Properties

Label 85.2.j.c.64.4
Level $85$
Weight $2$
Character 85.64
Analytic conductor $0.679$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [85,2,Mod(4,85)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("85.4"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(85, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 188x^{8} + 572x^{6} + 776x^{4} + 464x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 64.4
Root \(-1.23239i\) of defining polynomial
Character \(\chi\) \(=\) 85.64
Dual form 85.2.j.c.4.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.232389 q^{2} +(-1.69306 + 1.69306i) q^{3} -1.94600 q^{4} +(0.898299 + 2.04770i) q^{5} +(-0.393449 + 0.393449i) q^{6} +(1.46067 + 1.46067i) q^{7} -0.917007 q^{8} -2.73289i q^{9} +(0.208755 + 0.475863i) q^{10} +(-0.339444 + 0.339444i) q^{11} +(3.29468 - 3.29468i) q^{12} -4.07073i q^{13} +(0.339444 + 0.339444i) q^{14} +(-4.98774 - 1.94600i) q^{15} +3.67889 q^{16} +(3.75946 - 1.69306i) q^{17} -0.635095i q^{18} +4.00000i q^{19} +(-1.74809 - 3.98481i) q^{20} -4.94600 q^{21} +(-0.0788831 + 0.0788831i) q^{22} +(5.76379 + 5.76379i) q^{23} +(1.55255 - 1.55255i) q^{24} +(-3.38612 + 3.67889i) q^{25} -0.945995i q^{26} +(-0.452229 - 0.452229i) q^{27} +(-2.84245 - 2.84245i) q^{28} +(0.732893 + 0.732893i) q^{29} +(-1.15910 - 0.452229i) q^{30} +(-4.28544 - 4.28544i) q^{31} +2.68895 q^{32} -1.14940i q^{33} +(0.873659 - 0.393449i) q^{34} +(-1.67889 + 4.30312i) q^{35} +5.31820i q^{36} +(-0.917007 + 0.917007i) q^{37} +0.929557i q^{38} +(6.89199 + 6.89199i) q^{39} +(-0.823747 - 1.87775i) q^{40} +(7.62488 - 7.62488i) q^{41} -1.14940 q^{42} -7.45685 q^{43} +(0.660556 - 0.660556i) q^{44} +(5.59613 - 2.45496i) q^{45} +(1.33944 + 1.33944i) q^{46} +3.60596i q^{47} +(-6.22857 + 6.22857i) q^{48} -2.73289i q^{49} +(-0.786897 + 0.854934i) q^{50} +(-3.49854 + 9.23143i) q^{51} +7.92163i q^{52} +6.14969 q^{53} +(-0.105093 - 0.105093i) q^{54} +(-1.00000 - 0.390156i) q^{55} +(-1.33944 - 1.33944i) q^{56} +(-6.77223 - 6.77223i) q^{57} +(0.170316 + 0.170316i) q^{58} -6.00000i q^{59} +(9.70612 + 3.78690i) q^{60} +(-4.00000 + 4.00000i) q^{61} +(-0.995890 - 0.995890i) q^{62} +(3.99185 - 3.99185i) q^{63} -6.73289 q^{64} +(8.33563 - 3.65674i) q^{65} -0.267107i q^{66} -3.14118i q^{67} +(-7.31589 + 3.29468i) q^{68} -19.5169 q^{69} +(-0.390156 + 1.00000i) q^{70} +(1.28544 + 1.28544i) q^{71} +2.50608i q^{72} +(8.60625 - 8.60625i) q^{73} +(-0.213103 + 0.213103i) q^{74} +(-0.495679 - 11.9615i) q^{75} -7.78398i q^{76} -0.991630 q^{77} +(1.60162 + 1.60162i) q^{78} +(7.23143 - 7.23143i) q^{79} +(3.30474 + 7.53324i) q^{80} +9.72998 q^{81} +(1.77194 - 1.77194i) q^{82} +2.23672 q^{83} +9.62488 q^{84} +(6.84399 + 6.17736i) q^{85} -1.73289 q^{86} -2.48166 q^{87} +(0.311272 - 0.311272i) q^{88} -9.37220 q^{89} +(1.30048 - 0.570505i) q^{90} +(5.94600 - 5.94600i) q^{91} +(-11.2163 - 11.2163i) q^{92} +14.5110 q^{93} +0.837986i q^{94} +(-8.19078 + 3.59320i) q^{95} +(-4.55255 + 4.55255i) q^{96} +(-11.8220 + 11.8220i) q^{97} -0.635095i q^{98} +(0.927664 + 0.927664i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{4} - 20 q^{6} - 4 q^{10} + 16 q^{11} - 16 q^{14} + 4 q^{16} - 32 q^{20} - 24 q^{21} - 32 q^{24} + 4 q^{29} + 52 q^{30} + 4 q^{31} + 20 q^{35} + 12 q^{39} + 24 q^{40} + 16 q^{41} + 28 q^{44}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/85\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.232389 0.164324 0.0821620 0.996619i \(-0.473817\pi\)
0.0821620 + 0.996619i \(0.473817\pi\)
\(3\) −1.69306 + 1.69306i −0.977488 + 0.977488i −0.999752 0.0222645i \(-0.992912\pi\)
0.0222645 + 0.999752i \(0.492912\pi\)
\(4\) −1.94600 −0.972998
\(5\) 0.898299 + 2.04770i 0.401732 + 0.915757i
\(6\) −0.393449 + 0.393449i −0.160625 + 0.160625i
\(7\) 1.46067 + 1.46067i 0.552081 + 0.552081i 0.927041 0.374960i \(-0.122344\pi\)
−0.374960 + 0.927041i \(0.622344\pi\)
\(8\) −0.917007 −0.324211
\(9\) 2.73289i 0.910964i
\(10\) 0.208755 + 0.475863i 0.0660142 + 0.150481i
\(11\) −0.339444 + 0.339444i −0.102346 + 0.102346i −0.756426 0.654080i \(-0.773056\pi\)
0.654080 + 0.756426i \(0.273056\pi\)
\(12\) 3.29468 3.29468i 0.951093 0.951093i
\(13\) 4.07073i 1.12902i −0.825427 0.564509i \(-0.809065\pi\)
0.825427 0.564509i \(-0.190935\pi\)
\(14\) 0.339444 + 0.339444i 0.0907202 + 0.0907202i
\(15\) −4.98774 1.94600i −1.28783 0.502454i
\(16\) 3.67889 0.919722
\(17\) 3.75946 1.69306i 0.911803 0.410627i
\(18\) 0.635095i 0.149693i
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) −1.74809 3.98481i −0.390884 0.891030i
\(21\) −4.94600 −1.07930
\(22\) −0.0788831 + 0.0788831i −0.0168179 + 0.0168179i
\(23\) 5.76379 + 5.76379i 1.20183 + 1.20183i 0.973608 + 0.228226i \(0.0732924\pi\)
0.228226 + 0.973608i \(0.426708\pi\)
\(24\) 1.55255 1.55255i 0.316912 0.316912i
\(25\) −3.38612 + 3.67889i −0.677223 + 0.735778i
\(26\) 0.945995i 0.185525i
\(27\) −0.452229 0.452229i −0.0870314 0.0870314i
\(28\) −2.84245 2.84245i −0.537173 0.537173i
\(29\) 0.732893 + 0.732893i 0.136095 + 0.136095i 0.771872 0.635778i \(-0.219320\pi\)
−0.635778 + 0.771872i \(0.719320\pi\)
\(30\) −1.15910 0.452229i −0.211621 0.0825653i
\(31\) −4.28544 4.28544i −0.769688 0.769688i 0.208364 0.978051i \(-0.433186\pi\)
−0.978051 + 0.208364i \(0.933186\pi\)
\(32\) 2.68895 0.475343
\(33\) 1.14940i 0.200084i
\(34\) 0.873659 0.393449i 0.149831 0.0674759i
\(35\) −1.67889 + 4.30312i −0.283784 + 0.727361i
\(36\) 5.31820i 0.886366i
\(37\) −0.917007 + 0.917007i −0.150755 + 0.150755i −0.778455 0.627700i \(-0.783996\pi\)
0.627700 + 0.778455i \(0.283996\pi\)
\(38\) 0.929557i 0.150794i
\(39\) 6.89199 + 6.89199i 1.10360 + 1.10360i
\(40\) −0.823747 1.87775i −0.130246 0.296899i
\(41\) 7.62488 7.62488i 1.19081 1.19081i 0.213965 0.976841i \(-0.431362\pi\)
0.976841 0.213965i \(-0.0686380\pi\)
\(42\) −1.14940 −0.177356
\(43\) −7.45685 −1.13716 −0.568580 0.822628i \(-0.692507\pi\)
−0.568580 + 0.822628i \(0.692507\pi\)
\(44\) 0.660556 0.660556i 0.0995826 0.0995826i
\(45\) 5.59613 2.45496i 0.834222 0.365963i
\(46\) 1.33944 + 1.33944i 0.197490 + 0.197490i
\(47\) 3.60596i 0.525983i 0.964798 + 0.262991i \(0.0847091\pi\)
−0.964798 + 0.262991i \(0.915291\pi\)
\(48\) −6.22857 + 6.22857i −0.899017 + 0.899017i
\(49\) 2.73289i 0.390413i
\(50\) −0.786897 + 0.854934i −0.111284 + 0.120906i
\(51\) −3.49854 + 9.23143i −0.489894 + 1.29266i
\(52\) 7.92163i 1.09853i
\(53\) 6.14969 0.844725 0.422362 0.906427i \(-0.361201\pi\)
0.422362 + 0.906427i \(0.361201\pi\)
\(54\) −0.105093 0.105093i −0.0143014 0.0143014i
\(55\) −1.00000 0.390156i −0.134840 0.0526086i
\(56\) −1.33944 1.33944i −0.178991 0.178991i
\(57\) −6.77223 6.77223i −0.897004 0.897004i
\(58\) 0.170316 + 0.170316i 0.0223636 + 0.0223636i
\(59\) 6.00000i 0.781133i −0.920575 0.390567i \(-0.872279\pi\)
0.920575 0.390567i \(-0.127721\pi\)
\(60\) 9.70612 + 3.78690i 1.25305 + 0.488886i
\(61\) −4.00000 + 4.00000i −0.512148 + 0.512148i −0.915184 0.403036i \(-0.867955\pi\)
0.403036 + 0.915184i \(0.367955\pi\)
\(62\) −0.995890 0.995890i −0.126478 0.126478i
\(63\) 3.99185 3.99185i 0.502926 0.502926i
\(64\) −6.73289 −0.841612
\(65\) 8.33563 3.65674i 1.03391 0.453563i
\(66\) 0.267107i 0.0328787i
\(67\) 3.14118i 0.383756i −0.981419 0.191878i \(-0.938542\pi\)
0.981419 0.191878i \(-0.0614578\pi\)
\(68\) −7.31589 + 3.29468i −0.887183 + 0.399539i
\(69\) −19.5169 −2.34956
\(70\) −0.390156 + 1.00000i −0.0466325 + 0.119523i
\(71\) 1.28544 + 1.28544i 0.152554 + 0.152554i 0.779257 0.626704i \(-0.215596\pi\)
−0.626704 + 0.779257i \(0.715596\pi\)
\(72\) 2.50608i 0.295345i
\(73\) 8.60625 8.60625i 1.00729 1.00729i 0.00731179 0.999973i \(-0.497673\pi\)
0.999973 0.00731179i \(-0.00232744\pi\)
\(74\) −0.213103 + 0.213103i −0.0247727 + 0.0247727i
\(75\) −0.495679 11.9615i −0.0572360 1.38119i
\(76\) 7.78398i 0.892884i
\(77\) −0.991630 −0.113007
\(78\) 1.60162 + 1.60162i 0.181348 + 0.181348i
\(79\) 7.23143 7.23143i 0.813600 0.813600i −0.171572 0.985172i \(-0.554885\pi\)
0.985172 + 0.171572i \(0.0548845\pi\)
\(80\) 3.30474 + 7.53324i 0.369481 + 0.842242i
\(81\) 9.72998 1.08111
\(82\) 1.77194 1.77194i 0.195678 0.195678i
\(83\) 2.23672 0.245512 0.122756 0.992437i \(-0.460827\pi\)
0.122756 + 0.992437i \(0.460827\pi\)
\(84\) 9.62488 1.05016
\(85\) 6.84399 + 6.17736i 0.742335 + 0.670029i
\(86\) −1.73289 −0.186863
\(87\) −2.48166 −0.266062
\(88\) 0.311272 0.311272i 0.0331818 0.0331818i
\(89\) −9.37220 −0.993451 −0.496726 0.867908i \(-0.665464\pi\)
−0.496726 + 0.867908i \(0.665464\pi\)
\(90\) 1.30048 0.570505i 0.137083 0.0601366i
\(91\) 5.94600 5.94600i 0.623310 0.623310i
\(92\) −11.2163 11.2163i −1.16938 1.16938i
\(93\) 14.5110 1.50472
\(94\) 0.837986i 0.0864316i
\(95\) −8.19078 + 3.59320i −0.840357 + 0.368654i
\(96\) −4.55255 + 4.55255i −0.464642 + 0.464642i
\(97\) −11.8220 + 11.8220i −1.20035 + 1.20035i −0.226286 + 0.974061i \(0.572658\pi\)
−0.974061 + 0.226286i \(0.927342\pi\)
\(98\) 0.635095i 0.0641543i
\(99\) 0.927664 + 0.927664i 0.0932337 + 0.0932337i
\(100\) 6.58937 7.15910i 0.658937 0.715910i
\(101\) −4.41178 −0.438989 −0.219494 0.975614i \(-0.570441\pi\)
−0.219494 + 0.975614i \(0.570441\pi\)
\(102\) −0.813024 + 2.14529i −0.0805013 + 0.212415i
\(103\) 17.4323i 1.71766i −0.512262 0.858829i \(-0.671192\pi\)
0.512262 0.858829i \(-0.328808\pi\)
\(104\) 3.73289i 0.366040i
\(105\) −4.44298 10.1279i −0.433591 0.988381i
\(106\) 1.42912 0.138809
\(107\) −3.68484 + 3.68484i −0.356227 + 0.356227i −0.862420 0.506193i \(-0.831052\pi\)
0.506193 + 0.862420i \(0.331052\pi\)
\(108\) 0.880035 + 0.880035i 0.0846814 + 0.0846814i
\(109\) −5.73289 + 5.73289i −0.549112 + 0.549112i −0.926184 0.377072i \(-0.876931\pi\)
0.377072 + 0.926184i \(0.376931\pi\)
\(110\) −0.232389 0.0906680i −0.0221575 0.00864485i
\(111\) 3.10509i 0.294722i
\(112\) 5.37364 + 5.37364i 0.507761 + 0.507761i
\(113\) 2.45656 + 2.45656i 0.231094 + 0.231094i 0.813149 0.582055i \(-0.197751\pi\)
−0.582055 + 0.813149i \(0.697751\pi\)
\(114\) −1.57379 1.57379i −0.147399 0.147399i
\(115\) −6.62488 + 16.9801i −0.617774 + 1.58340i
\(116\) −1.42621 1.42621i −0.132420 0.132420i
\(117\) −11.1249 −1.02850
\(118\) 1.39434i 0.128359i
\(119\) 7.96433 + 3.01833i 0.730089 + 0.276690i
\(120\) 4.57379 + 1.78449i 0.417528 + 0.162901i
\(121\) 10.7696i 0.979051i
\(122\) −0.929557 + 0.929557i −0.0841582 + 0.0841582i
\(123\) 25.8187i 2.32800i
\(124\) 8.33944 + 8.33944i 0.748904 + 0.748904i
\(125\) −10.5750 3.62899i −0.945856 0.324587i
\(126\) 0.927664 0.927664i 0.0826428 0.0826428i
\(127\) 2.98341 0.264735 0.132367 0.991201i \(-0.457742\pi\)
0.132367 + 0.991201i \(0.457742\pi\)
\(128\) −6.94255 −0.613640
\(129\) 12.6249 12.6249i 1.11156 1.11156i
\(130\) 1.93711 0.849787i 0.169896 0.0745312i
\(131\) 5.08676 + 5.08676i 0.444432 + 0.444432i 0.893499 0.449066i \(-0.148243\pi\)
−0.449066 + 0.893499i \(0.648243\pi\)
\(132\) 2.23672i 0.194681i
\(133\) −5.84268 + 5.84268i −0.506624 + 0.506624i
\(134\) 0.729976i 0.0630603i
\(135\) 0.519790 1.33226i 0.0447364 0.114663i
\(136\) −3.44745 + 1.55255i −0.295617 + 0.133130i
\(137\) 0.526852i 0.0450120i 0.999747 + 0.0225060i \(0.00716448\pi\)
−0.999747 + 0.0225060i \(0.992836\pi\)
\(138\) −4.53551 −0.386089
\(139\) 12.4985 + 12.4985i 1.06011 + 1.06011i 0.998074 + 0.0620387i \(0.0197602\pi\)
0.0620387 + 0.998074i \(0.480240\pi\)
\(140\) 3.26711 8.37386i 0.276121 0.707720i
\(141\) −6.10509 6.10509i −0.514142 0.514142i
\(142\) 0.298722 + 0.298722i 0.0250682 + 0.0250682i
\(143\) 1.38179 + 1.38179i 0.115551 + 0.115551i
\(144\) 10.0540i 0.837834i
\(145\) −0.842384 + 2.15910i −0.0699562 + 0.179303i
\(146\) 2.00000 2.00000i 0.165521 0.165521i
\(147\) 4.62695 + 4.62695i 0.381624 + 0.381624i
\(148\) 1.78449 1.78449i 0.146684 0.146684i
\(149\) 7.32111 0.599769 0.299884 0.953976i \(-0.403052\pi\)
0.299884 + 0.953976i \(0.403052\pi\)
\(150\) −0.115190 2.77972i −0.00940526 0.226963i
\(151\) 7.46579i 0.607557i −0.952743 0.303778i \(-0.901752\pi\)
0.952743 0.303778i \(-0.0982483\pi\)
\(152\) 3.66803i 0.297516i
\(153\) −4.62695 10.2742i −0.374066 0.830620i
\(154\) −0.230444 −0.0185697
\(155\) 4.92567 12.6249i 0.395639 1.01405i
\(156\) −13.4118 13.4118i −1.07380 1.07380i
\(157\) 12.4571i 0.994188i −0.867697 0.497094i \(-0.834400\pi\)
0.867697 0.497094i \(-0.165600\pi\)
\(158\) 1.68051 1.68051i 0.133694 0.133694i
\(159\) −10.4118 + 10.4118i −0.825708 + 0.825708i
\(160\) 2.41548 + 5.50615i 0.190961 + 0.435299i
\(161\) 16.8380i 1.32702i
\(162\) 2.26114 0.177652
\(163\) −6.05825 6.05825i −0.474519 0.474519i 0.428854 0.903374i \(-0.358917\pi\)
−0.903374 + 0.428854i \(0.858917\pi\)
\(164\) −14.8380 + 14.8380i −1.15865 + 1.15865i
\(165\) 2.35361 1.03250i 0.183229 0.0803802i
\(166\) 0.519790 0.0403435
\(167\) 6.68080 6.68080i 0.516976 0.516976i −0.399679 0.916655i \(-0.630878\pi\)
0.916655 + 0.399679i \(0.130878\pi\)
\(168\) 4.53551 0.349922
\(169\) −3.57088 −0.274683
\(170\) 1.59047 + 1.43555i 0.121984 + 0.110102i
\(171\) 10.9316 0.835958
\(172\) 14.5110 1.10645
\(173\) −11.6979 + 11.6979i −0.889375 + 0.889375i −0.994463 0.105088i \(-0.966488\pi\)
0.105088 + 0.994463i \(0.466488\pi\)
\(174\) −0.576711 −0.0437204
\(175\) −10.3196 + 0.427642i −0.780091 + 0.0323267i
\(176\) −1.24878 + 1.24878i −0.0941300 + 0.0941300i
\(177\) 10.1583 + 10.1583i 0.763548 + 0.763548i
\(178\) −2.17800 −0.163248
\(179\) 19.5313i 1.45984i −0.683534 0.729919i \(-0.739558\pi\)
0.683534 0.729919i \(-0.260442\pi\)
\(180\) −10.8900 + 4.77733i −0.811696 + 0.356081i
\(181\) 7.41178 7.41178i 0.550913 0.550913i −0.375791 0.926704i \(-0.622629\pi\)
0.926704 + 0.375791i \(0.122629\pi\)
\(182\) 1.38179 1.38179i 0.102425 0.102425i
\(183\) 13.5445i 1.00124i
\(184\) −5.28544 5.28544i −0.389648 0.389648i
\(185\) −2.70150 1.05400i −0.198618 0.0774920i
\(186\) 3.37220 0.247262
\(187\) −0.701428 + 1.85082i −0.0512935 + 0.135346i
\(188\) 7.01717i 0.511780i
\(189\) 1.32111i 0.0960968i
\(190\) −1.90345 + 0.835021i −0.138091 + 0.0605788i
\(191\) −5.32111 −0.385022 −0.192511 0.981295i \(-0.561663\pi\)
−0.192511 + 0.981295i \(0.561663\pi\)
\(192\) 11.3992 11.3992i 0.822665 0.822665i
\(193\) 8.82609 + 8.82609i 0.635316 + 0.635316i 0.949396 0.314081i \(-0.101696\pi\)
−0.314081 + 0.949396i \(0.601696\pi\)
\(194\) −2.74732 + 2.74732i −0.197246 + 0.197246i
\(195\) −7.92163 + 20.3038i −0.567280 + 1.45398i
\(196\) 5.31820i 0.379871i
\(197\) −0.390156 0.390156i −0.0277974 0.0277974i 0.693071 0.720869i \(-0.256257\pi\)
−0.720869 + 0.693071i \(0.756257\pi\)
\(198\) 0.215579 + 0.215579i 0.0153205 + 0.0153205i
\(199\) −12.4445 12.4445i −0.882170 0.882170i 0.111585 0.993755i \(-0.464407\pi\)
−0.993755 + 0.111585i \(0.964407\pi\)
\(200\) 3.10509 3.37357i 0.219563 0.238547i
\(201\) 5.31820 + 5.31820i 0.375117 + 0.375117i
\(202\) −1.02525 −0.0721364
\(203\) 2.14103i 0.150271i
\(204\) 6.80815 17.9643i 0.476666 1.25775i
\(205\) 22.4629 + 8.76401i 1.56887 + 0.612105i
\(206\) 4.05109i 0.282253i
\(207\) 15.7518 15.7518i 1.09483 1.09483i
\(208\) 14.9758i 1.03838i
\(209\) −1.35778 1.35778i −0.0939193 0.0939193i
\(210\) −1.03250 2.35361i −0.0712494 0.162415i
\(211\) −9.07234 + 9.07234i −0.624565 + 0.624565i −0.946695 0.322130i \(-0.895601\pi\)
0.322130 + 0.946695i \(0.395601\pi\)
\(212\) −11.9673 −0.821915
\(213\) −4.35265 −0.298238
\(214\) −0.856317 + 0.856317i −0.0585366 + 0.0585366i
\(215\) −6.69848 15.2694i −0.456833 1.04136i
\(216\) 0.414697 + 0.414697i 0.0282165 + 0.0282165i
\(217\) 12.5192i 0.849860i
\(218\) −1.33226 + 1.33226i −0.0902322 + 0.0902322i
\(219\) 29.1418i 1.96922i
\(220\) 1.94600 + 0.759241i 0.131199 + 0.0511880i
\(221\) −6.89199 15.3038i −0.463605 1.02944i
\(222\) 0.721590i 0.0484300i
\(223\) 4.07073 0.272597 0.136298 0.990668i \(-0.456479\pi\)
0.136298 + 0.990668i \(0.456479\pi\)
\(224\) 3.92766 + 3.92766i 0.262428 + 0.262428i
\(225\) 10.0540 + 9.25389i 0.670267 + 0.616926i
\(226\) 0.570878 + 0.570878i 0.0379742 + 0.0379742i
\(227\) 11.1542 + 11.1542i 0.740333 + 0.740333i 0.972642 0.232309i \(-0.0746281\pi\)
−0.232309 + 0.972642i \(0.574628\pi\)
\(228\) 13.1787 + 13.1787i 0.872783 + 0.872783i
\(229\) 14.9460i 0.987659i −0.869559 0.493830i \(-0.835597\pi\)
0.869559 0.493830i \(-0.164403\pi\)
\(230\) −1.53955 + 3.94600i −0.101515 + 0.260191i
\(231\) 1.67889 1.67889i 0.110463 0.110463i
\(232\) −0.672068 0.672068i −0.0441234 0.0441234i
\(233\) −0.514301 + 0.514301i −0.0336930 + 0.0336930i −0.723753 0.690060i \(-0.757584\pi\)
0.690060 + 0.723753i \(0.257584\pi\)
\(234\) −2.58530 −0.169007
\(235\) −7.38390 + 3.23923i −0.481673 + 0.211304i
\(236\) 11.6760i 0.760041i
\(237\) 24.4865i 1.59057i
\(238\) 1.85082 + 0.701428i 0.119971 + 0.0454668i
\(239\) −9.57379 −0.619277 −0.309639 0.950854i \(-0.600208\pi\)
−0.309639 + 0.950854i \(0.600208\pi\)
\(240\) −18.3493 7.15910i −1.18444 0.462118i
\(241\) 6.00000 + 6.00000i 0.386494 + 0.386494i 0.873435 0.486941i \(-0.161887\pi\)
−0.486941 + 0.873435i \(0.661887\pi\)
\(242\) 2.50273i 0.160882i
\(243\) −15.1167 + 15.1167i −0.969739 + 0.969739i
\(244\) 7.78398 7.78398i 0.498318 0.498318i
\(245\) 5.59613 2.45496i 0.357524 0.156841i
\(246\) 6.00000i 0.382546i
\(247\) 16.2829 1.03606
\(248\) 3.92978 + 3.92978i 0.249541 + 0.249541i
\(249\) −3.78690 + 3.78690i −0.239985 + 0.239985i
\(250\) −2.45751 0.843340i −0.155427 0.0533375i
\(251\) −6.03666 −0.381031 −0.190515 0.981684i \(-0.561016\pi\)
−0.190515 + 0.981684i \(0.561016\pi\)
\(252\) −7.76812 + 7.76812i −0.489346 + 0.489346i
\(253\) −3.91297 −0.246006
\(254\) 0.693313 0.0435023
\(255\) −22.0459 + 1.12864i −1.38057 + 0.0706783i
\(256\) 11.8524 0.740776
\(257\) −27.2752 −1.70138 −0.850689 0.525670i \(-0.823815\pi\)
−0.850689 + 0.525670i \(0.823815\pi\)
\(258\) 2.93389 2.93389i 0.182656 0.182656i
\(259\) −2.67889 −0.166458
\(260\) −16.2211 + 7.11599i −1.00599 + 0.441315i
\(261\) 2.00292 2.00292i 0.123977 0.123977i
\(262\) 1.18211 + 1.18211i 0.0730309 + 0.0730309i
\(263\) −12.3700 −0.762765 −0.381382 0.924417i \(-0.624552\pi\)
−0.381382 + 0.924417i \(0.624552\pi\)
\(264\) 1.05400i 0.0648695i
\(265\) 5.52426 + 12.5927i 0.339353 + 0.773563i
\(266\) −1.35778 + 1.35778i −0.0832506 + 0.0832506i
\(267\) 15.8677 15.8677i 0.971086 0.971086i
\(268\) 6.11272i 0.373394i
\(269\) 14.1958 + 14.1958i 0.865531 + 0.865531i 0.991974 0.126443i \(-0.0403561\pi\)
−0.126443 + 0.991974i \(0.540356\pi\)
\(270\) 0.120794 0.309604i 0.00735127 0.0188419i
\(271\) −24.2102 −1.47066 −0.735332 0.677707i \(-0.762974\pi\)
−0.735332 + 0.677707i \(0.762974\pi\)
\(272\) 13.8306 6.22857i 0.838606 0.377663i
\(273\) 20.1338i 1.21855i
\(274\) 0.122435i 0.00739655i
\(275\) −0.0993794 2.39817i −0.00599280 0.144615i
\(276\) 37.9797 2.28611
\(277\) −4.78045 + 4.78045i −0.287230 + 0.287230i −0.835984 0.548754i \(-0.815102\pi\)
0.548754 + 0.835984i \(0.315102\pi\)
\(278\) 2.90453 + 2.90453i 0.174202 + 0.174202i
\(279\) −11.7116 + 11.7116i −0.701158 + 0.701158i
\(280\) 1.53955 3.94600i 0.0920058 0.235818i
\(281\) 18.0367i 1.07598i 0.842952 + 0.537989i \(0.180816\pi\)
−0.842952 + 0.537989i \(0.819184\pi\)
\(282\) −1.41876 1.41876i −0.0844858 0.0844858i
\(283\) −17.8308 17.8308i −1.05993 1.05993i −0.998086 0.0618440i \(-0.980302\pi\)
−0.0618440 0.998086i \(-0.519698\pi\)
\(284\) −2.50146 2.50146i −0.148434 0.148434i
\(285\) 7.78398 19.9510i 0.461083 1.18179i
\(286\) 0.321112 + 0.321112i 0.0189878 + 0.0189878i
\(287\) 22.2749 1.31484
\(288\) 7.34861i 0.433021i
\(289\) 11.2671 12.7300i 0.662771 0.748822i
\(290\) −0.195761 + 0.501751i −0.0114955 + 0.0294639i
\(291\) 40.0308i 2.34665i
\(292\) −16.7477 + 16.7477i −0.980086 + 0.980086i
\(293\) 26.2584i 1.53403i −0.641627 0.767017i \(-0.721740\pi\)
0.641627 0.767017i \(-0.278260\pi\)
\(294\) 1.07525 + 1.07525i 0.0627100 + 0.0627100i
\(295\) 12.2862 5.38980i 0.715329 0.313806i
\(296\) 0.840902 0.840902i 0.0488764 0.0488764i
\(297\) 0.307012 0.0178147
\(298\) 1.70135 0.0985565
\(299\) 23.4629 23.4629i 1.35689 1.35689i
\(300\) 0.964588 + 23.2770i 0.0556905 + 1.34390i
\(301\) −10.8920 10.8920i −0.627804 0.627804i
\(302\) 1.73497i 0.0998362i
\(303\) 7.46940 7.46940i 0.429106 0.429106i
\(304\) 14.7156i 0.843995i
\(305\) −11.7840 4.59759i −0.674749 0.263257i
\(306\) −1.07525 2.38762i −0.0614681 0.136491i
\(307\) 13.9136i 0.794088i −0.917800 0.397044i \(-0.870036\pi\)
0.917800 0.397044i \(-0.129964\pi\)
\(308\) 1.92971 0.109955
\(309\) 29.5140 + 29.5140i 1.67899 + 1.67899i
\(310\) 1.14467 2.93389i 0.0650130 0.166634i
\(311\) −6.18035 6.18035i −0.350455 0.350455i 0.509824 0.860279i \(-0.329711\pi\)
−0.860279 + 0.509824i \(0.829711\pi\)
\(312\) −6.32000 6.32000i −0.357800 0.357800i
\(313\) −4.91312 4.91312i −0.277706 0.277706i 0.554487 0.832193i \(-0.312915\pi\)
−0.832193 + 0.554487i \(0.812915\pi\)
\(314\) 2.89491i 0.163369i
\(315\) 11.7600 + 4.58822i 0.662600 + 0.258517i
\(316\) −14.0723 + 14.0723i −0.791631 + 0.791631i
\(317\) 2.98341 + 2.98341i 0.167565 + 0.167565i 0.785908 0.618343i \(-0.212196\pi\)
−0.618343 + 0.785908i \(0.712196\pi\)
\(318\) −2.41959 + 2.41959i −0.135684 + 0.135684i
\(319\) −0.497552 −0.0278575
\(320\) −6.04815 13.7869i −0.338102 0.770712i
\(321\) 12.4773i 0.696415i
\(322\) 3.91297i 0.218061i
\(323\) 6.77223 + 15.0378i 0.376817 + 0.836728i
\(324\) −18.9345 −1.05192
\(325\) 14.9758 + 13.7840i 0.830707 + 0.764598i
\(326\) −1.40787 1.40787i −0.0779749 0.0779749i
\(327\) 19.4122i 1.07350i
\(328\) −6.99207 + 6.99207i −0.386073 + 0.386073i
\(329\) −5.26711 + 5.26711i −0.290385 + 0.290385i
\(330\) 0.546955 0.239942i 0.0301089 0.0132084i
\(331\) 13.6760i 0.751699i 0.926681 + 0.375850i \(0.122649\pi\)
−0.926681 + 0.375850i \(0.877351\pi\)
\(332\) −4.35265 −0.238883
\(333\) 2.50608 + 2.50608i 0.137332 + 0.137332i
\(334\) 1.55255 1.55255i 0.0849516 0.0849516i
\(335\) 6.43218 2.82172i 0.351427 0.154167i
\(336\) −18.1958 −0.992660
\(337\) −4.58504 + 4.58504i −0.249763 + 0.249763i −0.820873 0.571110i \(-0.806513\pi\)
0.571110 + 0.820873i \(0.306513\pi\)
\(338\) −0.829834 −0.0451370
\(339\) −8.31820 −0.451782
\(340\) −13.3184 12.0211i −0.722290 0.651937i
\(341\) 2.90933 0.157549
\(342\) 2.54038 0.137368
\(343\) 14.2165 14.2165i 0.767621 0.767621i
\(344\) 6.83799 0.368679
\(345\) −17.5320 39.9646i −0.943891 2.15162i
\(346\) −2.71847 + 2.71847i −0.146146 + 0.146146i
\(347\) 3.53962 + 3.53962i 0.190017 + 0.190017i 0.795703 0.605686i \(-0.207101\pi\)
−0.605686 + 0.795703i \(0.707101\pi\)
\(348\) 4.82930 0.258878
\(349\) 9.21310i 0.493166i 0.969122 + 0.246583i \(0.0793078\pi\)
−0.969122 + 0.246583i \(0.920692\pi\)
\(350\) −2.39817 + 0.0993794i −0.128188 + 0.00531205i
\(351\) −1.84090 + 1.84090i −0.0982601 + 0.0982601i
\(352\) −0.912747 + 0.912747i −0.0486496 + 0.0486496i
\(353\) 13.8600i 0.737693i 0.929490 + 0.368847i \(0.120247\pi\)
−0.929490 + 0.368847i \(0.879753\pi\)
\(354\) 2.36069 + 2.36069i 0.125469 + 0.125469i
\(355\) −1.47748 + 3.78690i −0.0784165 + 0.200988i
\(356\) 18.2383 0.966626
\(357\) −18.5943 + 8.37386i −0.984114 + 0.443192i
\(358\) 4.53887i 0.239886i
\(359\) 11.5024i 0.607076i −0.952819 0.303538i \(-0.901832\pi\)
0.952819 0.303538i \(-0.0981679\pi\)
\(360\) −5.13169 + 2.25121i −0.270464 + 0.118649i
\(361\) 3.00000 0.157895
\(362\) 1.72242 1.72242i 0.0905283 0.0905283i
\(363\) −18.2335 18.2335i −0.957010 0.957010i
\(364\) −11.5709 + 11.5709i −0.606479 + 0.606479i
\(365\) 25.3540 + 9.89199i 1.32709 + 0.517770i
\(366\) 3.14759i 0.164527i
\(367\) −13.7349 13.7349i −0.716958 0.716958i 0.251023 0.967981i \(-0.419233\pi\)
−0.967981 + 0.251023i \(0.919233\pi\)
\(368\) 21.2043 + 21.2043i 1.10535 + 1.10535i
\(369\) −20.8380 20.8380i −1.08478 1.08478i
\(370\) −0.627799 0.244939i −0.0326377 0.0127338i
\(371\) 8.98266 + 8.98266i 0.466356 + 0.466356i
\(372\) −28.2383 −1.46409
\(373\) 5.58922i 0.289399i 0.989476 + 0.144699i \(0.0462215\pi\)
−0.989476 + 0.144699i \(0.953779\pi\)
\(374\) −0.163004 + 0.430112i −0.00842876 + 0.0222406i
\(375\) 24.0482 11.7600i 1.24184 0.607282i
\(376\) 3.30669i 0.170529i
\(377\) 2.98341 2.98341i 0.153653 0.153653i
\(378\) 0.307012i 0.0157910i
\(379\) −0.393449 0.393449i −0.0202101 0.0202101i 0.696930 0.717140i \(-0.254549\pi\)
−0.717140 + 0.696930i \(0.754549\pi\)
\(380\) 15.9392 6.99234i 0.817665 0.358700i
\(381\) −5.05109 + 5.05109i −0.258775 + 0.258775i
\(382\) −1.23657 −0.0632684
\(383\) 24.8020 1.26732 0.633662 0.773610i \(-0.281551\pi\)
0.633662 + 0.773610i \(0.281551\pi\)
\(384\) 11.7541 11.7541i 0.599826 0.599826i
\(385\) −0.890781 2.03056i −0.0453984 0.103487i
\(386\) 2.05109 + 2.05109i 0.104398 + 0.104398i
\(387\) 20.3788i 1.03591i
\(388\) 23.0056 23.0056i 1.16793 1.16793i
\(389\) 8.76664i 0.444486i −0.974991 0.222243i \(-0.928662\pi\)
0.974991 0.222243i \(-0.0713379\pi\)
\(390\) −1.84090 + 4.71838i −0.0932177 + 0.238924i
\(391\) 31.4272 + 11.9103i 1.58934 + 0.602331i
\(392\) 2.50608i 0.126576i
\(393\) −17.2244 −0.868854
\(394\) −0.0906680 0.0906680i −0.00456779 0.00456779i
\(395\) 21.3038 + 8.31179i 1.07191 + 0.418211i
\(396\) −1.80523 1.80523i −0.0907162 0.0907162i
\(397\) −4.97519 4.97519i −0.249698 0.249698i 0.571149 0.820847i \(-0.306498\pi\)
−0.820847 + 0.571149i \(0.806498\pi\)
\(398\) −2.89198 2.89198i −0.144962 0.144962i
\(399\) 19.7840i 0.990438i
\(400\) −12.4571 + 13.5342i −0.622857 + 0.676711i
\(401\) −7.51979 + 7.51979i −0.375520 + 0.375520i −0.869483 0.493963i \(-0.835548\pi\)
0.493963 + 0.869483i \(0.335548\pi\)
\(402\) 1.23589 + 1.23589i 0.0616407 + 0.0616407i
\(403\) −17.4449 + 17.4449i −0.868992 + 0.868992i
\(404\) 8.58530 0.427135
\(405\) 8.74043 + 19.9240i 0.434316 + 0.990033i
\(406\) 0.497552i 0.0246931i
\(407\) 0.622545i 0.0308584i
\(408\) 3.20819 8.46529i 0.158829 0.419094i
\(409\) −2.53421 −0.125309 −0.0626544 0.998035i \(-0.519957\pi\)
−0.0626544 + 0.998035i \(0.519957\pi\)
\(410\) 5.22013 + 2.03666i 0.257804 + 0.100584i
\(411\) −0.891990 0.891990i −0.0439986 0.0439986i
\(412\) 33.9232i 1.67128i
\(413\) 8.76401 8.76401i 0.431249 0.431249i
\(414\) 3.66056 3.66056i 0.179907 0.179907i
\(415\) 2.00924 + 4.58012i 0.0986299 + 0.224829i
\(416\) 10.9460i 0.536672i
\(417\) −42.3215 −2.07249
\(418\) −0.315533 0.315533i −0.0154332 0.0154332i
\(419\) −18.6403 + 18.6403i −0.910638 + 0.910638i −0.996322 0.0856842i \(-0.972692\pi\)
0.0856842 + 0.996322i \(0.472692\pi\)
\(420\) 8.64603 + 19.7088i 0.421883 + 0.961693i
\(421\) −7.94308 −0.387122 −0.193561 0.981088i \(-0.562004\pi\)
−0.193561 + 0.981088i \(0.562004\pi\)
\(422\) −2.10831 + 2.10831i −0.102631 + 0.102631i
\(423\) 9.85469 0.479151
\(424\) −5.63931 −0.273869
\(425\) −6.50140 + 19.5635i −0.315364 + 0.948971i
\(426\) −1.01151 −0.0490078
\(427\) −11.6854 −0.565494
\(428\) 7.17068 7.17068i 0.346608 0.346608i
\(429\) −4.67889 −0.225899
\(430\) −1.55666 3.54844i −0.0750686 0.171121i
\(431\) −8.01833 + 8.01833i −0.386229 + 0.386229i −0.873340 0.487111i \(-0.838051\pi\)
0.487111 + 0.873340i \(0.338051\pi\)
\(432\) −1.66370 1.66370i −0.0800447 0.0800447i
\(433\) −6.24538 −0.300134 −0.150067 0.988676i \(-0.547949\pi\)
−0.150067 + 0.988676i \(0.547949\pi\)
\(434\) 2.90933i 0.139652i
\(435\) −2.22927 5.08168i −0.106885 0.243648i
\(436\) 11.1562 11.1562i 0.534284 0.534284i
\(437\) −23.0552 + 23.0552i −1.10288 + 1.10288i
\(438\) 6.77223i 0.323590i
\(439\) −7.44454 7.44454i −0.355308 0.355308i 0.506772 0.862080i \(-0.330839\pi\)
−0.862080 + 0.506772i \(0.830839\pi\)
\(440\) 0.917007 + 0.357775i 0.0437166 + 0.0170563i
\(441\) −7.46870 −0.355652
\(442\) −1.60162 3.55643i −0.0761815 0.169162i
\(443\) 29.2669i 1.39051i 0.718761 + 0.695257i \(0.244709\pi\)
−0.718761 + 0.695257i \(0.755291\pi\)
\(444\) 6.04250i 0.286764i
\(445\) −8.41904 19.1914i −0.399101 0.909760i
\(446\) 0.945995 0.0447942
\(447\) −12.3951 + 12.3951i −0.586267 + 0.586267i
\(448\) −9.83453 9.83453i −0.464638 0.464638i
\(449\) −23.1418 + 23.1418i −1.09213 + 1.09213i −0.0968256 + 0.995301i \(0.530869\pi\)
−0.995301 + 0.0968256i \(0.969131\pi\)
\(450\) 2.33644 + 2.15051i 0.110141 + 0.101376i
\(451\) 5.17644i 0.243749i
\(452\) −4.78045 4.78045i −0.224854 0.224854i
\(453\) 12.6400 + 12.6400i 0.593879 + 0.593879i
\(454\) 2.59213 + 2.59213i 0.121655 + 0.121655i
\(455\) 17.5169 + 6.83431i 0.821204 + 0.320397i
\(456\) 6.21019 + 6.21019i 0.290819 + 0.290819i
\(457\) 31.4752 1.47235 0.736174 0.676792i \(-0.236631\pi\)
0.736174 + 0.676792i \(0.236631\pi\)
\(458\) 3.47329i 0.162296i
\(459\) −2.46579 0.934487i −0.115093 0.0436181i
\(460\) 12.8920 33.0432i 0.601092 1.54065i
\(461\) 26.6442i 1.24094i −0.784228 0.620472i \(-0.786941\pi\)
0.784228 0.620472i \(-0.213059\pi\)
\(462\) 0.390156 0.390156i 0.0181517 0.0181517i
\(463\) 14.2040i 0.660115i 0.943961 + 0.330058i \(0.107068\pi\)
−0.943961 + 0.330058i \(0.892932\pi\)
\(464\) 2.69623 + 2.69623i 0.125169 + 0.125169i
\(465\) 13.0352 + 29.7141i 0.604494 + 1.37796i
\(466\) −0.119518 + 0.119518i −0.00553657 + 0.00553657i
\(467\) 29.1177 1.34741 0.673703 0.739002i \(-0.264703\pi\)
0.673703 + 0.739002i \(0.264703\pi\)
\(468\) 21.6490 1.00072
\(469\) 4.58822 4.58822i 0.211864 0.211864i
\(470\) −1.71594 + 0.752762i −0.0791504 + 0.0347223i
\(471\) 21.0907 + 21.0907i 0.971807 + 0.971807i
\(472\) 5.50204i 0.253252i
\(473\) 2.53118 2.53118i 0.116384 0.116384i
\(474\) 5.69040i 0.261369i
\(475\) −14.7156 13.5445i −0.675196 0.621463i
\(476\) −15.4985 5.87366i −0.710374 0.269219i
\(477\) 16.8064i 0.769514i
\(478\) −2.22485 −0.101762
\(479\) −1.39053 1.39053i −0.0635350 0.0635350i 0.674625 0.738160i \(-0.264305\pi\)
−0.738160 + 0.674625i \(0.764305\pi\)
\(480\) −13.4118 5.23268i −0.612161 0.238838i
\(481\) 3.73289 + 3.73289i 0.170205 + 0.170205i
\(482\) 1.39434 + 1.39434i 0.0635103 + 0.0635103i
\(483\) −28.5077 28.5077i −1.29714 1.29714i
\(484\) 20.9575i 0.952614i
\(485\) −34.8277 13.5882i −1.58144 0.617009i
\(486\) −3.51297 + 3.51297i −0.159351 + 0.159351i
\(487\) −3.41883 3.41883i −0.154922 0.154922i 0.625390 0.780312i \(-0.284940\pi\)
−0.780312 + 0.625390i \(0.784940\pi\)
\(488\) 3.66803 3.66803i 0.166044 0.166044i
\(489\) 20.5140 0.927673
\(490\) 1.30048 0.570505i 0.0587498 0.0257728i
\(491\) 16.8949i 0.762456i −0.924481 0.381228i \(-0.875501\pi\)
0.924481 0.381228i \(-0.124499\pi\)
\(492\) 50.2431i 2.26514i
\(493\) 3.99611 + 1.51445i 0.179976 + 0.0682075i
\(494\) 3.78398 0.170249
\(495\) −1.06625 + 2.73289i −0.0479245 + 0.122834i
\(496\) −15.7656 15.7656i −0.707899 0.707899i
\(497\) 3.75520i 0.168444i
\(498\) −0.880035 + 0.880035i −0.0394353 + 0.0394353i
\(499\) 3.07234 3.07234i 0.137537 0.137537i −0.634987 0.772523i \(-0.718994\pi\)
0.772523 + 0.634987i \(0.218994\pi\)
\(500\) 20.5789 + 7.06201i 0.920315 + 0.315822i
\(501\) 22.6220i 1.01067i
\(502\) −1.40286 −0.0626125
\(503\) −8.13721 8.13721i −0.362820 0.362820i 0.502030 0.864850i \(-0.332587\pi\)
−0.864850 + 0.502030i \(0.832587\pi\)
\(504\) −3.66056 + 3.66056i −0.163054 + 0.163054i
\(505\) −3.96310 9.03398i −0.176356 0.402007i
\(506\) −0.909332 −0.0404247
\(507\) 6.04570 6.04570i 0.268499 0.268499i
\(508\) −5.80570 −0.257586
\(509\) 34.8177 1.54327 0.771634 0.636066i \(-0.219440\pi\)
0.771634 + 0.636066i \(0.219440\pi\)
\(510\) −5.12323 + 0.262284i −0.226861 + 0.0116141i
\(511\) 25.1418 1.11221
\(512\) 16.6395 0.735368
\(513\) 1.80891 1.80891i 0.0798655 0.0798655i
\(514\) −6.33845 −0.279577
\(515\) 35.6961 15.6595i 1.57296 0.690038i
\(516\) −24.5680 + 24.5680i −1.08154 + 1.08154i
\(517\) −1.22402 1.22402i −0.0538323 0.0538323i
\(518\) −0.622545 −0.0273531
\(519\) 39.6105i 1.73871i
\(520\) −7.64383 + 3.35325i −0.335204 + 0.147050i
\(521\) 15.8746 15.8746i 0.695481 0.695481i −0.267951 0.963432i \(-0.586347\pi\)
0.963432 + 0.267951i \(0.0863467\pi\)
\(522\) 0.465456 0.465456i 0.0203725 0.0203725i
\(523\) 16.4943i 0.721243i 0.932712 + 0.360622i \(0.117435\pi\)
−0.932712 + 0.360622i \(0.882565\pi\)
\(524\) −9.89881 9.89881i −0.432432 0.432432i
\(525\) 16.7477 18.1958i 0.730930 0.794128i
\(526\) −2.87465 −0.125341
\(527\) −23.3664 8.85545i −1.01786 0.385749i
\(528\) 4.22850i 0.184022i
\(529\) 43.4426i 1.88881i
\(530\) 1.28378 + 2.92641i 0.0557638 + 0.127115i
\(531\) −16.3974 −0.711585
\(532\) 11.3698 11.3698i 0.492944 0.492944i
\(533\) −31.0389 31.0389i −1.34444 1.34444i
\(534\) 3.68748 3.68748i 0.159573 0.159573i
\(535\) −10.8555 4.23534i −0.469325 0.183110i
\(536\) 2.88048i 0.124418i
\(537\) 33.0676 + 33.0676i 1.42697 + 1.42697i
\(538\) 3.29894 + 3.29894i 0.142228 + 0.142228i
\(539\) 0.927664 + 0.927664i 0.0399573 + 0.0399573i
\(540\) −1.01151 + 2.59258i −0.0435284 + 0.111567i
\(541\) −9.00000 9.00000i −0.386940 0.386940i 0.486654 0.873595i \(-0.338217\pi\)
−0.873595 + 0.486654i \(0.838217\pi\)
\(542\) −5.62619 −0.241666
\(543\) 25.0972i 1.07702i
\(544\) 10.1090 4.55255i 0.433420 0.195189i
\(545\) −16.8891 6.58937i −0.723448 0.282257i
\(546\) 4.67889i 0.200238i
\(547\) −8.84290 + 8.84290i −0.378095 + 0.378095i −0.870415 0.492320i \(-0.836149\pi\)
0.492320 + 0.870415i \(0.336149\pi\)
\(548\) 1.02525i 0.0437965i
\(549\) 10.9316 + 10.9316i 0.466548 + 0.466548i
\(550\) −0.0230947 0.557310i −0.000984762 0.0237638i
\(551\) −2.93157 + 2.93157i −0.124889 + 0.124889i
\(552\) 17.8971 0.761752
\(553\) 21.1255 0.898346
\(554\) −1.11093 + 1.11093i −0.0471987 + 0.0471987i
\(555\) 6.35829 2.78930i 0.269894 0.118399i
\(556\) −24.3221 24.3221i −1.03149 1.03149i
\(557\) 38.9354i 1.64975i −0.565318 0.824873i \(-0.691247\pi\)
0.565318 0.824873i \(-0.308753\pi\)
\(558\) −2.72166 + 2.72166i −0.115217 + 0.115217i
\(559\) 30.3549i 1.28387i
\(560\) −6.17644 + 15.8307i −0.261002 + 0.668970i
\(561\) −1.94600 4.32111i −0.0821600 0.182438i
\(562\) 4.19153i 0.176809i
\(563\) −8.17844 −0.344680 −0.172340 0.985038i \(-0.555133\pi\)
−0.172340 + 0.985038i \(0.555133\pi\)
\(564\) 11.8805 + 11.8805i 0.500259 + 0.500259i
\(565\) −2.82356 + 7.23701i −0.118788 + 0.304463i
\(566\) −4.14368 4.14368i −0.174172 0.174172i
\(567\) 14.2123 + 14.2123i 0.596859 + 0.596859i
\(568\) −1.17876 1.17876i −0.0494595 0.0494595i
\(569\) 11.8920i 0.498538i 0.968434 + 0.249269i \(0.0801904\pi\)
−0.968434 + 0.249269i \(0.919810\pi\)
\(570\) 1.80891 4.63639i 0.0757671 0.194197i
\(571\) −2.80523 + 2.80523i −0.117395 + 0.117395i −0.763364 0.645969i \(-0.776454\pi\)
0.645969 + 0.763364i \(0.276454\pi\)
\(572\) −2.68895 2.68895i −0.112431 0.112431i
\(573\) 9.00895 9.00895i 0.376354 0.376354i
\(574\) 5.17644 0.216060
\(575\) −40.7212 + 1.68747i −1.69819 + 0.0703725i
\(576\) 18.4003i 0.766678i
\(577\) 6.58601i 0.274179i 0.990559 + 0.137090i \(0.0437749\pi\)
−0.990559 + 0.137090i \(0.956225\pi\)
\(578\) 2.61836 2.95831i 0.108909 0.123049i
\(579\) −29.8862 −1.24203
\(580\) 1.63928 4.20159i 0.0680672 0.174462i
\(581\) 3.26711 + 3.26711i 0.135542 + 0.135542i
\(582\) 9.30274i 0.385611i
\(583\) −2.08747 + 2.08747i −0.0864543 + 0.0864543i
\(584\) −7.89199 + 7.89199i −0.326573 + 0.326573i
\(585\) −9.99347 22.7804i −0.413179 0.941852i
\(586\) 6.10218i 0.252079i
\(587\) 22.3369 0.921944 0.460972 0.887415i \(-0.347501\pi\)
0.460972 + 0.887415i \(0.347501\pi\)
\(588\) −9.00402 9.00402i −0.371319 0.371319i
\(589\) 17.1418 17.1418i 0.706314 0.706314i
\(590\) 2.85518 1.25253i 0.117546 0.0515659i
\(591\) 1.32111 0.0543433
\(592\) −3.37357 + 3.37357i −0.138653 + 0.138653i
\(593\) −30.1344 −1.23747 −0.618736 0.785599i \(-0.712355\pi\)
−0.618736 + 0.785599i \(0.712355\pi\)
\(594\) 0.0713464 0.00292738
\(595\) 0.973725 + 19.0199i 0.0399188 + 0.779739i
\(596\) −14.2468 −0.583574
\(597\) 42.1387 1.72462
\(598\) 5.45252 5.45252i 0.222970 0.222970i
\(599\) −8.88907 −0.363198 −0.181599 0.983373i \(-0.558127\pi\)
−0.181599 + 0.983373i \(0.558127\pi\)
\(600\) 0.454541 + 10.9687i 0.0185566 + 0.447797i
\(601\) 17.1418 17.1418i 0.699227 0.699227i −0.265017 0.964244i \(-0.585378\pi\)
0.964244 + 0.265017i \(0.0853776\pi\)
\(602\) −2.53118 2.53118i −0.103163 0.103163i
\(603\) −8.58450 −0.349588
\(604\) 14.5284i 0.591151i
\(605\) −22.0528 + 9.67429i −0.896573 + 0.393316i
\(606\) 1.73581 1.73581i 0.0705124 0.0705124i
\(607\) 10.5442 10.5442i 0.427978 0.427978i −0.459961 0.887939i \(-0.652137\pi\)
0.887939 + 0.459961i \(0.152137\pi\)
\(608\) 10.7558i 0.436205i
\(609\) −3.62488 3.62488i −0.146888 0.146888i
\(610\) −2.73847 1.06843i −0.110877 0.0432595i
\(611\) 14.6789 0.593844
\(612\) 9.00402 + 19.9936i 0.363966 + 0.808192i
\(613\) 31.3459i 1.26605i 0.774132 + 0.633024i \(0.218187\pi\)
−0.774132 + 0.633024i \(0.781813\pi\)
\(614\) 3.23336i 0.130488i
\(615\) −52.8689 + 23.1930i −2.13188 + 0.935230i
\(616\) 0.909332 0.0366380
\(617\) −10.9050 + 10.9050i −0.439020 + 0.439020i −0.891682 0.452662i \(-0.850474\pi\)
0.452662 + 0.891682i \(0.350474\pi\)
\(618\) 6.85873 + 6.85873i 0.275899 + 0.275899i
\(619\) 31.8930 31.8930i 1.28189 1.28189i 0.342294 0.939593i \(-0.388796\pi\)
0.939593 0.342294i \(-0.111204\pi\)
\(620\) −9.58533 + 24.5680i −0.384956 + 0.986673i
\(621\) 5.21310i 0.209195i
\(622\) −1.43625 1.43625i −0.0575882 0.0575882i
\(623\) −13.6897 13.6897i −0.548466 0.548466i
\(624\) 25.3549 + 25.3549i 1.01501 + 1.01501i
\(625\) −2.06843 24.9143i −0.0827372 0.996571i
\(626\) −1.14176 1.14176i −0.0456338 0.0456338i
\(627\) 4.59759 0.183610
\(628\) 24.2415i 0.967343i
\(629\) −1.89491 + 5.00000i −0.0755549 + 0.199363i
\(630\) 2.73289 + 1.06625i 0.108881 + 0.0424805i
\(631\) 29.7493i 1.18430i 0.805827 + 0.592150i \(0.201721\pi\)
−0.805827 + 0.592150i \(0.798279\pi\)
\(632\) −6.63128 + 6.63128i −0.263778 + 0.263778i
\(633\) 30.7200i 1.22101i
\(634\) 0.693313 + 0.693313i 0.0275350 + 0.0275350i
\(635\) 2.68000 + 6.10912i 0.106352 + 0.242433i
\(636\) 20.2613 20.2613i 0.803412 0.803412i
\(637\) −11.1249 −0.440784
\(638\) −0.115626 −0.00457767
\(639\) 3.51297 3.51297i 0.138971 0.138971i
\(640\) −6.23649 14.2162i −0.246519 0.561946i
\(641\) 31.2131 + 31.2131i 1.23284 + 1.23284i 0.962867 + 0.269977i \(0.0870159\pi\)
0.269977 + 0.962867i \(0.412984\pi\)
\(642\) 2.89959i 0.114438i
\(643\) −5.36109 + 5.36109i −0.211421 + 0.211421i −0.804871 0.593450i \(-0.797765\pi\)
0.593450 + 0.804871i \(0.297765\pi\)
\(644\) 32.7666i 1.29119i
\(645\) 37.1928 + 14.5110i 1.46447 + 0.571370i
\(646\) 1.57379 + 3.49464i 0.0619201 + 0.137495i
\(647\) 10.2540i 0.403128i 0.979475 + 0.201564i \(0.0646024\pi\)
−0.979475 + 0.201564i \(0.935398\pi\)
\(648\) −8.92246 −0.350507
\(649\) 2.03666 + 2.03666i 0.0799460 + 0.0799460i
\(650\) 3.48021 + 3.20325i 0.136505 + 0.125642i
\(651\) 21.1958 + 21.1958i 0.830727 + 0.830727i
\(652\) 11.7893 + 11.7893i 0.461706 + 0.461706i
\(653\) 10.1207 + 10.1207i 0.396054 + 0.396054i 0.876839 0.480785i \(-0.159648\pi\)
−0.480785 + 0.876839i \(0.659648\pi\)
\(654\) 4.51120i 0.176402i
\(655\) −5.84671 + 14.9856i −0.228450 + 0.585535i
\(656\) 28.0511 28.0511i 1.09521 1.09521i
\(657\) −23.5199 23.5199i −0.917601 0.917601i
\(658\) −1.22402 + 1.22402i −0.0477172 + 0.0477172i
\(659\) −43.9653 −1.71265 −0.856323 0.516441i \(-0.827257\pi\)
−0.856323 + 0.516441i \(0.827257\pi\)
\(660\) −4.58012 + 2.00924i −0.178281 + 0.0782097i
\(661\) 20.7077i 0.805438i −0.915324 0.402719i \(-0.868065\pi\)
0.915324 0.402719i \(-0.131935\pi\)
\(662\) 3.17815i 0.123522i
\(663\) 37.5787 + 14.2416i 1.45944 + 0.553099i
\(664\) −2.05109 −0.0795977
\(665\) −17.2125 6.71555i −0.667472 0.260418i
\(666\) 0.582387 + 0.582387i 0.0225670 + 0.0225670i
\(667\) 8.44848i 0.327126i
\(668\) −13.0008 + 13.0008i −0.503016 + 0.503016i
\(669\) −6.89199 + 6.89199i −0.266460 + 0.266460i
\(670\) 1.49477 0.655737i 0.0577480 0.0253333i
\(671\) 2.71555i 0.104833i
\(672\) −13.2995 −0.513040
\(673\) 32.7151 + 32.7151i 1.26108 + 1.26108i 0.950572 + 0.310503i \(0.100497\pi\)
0.310503 + 0.950572i \(0.399503\pi\)
\(674\) −1.06551 + 1.06551i −0.0410420 + 0.0410420i
\(675\) 3.19500 0.132399i 0.122975 0.00509606i
\(676\) 6.94891 0.267266
\(677\) −1.24509 + 1.24509i −0.0478527 + 0.0478527i −0.730628 0.682776i \(-0.760773\pi\)
0.682776 + 0.730628i \(0.260773\pi\)
\(678\) −1.93306 −0.0742387
\(679\) −34.5362 −1.32538
\(680\) −6.27599 5.66468i −0.240673 0.217231i
\(681\) −37.7696 −1.44733
\(682\) 0.676098 0.0258891
\(683\) 16.2377 16.2377i 0.621317 0.621317i −0.324551 0.945868i \(-0.605213\pi\)
0.945868 + 0.324551i \(0.105213\pi\)
\(684\) −21.2728 −0.813385
\(685\) −1.07883 + 0.473270i −0.0412200 + 0.0180827i
\(686\) 3.30377 3.30377i 0.126139 0.126139i
\(687\) 25.3044 + 25.3044i 0.965425 + 0.965425i
\(688\) −27.4329 −1.04587
\(689\) 25.0337i 0.953710i
\(690\) −4.07425 9.28735i −0.155104 0.353563i
\(691\) −18.2314 + 18.2314i −0.693556 + 0.693556i −0.963013 0.269456i \(-0.913156\pi\)
0.269456 + 0.963013i \(0.413156\pi\)
\(692\) 22.7641 22.7641i 0.865360 0.865360i
\(693\) 2.71002i 0.102945i
\(694\) 0.822571 + 0.822571i 0.0312244 + 0.0312244i
\(695\) −14.3658 + 36.8206i −0.544925 + 1.39669i
\(696\) 2.27570 0.0862602
\(697\) 15.7561 41.5748i 0.596804 1.57476i
\(698\) 2.14103i 0.0810391i
\(699\) 1.74148i 0.0658690i
\(700\) 20.0820 0.832189i 0.759027 0.0314538i
\(701\) −25.1195 −0.948751 −0.474376 0.880323i \(-0.657326\pi\)
−0.474376 + 0.880323i \(0.657326\pi\)
\(702\) −0.427806 + 0.427806i −0.0161465 + 0.0161465i
\(703\) −3.66803 3.66803i −0.138342 0.138342i
\(704\) 2.28544 2.28544i 0.0861357 0.0861357i
\(705\) 7.01717 17.9856i 0.264282 0.677376i
\(706\) 3.22092i 0.121221i
\(707\) −6.44415 6.44415i −0.242357 0.242357i
\(708\) −19.7681 19.7681i −0.742931 0.742931i
\(709\) −23.7156 23.7156i −0.890656 0.890656i 0.103929 0.994585i \(-0.466859\pi\)
−0.994585 + 0.103929i \(0.966859\pi\)
\(710\) −0.343350 + 0.880035i −0.0128857 + 0.0330271i
\(711\) −19.7627 19.7627i −0.741160 0.741160i
\(712\) 8.59437 0.322088
\(713\) 49.4008i 1.85007i
\(714\) −4.32111 + 1.94600i −0.161714 + 0.0728270i
\(715\) −1.58822 + 4.07073i −0.0593961 + 0.152237i
\(716\) 38.0078i 1.42042i
\(717\) 16.2090 16.2090i 0.605336 0.605336i
\(718\) 2.67305i 0.0997572i
\(719\) 29.4812 + 29.4812i 1.09946 + 1.09946i 0.994473 + 0.104990i \(0.0334810\pi\)
0.104990 + 0.994473i \(0.466519\pi\)
\(720\) 20.5875 9.03151i 0.767252 0.336584i
\(721\) 25.4629 25.4629i 0.948287 0.948287i
\(722\) 0.697168 0.0259459
\(723\) −20.3167 −0.755586
\(724\) −14.4233 + 14.4233i −0.536037 + 0.536037i
\(725\) −5.17789 + 0.214570i −0.192302 + 0.00796892i
\(726\) −4.23727 4.23727i −0.157260 0.157260i
\(727\) 12.2458i 0.454172i −0.973875 0.227086i \(-0.927080\pi\)
0.973875 0.227086i \(-0.0729199\pi\)
\(728\) −5.45252 + 5.45252i −0.202084 + 0.202084i
\(729\) 21.9971i 0.814707i
\(730\) 5.89199 + 2.29879i 0.218072 + 0.0850821i
\(731\) −28.0337 + 12.6249i −1.03687 + 0.466948i
\(732\) 26.3575i 0.974200i
\(733\) 32.8393 1.21295 0.606473 0.795104i \(-0.292584\pi\)
0.606473 + 0.795104i \(0.292584\pi\)
\(734\) −3.19185 3.19185i −0.117814 0.117814i
\(735\) −5.31820 + 13.6310i −0.196165 + 0.502786i
\(736\) 15.4985 + 15.4985i 0.571284 + 0.571284i
\(737\) 1.06625 + 1.06625i 0.0392759 + 0.0392759i
\(738\) −4.84253 4.84253i −0.178256 0.178256i
\(739\) 6.00000i 0.220714i −0.993892 0.110357i \(-0.964801\pi\)
0.993892 0.110357i \(-0.0351994\pi\)
\(740\) 5.25710 + 2.05109i 0.193255 + 0.0753995i
\(741\) −27.5680 + 27.5680i −1.01273 + 1.01273i
\(742\) 2.08747 + 2.08747i 0.0766336 + 0.0766336i
\(743\) 16.1704 16.1704i 0.593236 0.593236i −0.345268 0.938504i \(-0.612212\pi\)
0.938504 + 0.345268i \(0.112212\pi\)
\(744\) −13.3067 −0.487847
\(745\) 6.57655 + 14.9914i 0.240946 + 0.549243i
\(746\) 1.29887i 0.0475552i
\(747\) 6.11272i 0.223653i
\(748\) 1.36498 3.60170i 0.0499085 0.131691i
\(749\) −10.7647 −0.393332
\(750\) 5.58854 2.73289i 0.204065 0.0997911i
\(751\) −22.6799 22.6799i −0.827600 0.827600i 0.159584 0.987184i \(-0.448985\pi\)
−0.987184 + 0.159584i \(0.948985\pi\)
\(752\) 13.2659i 0.483758i
\(753\) 10.2204 10.2204i 0.372453 0.372453i
\(754\) 0.693313 0.693313i 0.0252490 0.0252490i
\(755\) 15.2877 6.70651i 0.556375 0.244075i
\(756\) 2.57088i 0.0935019i
\(757\) 36.2220 1.31651 0.658256 0.752794i \(-0.271294\pi\)
0.658256 + 0.752794i \(0.271294\pi\)
\(758\) −0.0914333 0.0914333i −0.00332101 0.00332101i
\(759\) 6.62488 6.62488i 0.240468 0.240468i
\(760\) 7.51101 3.29499i 0.272453 0.119522i
\(761\) 24.4851 0.887584 0.443792 0.896130i \(-0.353633\pi\)
0.443792 + 0.896130i \(0.353633\pi\)
\(762\) −1.17382 + 1.17382i −0.0425230 + 0.0425230i
\(763\) −16.7477 −0.606308
\(764\) 10.3549 0.374626
\(765\) 16.8821 18.7039i 0.610372 0.676241i
\(766\) 5.76372 0.208252
\(767\) −24.4244 −0.881914
\(768\) −20.0668 + 20.0668i −0.724099 + 0.724099i
\(769\) −5.55937 −0.200476 −0.100238 0.994963i \(-0.531960\pi\)
−0.100238 + 0.994963i \(0.531960\pi\)
\(770\) −0.207008 0.471880i −0.00746005 0.0170054i
\(771\) 46.1784 46.1784i 1.66308 1.66308i
\(772\) −17.1755 17.1755i −0.618161 0.618161i
\(773\) −36.5376 −1.31416 −0.657082 0.753819i \(-0.728210\pi\)
−0.657082 + 0.753819i \(0.728210\pi\)
\(774\) 4.73581i 0.170225i
\(775\) 30.2766 1.25465i 1.08757 0.0450685i
\(776\) 10.8409 10.8409i 0.389166 0.389166i
\(777\) 4.53551 4.53551i 0.162711 0.162711i
\(778\) 2.03727i 0.0730398i
\(779\) 30.4995 + 30.4995i 1.09276 + 1.09276i
\(780\) 15.4155 39.5110i 0.551962 1.41472i
\(781\) −0.872669 −0.0312265
\(782\) 7.30334 + 2.76783i 0.261167 + 0.0989775i
\(783\) 0.662870i 0.0236890i
\(784\) 10.0540i 0.359072i
\(785\) 25.5084 11.1902i 0.910435 0.399397i
\(786\) −4.00276 −0.142774
\(787\) 11.3490 11.3490i 0.404547 0.404547i −0.475285 0.879832i \(-0.657655\pi\)
0.879832 + 0.475285i \(0.157655\pi\)
\(788\) 0.759241 + 0.759241i 0.0270468 + 0.0270468i
\(789\) 20.9431 20.9431i 0.745593 0.745593i
\(790\) 4.95077 + 1.93157i 0.176140 + 0.0687222i
\(791\) 7.17644i 0.255165i
\(792\) −0.850674 0.850674i −0.0302274 0.0302274i
\(793\) 16.2829 + 16.2829i 0.578224 + 0.578224i
\(794\) −1.15618 1.15618i −0.0410313 0.0410313i
\(795\) −30.6731 11.9673i −1.08786 0.424435i
\(796\) 24.2170 + 24.2170i 0.858349 + 0.858349i
\(797\) −34.7907 −1.23235 −0.616175 0.787609i \(-0.711319\pi\)
−0.616175 + 0.787609i \(0.711319\pi\)
\(798\) 4.59759i 0.162753i
\(799\) 6.10509 + 13.5565i 0.215983 + 0.479593i
\(800\) −9.10509 + 9.89234i −0.321914 + 0.349747i
\(801\) 25.6132i 0.904999i
\(802\) −1.74752 + 1.74752i −0.0617070 + 0.0617070i
\(803\) 5.84268i 0.206184i
\(804\) −10.3492 10.3492i −0.364988 0.364988i
\(805\) −34.4791 + 15.1256i −1.21523 + 0.533106i
\(806\) −4.05400 + 4.05400i −0.142796 + 0.142796i
\(807\) −48.0685 −1.69209
\(808\) 4.04563 0.142325
\(809\) −13.3549 + 13.3549i −0.469532 + 0.469532i −0.901763 0.432231i \(-0.857726\pi\)
0.432231 + 0.901763i \(0.357726\pi\)
\(810\) 2.03118 + 4.63013i 0.0713685 + 0.162686i
\(811\) −9.28544 9.28544i −0.326056 0.326056i 0.525029 0.851085i \(-0.324055\pi\)
−0.851085 + 0.525029i \(0.824055\pi\)
\(812\) 4.16643i 0.146213i
\(813\) 40.9893 40.9893i 1.43756 1.43756i
\(814\) 0.144673i 0.00507078i
\(815\) 6.96334 17.8476i 0.243915 0.625174i
\(816\) −12.8707 + 33.9614i −0.450566 + 1.18889i
\(817\) 29.8274i 1.04353i
\(818\) −0.588924 −0.0205913
\(819\) −16.2498 16.2498i −0.567813 0.567813i
\(820\) −43.7126 17.0547i −1.52651 0.595577i
\(821\) −27.8206 27.8206i −0.970947 0.970947i 0.0286425 0.999590i \(-0.490882\pi\)
−0.999590 + 0.0286425i \(0.990882\pi\)
\(822\) −0.207289 0.207289i −0.00723004 0.00723004i
\(823\) 28.4414 + 28.4414i 0.991403 + 0.991403i 0.999963 0.00855996i \(-0.00272475\pi\)
−0.00855996 + 0.999963i \(0.502725\pi\)
\(824\) 15.9856i 0.556884i
\(825\) 4.22850 + 3.89199i 0.147217 + 0.135502i
\(826\) 2.03666 2.03666i 0.0708646 0.0708646i
\(827\) 23.9764 + 23.9764i 0.833742 + 0.833742i 0.988027 0.154284i \(-0.0493071\pi\)
−0.154284 + 0.988027i \(0.549307\pi\)
\(828\) −30.6530 + 30.6530i −1.06526 + 1.06526i
\(829\) −8.18134 −0.284150 −0.142075 0.989856i \(-0.545377\pi\)
−0.142075 + 0.989856i \(0.545377\pi\)
\(830\) 0.466927 + 1.06437i 0.0162073 + 0.0369449i
\(831\) 16.1872i 0.561527i
\(832\) 27.4078i 0.950195i
\(833\) −4.62695 10.2742i −0.160314 0.355980i
\(834\) −9.83507 −0.340561
\(835\) 19.6816 + 7.67889i 0.681110 + 0.265739i
\(836\) 2.64222 + 2.64222i 0.0913832 + 0.0913832i
\(837\) 3.87600i 0.133974i
\(838\) −4.33181 + 4.33181i −0.149640 + 0.149640i
\(839\) 15.5381 15.5381i 0.536436 0.536436i −0.386045 0.922480i \(-0.626159\pi\)
0.922480 + 0.386045i \(0.126159\pi\)
\(840\) 4.07425 + 9.28735i 0.140575 + 0.320444i
\(841\) 27.9257i 0.962956i
\(842\) −1.84589 −0.0636135
\(843\) −30.5371 30.5371i −1.05175 1.05175i
\(844\) 17.6547 17.6547i 0.607701 0.607701i
\(845\) −3.20772 7.31207i −0.110349 0.251543i
\(846\) 2.29012 0.0787361
\(847\) −15.7308 + 15.7308i −0.540515 + 0.540515i
\(848\) 22.6240 0.776912
\(849\) 60.3771 2.07214
\(850\) −1.51086 + 4.54636i −0.0518220 + 0.155939i
\(851\) −10.5709 −0.362365
\(852\) 8.47023 0.290185
\(853\) −26.1383 + 26.1383i −0.894959 + 0.894959i −0.994985 0.100026i \(-0.968107\pi\)
0.100026 + 0.994985i \(0.468107\pi\)
\(854\) −2.71555 −0.0929242
\(855\) 9.81982 + 22.3845i 0.335831 + 0.765535i
\(856\) 3.37902 3.37902i 0.115493 0.115493i
\(857\) −10.6231 10.6231i −0.362879 0.362879i 0.501993 0.864872i \(-0.332600\pi\)
−0.864872 + 0.501993i \(0.832600\pi\)
\(858\) −1.08732 −0.0371206
\(859\) 40.2180i 1.37222i 0.727498 + 0.686110i \(0.240683\pi\)
−0.727498 + 0.686110i \(0.759317\pi\)
\(860\) 13.0352 + 29.7141i 0.444497 + 1.01324i
\(861\) −37.7126 + 37.7126i −1.28524 + 1.28524i
\(862\) −1.86337 + 1.86337i −0.0634668 + 0.0634668i
\(863\) 12.3865i 0.421643i −0.977525 0.210822i \(-0.932386\pi\)
0.977525 0.210822i \(-0.0676139\pi\)
\(864\) −1.21602 1.21602i −0.0413698 0.0413698i
\(865\) −34.4620 13.4455i −1.17174 0.457162i
\(866\) −1.45136 −0.0493192
\(867\) 2.47672 + 40.6285i 0.0841139 + 1.37981i
\(868\) 24.3623i 0.826911i
\(869\) 4.90933i 0.166538i
\(870\) −0.518059 1.18093i −0.0175639 0.0400372i
\(871\) −12.7869 −0.433267
\(872\) 5.25710 5.25710i 0.178028 0.178028i
\(873\) 32.3084 + 32.3084i 1.09347 + 1.09347i
\(874\) −5.35778 + 5.35778i −0.181229 + 0.181229i
\(875\) −10.1458 20.7473i −0.342991 0.701387i
\(876\) 56.7097i 1.91604i
\(877\) −31.9433 31.9433i −1.07865 1.07865i −0.996631 0.0820188i \(-0.973863\pi\)
−0.0820188 0.996631i \(-0.526137\pi\)
\(878\) −1.73003 1.73003i −0.0583857 0.0583857i
\(879\) 44.4570 + 44.4570i 1.49950 + 1.49950i
\(880\) −3.67889 1.43534i −0.124015 0.0483853i
\(881\) −12.0367 12.0367i −0.405525 0.405525i 0.474649 0.880175i \(-0.342575\pi\)
−0.880175 + 0.474649i \(0.842575\pi\)
\(882\) −1.73565 −0.0584423
\(883\) 13.3497i 0.449254i 0.974445 + 0.224627i \(0.0721164\pi\)
−0.974445 + 0.224627i \(0.927884\pi\)
\(884\) 13.4118 + 29.7811i 0.451087 + 1.00165i
\(885\) −11.6760 + 29.9264i −0.392483 + 1.00597i
\(886\) 6.80132i 0.228495i
\(887\) −31.4868 + 31.4868i −1.05722 + 1.05722i −0.0589646 + 0.998260i \(0.518780\pi\)
−0.998260 + 0.0589646i \(0.981220\pi\)
\(888\) 2.84739i 0.0955522i
\(889\) 4.35778 + 4.35778i 0.146155 + 0.146155i
\(890\) −1.95650 4.45988i −0.0655819 0.149496i
\(891\) −3.30278 + 3.30278i −0.110647 + 0.110647i
\(892\) −7.92163 −0.265236
\(893\) −14.4238 −0.482675
\(894\) −2.88048 + 2.88048i −0.0963377 + 0.0963377i
\(895\) 39.9942 17.5450i 1.33686 0.586463i
\(896\) −10.1408 10.1408i −0.338779 0.338779i
\(897\) 79.4480i 2.65269i
\(898\) −5.37790 + 5.37790i −0.179463 + 0.179463i
\(899\) 6.28153i 0.209501i
\(900\) −19.5650 18.0080i −0.652168 0.600268i
\(901\) 23.1195 10.4118i 0.770223 0.346867i
\(902\) 1.20295i 0.0400538i
\(903\) 36.8815 1.22734
\(904\) −2.25268 2.25268i −0.0749231 0.0749231i
\(905\) 21.8351 + 8.51907i 0.725822 + 0.283184i
\(906\) 2.93740 + 2.93740i 0.0975887 + 0.0975887i
\(907\) −23.2958 23.2958i −0.773526 0.773526i 0.205195 0.978721i \(-0.434217\pi\)
−0.978721 + 0.205195i \(0.934217\pi\)
\(908\) −21.7061 21.7061i −0.720342 0.720342i
\(909\) 12.0569i 0.399903i
\(910\) 4.07073 + 1.58822i 0.134944 + 0.0526490i
\(911\) 25.1630 25.1630i 0.833688 0.833688i −0.154332 0.988019i \(-0.549322\pi\)
0.988019 + 0.154332i \(0.0493224\pi\)
\(912\) −24.9143 24.9143i −0.824994 0.824994i
\(913\) −0.759241 + 0.759241i −0.0251272 + 0.0251272i
\(914\) 7.31450 0.241942
\(915\) 27.7349 12.1670i 0.916889 0.402228i
\(916\) 29.0848i 0.960990i
\(917\) 14.8601i 0.490725i
\(918\) −0.573022 0.217165i −0.0189125 0.00716750i
\(919\) 28.5997 0.943418 0.471709 0.881754i \(-0.343637\pi\)
0.471709 + 0.881754i \(0.343637\pi\)
\(920\) 6.07507 15.5709i 0.200289 0.513357i
\(921\) 23.5565 + 23.5565i 0.776212 + 0.776212i
\(922\) 6.19183i 0.203917i
\(923\) 5.23268 5.23268i 0.172236 0.172236i
\(924\) −3.26711 + 3.26711i −0.107480 + 0.107480i
\(925\) −0.268473 6.47866i −0.00882735 0.213017i
\(926\) 3.30085i 0.108473i
\(927\) −47.6407 −1.56473
\(928\) 1.97071 + 1.97071i 0.0646917 + 0.0646917i
\(929\) −8.98266 + 8.98266i −0.294711 + 0.294711i −0.838938 0.544227i \(-0.816823\pi\)
0.544227 + 0.838938i \(0.316823\pi\)
\(930\) 3.02925 + 6.90524i 0.0993329 + 0.226432i
\(931\) 10.9316 0.358268
\(932\) 1.00083 1.00083i 0.0327832 0.0327832i
\(933\) 20.9274 0.685131
\(934\) 6.76664 0.221411
\(935\) −4.42002 + 0.226283i −0.144550 + 0.00740025i
\(936\) 10.2016 0.333450
\(937\) −30.7655 −1.00506 −0.502532 0.864558i \(-0.667598\pi\)
−0.502532 + 0.864558i \(0.667598\pi\)
\(938\) 1.06625 1.06625i 0.0348144 0.0348144i
\(939\) 16.6364 0.542908
\(940\) 14.3690 6.30352i 0.468666 0.205598i
\(941\) −27.7522 + 27.7522i −0.904696 + 0.904696i −0.995838 0.0911416i \(-0.970948\pi\)
0.0911416 + 0.995838i \(0.470948\pi\)
\(942\) 4.90125 + 4.90125i 0.159691 + 0.159691i
\(943\) 87.8965 2.86230
\(944\) 22.0733i 0.718426i
\(945\) 2.70524 1.18675i 0.0880013 0.0386051i
\(946\) 0.588220 0.588220i 0.0191247 0.0191247i
\(947\) −2.52289 + 2.52289i −0.0819830 + 0.0819830i −0.746909 0.664926i \(-0.768463\pi\)
0.664926 + 0.746909i \(0.268463\pi\)
\(948\) 47.6506i 1.54762i
\(949\) −35.0337 35.0337i −1.13724 1.13724i
\(950\) −3.41974 3.14759i −0.110951 0.102121i
\(951\) −10.1022 −0.327586
\(952\) −7.30334 2.76783i −0.236703 0.0897059i
\(953\) 53.8491i 1.74434i −0.489200 0.872172i \(-0.662711\pi\)
0.489200 0.872172i \(-0.337289\pi\)
\(954\) 3.90564i 0.126450i
\(955\) −4.77995 10.8960i −0.154676 0.352587i
\(956\) 18.6306 0.602555
\(957\) 0.842384 0.842384i 0.0272304 0.0272304i
\(958\) −0.323145 0.323145i −0.0104403 0.0104403i
\(959\) −0.769556 + 0.769556i −0.0248503 + 0.0248503i
\(960\) 33.5819 + 13.1022i 1.08385 + 0.422871i
\(961\) 5.72998i 0.184838i
\(962\) 0.867484 + 0.867484i 0.0279688 + 0.0279688i
\(963\) 10.0703 + 10.0703i 0.324510 + 0.324510i
\(964\) −11.6760 11.6760i −0.376058 0.376058i
\(965\) −10.1447 + 26.0016i −0.326569 + 0.837021i
\(966\) −6.62488 6.62488i −0.213152 0.213152i
\(967\) −14.6688 −0.471716 −0.235858 0.971788i \(-0.575790\pi\)
−0.235858 + 0.971788i \(0.575790\pi\)
\(968\) 9.87576i 0.317419i
\(969\) −36.9257 13.9942i −1.18623 0.449557i
\(970\) −8.09358 3.15776i −0.259869 0.101389i
\(971\) 14.2468i 0.457203i 0.973520 + 0.228602i \(0.0734153\pi\)
−0.973520 + 0.228602i \(0.926585\pi\)
\(972\) 29.4171 29.4171i 0.943553 0.943553i
\(973\) 36.5125i 1.17054i
\(974\) −0.794499 0.794499i −0.0254574 0.0254574i
\(975\) −48.6919 + 2.01778i −1.55939 + 0.0646206i
\(976\) −14.7156 + 14.7156i −0.471033 + 0.471033i
\(977\) 20.9141 0.669103 0.334551 0.942378i \(-0.391415\pi\)
0.334551 + 0.942378i \(0.391415\pi\)
\(978\) 4.76722 0.152439
\(979\) 3.18134 3.18134i 0.101676 0.101676i
\(980\) −10.8900 + 4.77733i −0.347870 + 0.152606i
\(981\) 15.6674 + 15.6674i 0.500221 + 0.500221i
\(982\) 3.92620i 0.125290i
\(983\) −12.3036 + 12.3036i −0.392425 + 0.392425i −0.875551 0.483126i \(-0.839501\pi\)
0.483126 + 0.875551i \(0.339501\pi\)
\(984\) 23.6760i 0.754762i
\(985\) 0.448443 1.14940i 0.0142886 0.0366228i
\(986\) 0.928654 + 0.351942i 0.0295744 + 0.0112081i
\(987\) 17.8350i 0.567696i
\(988\) −31.6865 −1.00808
\(989\) −42.9797 42.9797i −1.36668 1.36668i
\(990\) −0.247786 + 0.635095i −0.00787515 + 0.0201846i
\(991\) 3.73190 + 3.73190i 0.118548 + 0.118548i 0.763892 0.645344i \(-0.223286\pi\)
−0.645344 + 0.763892i \(0.723286\pi\)
\(992\) −11.5233 11.5233i −0.365866 0.365866i
\(993\) −23.1542 23.1542i −0.734777 0.734777i
\(994\) 0.872669i 0.0276794i
\(995\) 14.3037 36.6615i 0.453458 1.16225i
\(996\) 7.36928 7.36928i 0.233505 0.233505i
\(997\) 18.1295 + 18.1295i 0.574167 + 0.574167i 0.933290 0.359123i \(-0.116924\pi\)
−0.359123 + 0.933290i \(0.616924\pi\)
\(998\) 0.713978 0.713978i 0.0226006 0.0226006i
\(999\) 0.829394 0.0262409
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.j.c.64.4 yes 12
3.2 odd 2 765.2.t.e.64.3 12
5.2 odd 4 425.2.e.d.251.4 12
5.3 odd 4 425.2.e.d.251.3 12
5.4 even 2 inner 85.2.j.c.64.3 yes 12
15.14 odd 2 765.2.t.e.64.4 12
17.2 even 8 1445.2.b.f.579.8 12
17.4 even 4 inner 85.2.j.c.4.3 12
17.15 even 8 1445.2.b.f.579.7 12
51.38 odd 4 765.2.t.e.514.4 12
85.2 odd 8 7225.2.a.bp.1.6 12
85.4 even 4 inner 85.2.j.c.4.4 yes 12
85.19 even 8 1445.2.b.f.579.5 12
85.32 odd 8 7225.2.a.bp.1.5 12
85.38 odd 4 425.2.e.d.276.4 12
85.49 even 8 1445.2.b.f.579.6 12
85.53 odd 8 7225.2.a.bp.1.7 12
85.72 odd 4 425.2.e.d.276.3 12
85.83 odd 8 7225.2.a.bp.1.8 12
255.89 odd 4 765.2.t.e.514.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.c.4.3 12 17.4 even 4 inner
85.2.j.c.4.4 yes 12 85.4 even 4 inner
85.2.j.c.64.3 yes 12 5.4 even 2 inner
85.2.j.c.64.4 yes 12 1.1 even 1 trivial
425.2.e.d.251.3 12 5.3 odd 4
425.2.e.d.251.4 12 5.2 odd 4
425.2.e.d.276.3 12 85.72 odd 4
425.2.e.d.276.4 12 85.38 odd 4
765.2.t.e.64.3 12 3.2 odd 2
765.2.t.e.64.4 12 15.14 odd 2
765.2.t.e.514.3 12 255.89 odd 4
765.2.t.e.514.4 12 51.38 odd 4
1445.2.b.f.579.5 12 85.19 even 8
1445.2.b.f.579.6 12 85.49 even 8
1445.2.b.f.579.7 12 17.15 even 8
1445.2.b.f.579.8 12 17.2 even 8
7225.2.a.bp.1.5 12 85.32 odd 8
7225.2.a.bp.1.6 12 85.2 odd 8
7225.2.a.bp.1.7 12 85.53 odd 8
7225.2.a.bp.1.8 12 85.83 odd 8