497045 0.497045i
\(999\) 71.2616 2.25462
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.j.c.64.6 yes 12
3.2 odd 2 765.2.t.e.64.1 12
5.2 odd 4 425.2.e.d.251.6 12
5.3 odd 4 425.2.e.d.251.1 12
5.4 even 2 inner 85.2.j.c.64.1 yes 12
15.14 odd 2 765.2.t.e.64.6 12
17.2 even 8 1445.2.b.f.579.12 12
17.4 even 4 inner 85.2.j.c.4.1 12
17.15 even 8 1445.2.b.f.579.11 12
51.38 odd 4 765.2.t.e.514.6 12
85.2 odd 8 7225.2.a.bp.1.2 12
85.4 even 4 inner 85.2.j.c.4.6 yes 12
85.19 even 8 1445.2.b.f.579.1 12
85.32 odd 8 7225.2.a.bp.1.1 12
85.38 odd 4 425.2.e.d.276.6 12
85.49 even 8 1445.2.b.f.579.2 12
85.53 odd 8 7225.2.a.bp.1.11 12
85.72 odd 4 425.2.e.d.276.1 12
85.83 odd 8 7225.2.a.bp.1.12 12
255.89 odd 4 765.2.t.e.514.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.c.4.1 12 17.4 even 4 inner
85.2.j.c.4.6 yes 12 85.4 even 4 inner
85.2.j.c.64.1 yes 12 5.4 even 2 inner
85.2.j.c.64.6 yes 12 1.1 even 1 trivial
425.2.e.d.251.1 12 5.3 odd 4
425.2.e.d.251.6 12 5.2 odd 4
425.2.e.d.276.1 12 85.72 odd 4
425.2.e.d.276.6 12 85.38 odd 4
765.2.t.e.64.1 12 3.2 odd 2
765.2.t.e.64.6 12 15.14 odd 2
765.2.t.e.514.1 12 255.89 odd 4
765.2.t.e.514.6 12 51.38 odd 4
1445.2.b.f.579.1 12 85.19 even 8
1445.2.b.f.579.2 12 85.49 even 8
1445.2.b.f.579.11 12 17.15 even 8
1445.2.b.f.579.12 12 17.2 even 8
7225.2.a.bp.1.1 12 85.32 odd 8
7225.2.a.bp.1.2 12 85.2 odd 8
7225.2.a.bp.1.11 12 85.53 odd 8
7225.2.a.bp.1.12 12 85.83 odd 8