Properties

Label 85.2.j.c.64.3
Level $85$
Weight $2$
Character 85.64
Analytic conductor $0.679$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [85,2,Mod(4,85)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("85.4"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(85, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 188x^{8} + 572x^{6} + 776x^{4} + 464x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 64.3
Root \(-0.767611i\) of defining polynomial
Character \(\chi\) \(=\) 85.64
Dual form 85.2.j.c.4.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.232389 q^{2} +(1.69306 - 1.69306i) q^{3} -1.94600 q^{4} +(2.04770 + 0.898299i) q^{5} +(-0.393449 + 0.393449i) q^{6} +(-1.46067 - 1.46067i) q^{7} +0.917007 q^{8} -2.73289i q^{9} +(-0.475863 - 0.208755i) q^{10} +(-0.339444 + 0.339444i) q^{11} +(-3.29468 + 3.29468i) q^{12} +4.07073i q^{13} +(0.339444 + 0.339444i) q^{14} +(4.98774 - 1.94600i) q^{15} +3.67889 q^{16} +(-3.75946 + 1.69306i) q^{17} +0.635095i q^{18} +4.00000i q^{19} +(-3.98481 - 1.74809i) q^{20} -4.94600 q^{21} +(0.0788831 - 0.0788831i) q^{22} +(-5.76379 - 5.76379i) q^{23} +(1.55255 - 1.55255i) q^{24} +(3.38612 + 3.67889i) q^{25} -0.945995i q^{26} +(0.452229 + 0.452229i) q^{27} +(2.84245 + 2.84245i) q^{28} +(0.732893 + 0.732893i) q^{29} +(-1.15910 + 0.452229i) q^{30} +(-4.28544 - 4.28544i) q^{31} -2.68895 q^{32} +1.14940i q^{33} +(0.873659 - 0.393449i) q^{34} +(-1.67889 - 4.30312i) q^{35} +5.31820i q^{36} +(0.917007 - 0.917007i) q^{37} -0.929557i q^{38} +(6.89199 + 6.89199i) q^{39} +(1.87775 + 0.823747i) q^{40} +(7.62488 - 7.62488i) q^{41} +1.14940 q^{42} +7.45685 q^{43} +(0.660556 - 0.660556i) q^{44} +(2.45496 - 5.59613i) q^{45} +(1.33944 + 1.33944i) q^{46} -3.60596i q^{47} +(6.22857 - 6.22857i) q^{48} -2.73289i q^{49} +(-0.786897 - 0.854934i) q^{50} +(-3.49854 + 9.23143i) q^{51} -7.92163i q^{52} -6.14969 q^{53} +(-0.105093 - 0.105093i) q^{54} +(-1.00000 + 0.390156i) q^{55} +(-1.33944 - 1.33944i) q^{56} +(6.77223 + 6.77223i) q^{57} +(-0.170316 - 0.170316i) q^{58} -6.00000i q^{59} +(-9.70612 + 3.78690i) q^{60} +(-4.00000 + 4.00000i) q^{61} +(0.995890 + 0.995890i) q^{62} +(-3.99185 + 3.99185i) q^{63} -6.73289 q^{64} +(-3.65674 + 8.33563i) q^{65} -0.267107i q^{66} +3.14118i q^{67} +(7.31589 - 3.29468i) q^{68} -19.5169 q^{69} +(0.390156 + 1.00000i) q^{70} +(1.28544 + 1.28544i) q^{71} -2.50608i q^{72} +(-8.60625 + 8.60625i) q^{73} +(-0.213103 + 0.213103i) q^{74} +(11.9615 + 0.495679i) q^{75} -7.78398i q^{76} +0.991630 q^{77} +(-1.60162 - 1.60162i) q^{78} +(7.23143 - 7.23143i) q^{79} +(7.53324 + 3.30474i) q^{80} +9.72998 q^{81} +(-1.77194 + 1.77194i) q^{82} -2.23672 q^{83} +9.62488 q^{84} +(-9.21911 + 0.0897461i) q^{85} -1.73289 q^{86} +2.48166 q^{87} +(-0.311272 + 0.311272i) q^{88} -9.37220 q^{89} +(-0.570505 + 1.30048i) q^{90} +(5.94600 - 5.94600i) q^{91} +(11.2163 + 11.2163i) q^{92} -14.5110 q^{93} +0.837986i q^{94} +(-3.59320 + 8.19078i) q^{95} +(-4.55255 + 4.55255i) q^{96} +(11.8220 - 11.8220i) q^{97} +0.635095i q^{98} +(0.927664 + 0.927664i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{4} - 20 q^{6} - 4 q^{10} + 16 q^{11} - 16 q^{14} + 4 q^{16} - 32 q^{20} - 24 q^{21} - 32 q^{24} + 4 q^{29} + 52 q^{30} + 4 q^{31} + 20 q^{35} + 12 q^{39} + 24 q^{40} + 16 q^{41} + 28 q^{44}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/85\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.232389 −0.164324 −0.0821620 0.996619i \(-0.526183\pi\)
−0.0821620 + 0.996619i \(0.526183\pi\)
\(3\) 1.69306 1.69306i 0.977488 0.977488i −0.0222645 0.999752i \(-0.507088\pi\)
0.999752 + 0.0222645i \(0.00708759\pi\)
\(4\) −1.94600 −0.972998
\(5\) 2.04770 + 0.898299i 0.915757 + 0.401732i
\(6\) −0.393449 + 0.393449i −0.160625 + 0.160625i
\(7\) −1.46067 1.46067i −0.552081 0.552081i 0.374960 0.927041i \(-0.377656\pi\)
−0.927041 + 0.374960i \(0.877656\pi\)
\(8\) 0.917007 0.324211
\(9\) 2.73289i 0.910964i
\(10\) −0.475863 0.208755i −0.150481 0.0660142i
\(11\) −0.339444 + 0.339444i −0.102346 + 0.102346i −0.756426 0.654080i \(-0.773056\pi\)
0.654080 + 0.756426i \(0.273056\pi\)
\(12\) −3.29468 + 3.29468i −0.951093 + 0.951093i
\(13\) 4.07073i 1.12902i 0.825427 + 0.564509i \(0.190935\pi\)
−0.825427 + 0.564509i \(0.809065\pi\)
\(14\) 0.339444 + 0.339444i 0.0907202 + 0.0907202i
\(15\) 4.98774 1.94600i 1.28783 0.502454i
\(16\) 3.67889 0.919722
\(17\) −3.75946 + 1.69306i −0.911803 + 0.410627i
\(18\) 0.635095i 0.149693i
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) −3.98481 1.74809i −0.891030 0.390884i
\(21\) −4.94600 −1.07930
\(22\) 0.0788831 0.0788831i 0.0168179 0.0168179i
\(23\) −5.76379 5.76379i −1.20183 1.20183i −0.973608 0.228226i \(-0.926708\pi\)
−0.228226 0.973608i \(-0.573292\pi\)
\(24\) 1.55255 1.55255i 0.316912 0.316912i
\(25\) 3.38612 + 3.67889i 0.677223 + 0.735778i
\(26\) 0.945995i 0.185525i
\(27\) 0.452229 + 0.452229i 0.0870314 + 0.0870314i
\(28\) 2.84245 + 2.84245i 0.537173 + 0.537173i
\(29\) 0.732893 + 0.732893i 0.136095 + 0.136095i 0.771872 0.635778i \(-0.219320\pi\)
−0.635778 + 0.771872i \(0.719320\pi\)
\(30\) −1.15910 + 0.452229i −0.211621 + 0.0825653i
\(31\) −4.28544 4.28544i −0.769688 0.769688i 0.208364 0.978051i \(-0.433186\pi\)
−0.978051 + 0.208364i \(0.933186\pi\)
\(32\) −2.68895 −0.475343
\(33\) 1.14940i 0.200084i
\(34\) 0.873659 0.393449i 0.149831 0.0674759i
\(35\) −1.67889 4.30312i −0.283784 0.727361i
\(36\) 5.31820i 0.886366i
\(37\) 0.917007 0.917007i 0.150755 0.150755i −0.627700 0.778455i \(-0.716004\pi\)
0.778455 + 0.627700i \(0.216004\pi\)
\(38\) 0.929557i 0.150794i
\(39\) 6.89199 + 6.89199i 1.10360 + 1.10360i
\(40\) 1.87775 + 0.823747i 0.296899 + 0.130246i
\(41\) 7.62488 7.62488i 1.19081 1.19081i 0.213965 0.976841i \(-0.431362\pi\)
0.976841 0.213965i \(-0.0686380\pi\)
\(42\) 1.14940 0.177356
\(43\) 7.45685 1.13716 0.568580 0.822628i \(-0.307493\pi\)
0.568580 + 0.822628i \(0.307493\pi\)
\(44\) 0.660556 0.660556i 0.0995826 0.0995826i
\(45\) 2.45496 5.59613i 0.365963 0.834222i
\(46\) 1.33944 + 1.33944i 0.197490 + 0.197490i
\(47\) 3.60596i 0.525983i −0.964798 0.262991i \(-0.915291\pi\)
0.964798 0.262991i \(-0.0847091\pi\)
\(48\) 6.22857 6.22857i 0.899017 0.899017i
\(49\) 2.73289i 0.390413i
\(50\) −0.786897 0.854934i −0.111284 0.120906i
\(51\) −3.49854 + 9.23143i −0.489894 + 1.29266i
\(52\) 7.92163i 1.09853i
\(53\) −6.14969 −0.844725 −0.422362 0.906427i \(-0.638799\pi\)
−0.422362 + 0.906427i \(0.638799\pi\)
\(54\) −0.105093 0.105093i −0.0143014 0.0143014i
\(55\) −1.00000 + 0.390156i −0.134840 + 0.0526086i
\(56\) −1.33944 1.33944i −0.178991 0.178991i
\(57\) 6.77223 + 6.77223i 0.897004 + 0.897004i
\(58\) −0.170316 0.170316i −0.0223636 0.0223636i
\(59\) 6.00000i 0.781133i −0.920575 0.390567i \(-0.872279\pi\)
0.920575 0.390567i \(-0.127721\pi\)
\(60\) −9.70612 + 3.78690i −1.25305 + 0.488886i
\(61\) −4.00000 + 4.00000i −0.512148 + 0.512148i −0.915184 0.403036i \(-0.867955\pi\)
0.403036 + 0.915184i \(0.367955\pi\)
\(62\) 0.995890 + 0.995890i 0.126478 + 0.126478i
\(63\) −3.99185 + 3.99185i −0.502926 + 0.502926i
\(64\) −6.73289 −0.841612
\(65\) −3.65674 + 8.33563i −0.453563 + 1.03391i
\(66\) 0.267107i 0.0328787i
\(67\) 3.14118i 0.383756i 0.981419 + 0.191878i \(0.0614578\pi\)
−0.981419 + 0.191878i \(0.938542\pi\)
\(68\) 7.31589 3.29468i 0.887183 0.399539i
\(69\) −19.5169 −2.34956
\(70\) 0.390156 + 1.00000i 0.0466325 + 0.119523i
\(71\) 1.28544 + 1.28544i 0.152554 + 0.152554i 0.779257 0.626704i \(-0.215596\pi\)
−0.626704 + 0.779257i \(0.715596\pi\)
\(72\) 2.50608i 0.295345i
\(73\) −8.60625 + 8.60625i −1.00729 + 1.00729i −0.00731179 + 0.999973i \(0.502327\pi\)
−0.999973 + 0.00731179i \(0.997673\pi\)
\(74\) −0.213103 + 0.213103i −0.0247727 + 0.0247727i
\(75\) 11.9615 + 0.495679i 1.38119 + 0.0572360i
\(76\) 7.78398i 0.892884i
\(77\) 0.991630 0.113007
\(78\) −1.60162 1.60162i −0.181348 0.181348i
\(79\) 7.23143 7.23143i 0.813600 0.813600i −0.171572 0.985172i \(-0.554885\pi\)
0.985172 + 0.171572i \(0.0548845\pi\)
\(80\) 7.53324 + 3.30474i 0.842242 + 0.369481i
\(81\) 9.72998 1.08111
\(82\) −1.77194 + 1.77194i −0.195678 + 0.195678i
\(83\) −2.23672 −0.245512 −0.122756 0.992437i \(-0.539173\pi\)
−0.122756 + 0.992437i \(0.539173\pi\)
\(84\) 9.62488 1.05016
\(85\) −9.21911 + 0.0897461i −0.999953 + 0.00973434i
\(86\) −1.73289 −0.186863
\(87\) 2.48166 0.266062
\(88\) −0.311272 + 0.311272i −0.0331818 + 0.0331818i
\(89\) −9.37220 −0.993451 −0.496726 0.867908i \(-0.665464\pi\)
−0.496726 + 0.867908i \(0.665464\pi\)
\(90\) −0.570505 + 1.30048i −0.0601366 + 0.137083i
\(91\) 5.94600 5.94600i 0.623310 0.623310i
\(92\) 11.2163 + 11.2163i 1.16938 + 1.16938i
\(93\) −14.5110 −1.50472
\(94\) 0.837986i 0.0864316i
\(95\) −3.59320 + 8.19078i −0.368654 + 0.840357i
\(96\) −4.55255 + 4.55255i −0.464642 + 0.464642i
\(97\) 11.8220 11.8220i 1.20035 1.20035i 0.226286 0.974061i \(-0.427342\pi\)
0.974061 0.226286i \(-0.0726585\pi\)
\(98\) 0.635095i 0.0641543i
\(99\) 0.927664 + 0.927664i 0.0932337 + 0.0932337i
\(100\) −6.58937 7.15910i −0.658937 0.715910i
\(101\) −4.41178 −0.438989 −0.219494 0.975614i \(-0.570441\pi\)
−0.219494 + 0.975614i \(0.570441\pi\)
\(102\) 0.813024 2.14529i 0.0805013 0.212415i
\(103\) 17.4323i 1.71766i 0.512262 + 0.858829i \(0.328808\pi\)
−0.512262 + 0.858829i \(0.671192\pi\)
\(104\) 3.73289i 0.366040i
\(105\) −10.1279 4.44298i −0.988381 0.433591i
\(106\) 1.42912 0.138809
\(107\) 3.68484 3.68484i 0.356227 0.356227i −0.506193 0.862420i \(-0.668948\pi\)
0.862420 + 0.506193i \(0.168948\pi\)
\(108\) −0.880035 0.880035i −0.0846814 0.0846814i
\(109\) −5.73289 + 5.73289i −0.549112 + 0.549112i −0.926184 0.377072i \(-0.876931\pi\)
0.377072 + 0.926184i \(0.376931\pi\)
\(110\) 0.232389 0.0906680i 0.0221575 0.00864485i
\(111\) 3.10509i 0.294722i
\(112\) −5.37364 5.37364i −0.507761 0.507761i
\(113\) −2.45656 2.45656i −0.231094 0.231094i 0.582055 0.813149i \(-0.302249\pi\)
−0.813149 + 0.582055i \(0.802249\pi\)
\(114\) −1.57379 1.57379i −0.147399 0.147399i
\(115\) −6.62488 16.9801i −0.617774 1.58340i
\(116\) −1.42621 1.42621i −0.132420 0.132420i
\(117\) 11.1249 1.02850
\(118\) 1.39434i 0.128359i
\(119\) 7.96433 + 3.01833i 0.730089 + 0.276690i
\(120\) 4.57379 1.78449i 0.417528 0.162901i
\(121\) 10.7696i 0.979051i
\(122\) 0.929557 0.929557i 0.0841582 0.0841582i
\(123\) 25.8187i 2.32800i
\(124\) 8.33944 + 8.33944i 0.748904 + 0.748904i
\(125\) 3.62899 + 10.5750i 0.324587 + 0.945856i
\(126\) 0.927664 0.927664i 0.0826428 0.0826428i
\(127\) −2.98341 −0.264735 −0.132367 0.991201i \(-0.542258\pi\)
−0.132367 + 0.991201i \(0.542258\pi\)
\(128\) 6.94255 0.613640
\(129\) 12.6249 12.6249i 1.11156 1.11156i
\(130\) 0.849787 1.93711i 0.0745312 0.169896i
\(131\) 5.08676 + 5.08676i 0.444432 + 0.444432i 0.893499 0.449066i \(-0.148243\pi\)
−0.449066 + 0.893499i \(0.648243\pi\)
\(132\) 2.23672i 0.194681i
\(133\) 5.84268 5.84268i 0.506624 0.506624i
\(134\) 0.729976i 0.0630603i
\(135\) 0.519790 + 1.33226i 0.0447364 + 0.114663i
\(136\) −3.44745 + 1.55255i −0.295617 + 0.133130i
\(137\) 0.526852i 0.0450120i −0.999747 0.0225060i \(-0.992836\pi\)
0.999747 0.0225060i \(-0.00716448\pi\)
\(138\) 4.53551 0.386089
\(139\) 12.4985 + 12.4985i 1.06011 + 1.06011i 0.998074 + 0.0620387i \(0.0197602\pi\)
0.0620387 + 0.998074i \(0.480240\pi\)
\(140\) 3.26711 + 8.37386i 0.276121 + 0.707720i
\(141\) −6.10509 6.10509i −0.514142 0.514142i
\(142\) −0.298722 0.298722i −0.0250682 0.0250682i
\(143\) −1.38179 1.38179i −0.115551 0.115551i
\(144\) 10.0540i 0.837834i
\(145\) 0.842384 + 2.15910i 0.0699562 + 0.179303i
\(146\) 2.00000 2.00000i 0.165521 0.165521i
\(147\) −4.62695 4.62695i −0.381624 0.381624i
\(148\) −1.78449 + 1.78449i −0.146684 + 0.146684i
\(149\) 7.32111 0.599769 0.299884 0.953976i \(-0.403052\pi\)
0.299884 + 0.953976i \(0.403052\pi\)
\(150\) −2.77972 0.115190i −0.226963 0.00940526i
\(151\) 7.46579i 0.607557i −0.952743 0.303778i \(-0.901752\pi\)
0.952743 0.303778i \(-0.0982483\pi\)
\(152\) 3.66803i 0.297516i
\(153\) 4.62695 + 10.2742i 0.374066 + 0.830620i
\(154\) −0.230444 −0.0185697
\(155\) −4.92567 12.6249i −0.395639 1.01405i
\(156\) −13.4118 13.4118i −1.07380 1.07380i
\(157\) 12.4571i 0.994188i 0.867697 + 0.497094i \(0.165600\pi\)
−0.867697 + 0.497094i \(0.834400\pi\)
\(158\) −1.68051 + 1.68051i −0.133694 + 0.133694i
\(159\) −10.4118 + 10.4118i −0.825708 + 0.825708i
\(160\) −5.50615 2.41548i −0.435299 0.190961i
\(161\) 16.8380i 1.32702i
\(162\) −2.26114 −0.177652
\(163\) 6.05825 + 6.05825i 0.474519 + 0.474519i 0.903374 0.428854i \(-0.141083\pi\)
−0.428854 + 0.903374i \(0.641083\pi\)
\(164\) −14.8380 + 14.8380i −1.15865 + 1.15865i
\(165\) −1.03250 + 2.35361i −0.0803802 + 0.183229i
\(166\) 0.519790 0.0403435
\(167\) −6.68080 + 6.68080i −0.516976 + 0.516976i −0.916655 0.399679i \(-0.869122\pi\)
0.399679 + 0.916655i \(0.369122\pi\)
\(168\) −4.53551 −0.349922
\(169\) −3.57088 −0.274683
\(170\) 2.14242 0.0208560i 0.164316 0.00159959i
\(171\) 10.9316 0.835958
\(172\) −14.5110 −1.10645
\(173\) 11.6979 11.6979i 0.889375 0.889375i −0.105088 0.994463i \(-0.533512\pi\)
0.994463 + 0.105088i \(0.0335124\pi\)
\(174\) −0.576711 −0.0437204
\(175\) 0.427642 10.3196i 0.0323267 0.780091i
\(176\) −1.24878 + 1.24878i −0.0941300 + 0.0941300i
\(177\) −10.1583 10.1583i −0.763548 0.763548i
\(178\) 2.17800 0.163248
\(179\) 19.5313i 1.45984i −0.683534 0.729919i \(-0.739558\pi\)
0.683534 0.729919i \(-0.260442\pi\)
\(180\) −4.77733 + 10.8900i −0.356081 + 0.811696i
\(181\) 7.41178 7.41178i 0.550913 0.550913i −0.375791 0.926704i \(-0.622629\pi\)
0.926704 + 0.375791i \(0.122629\pi\)
\(182\) −1.38179 + 1.38179i −0.102425 + 0.102425i
\(183\) 13.5445i 1.00124i
\(184\) −5.28544 5.28544i −0.389648 0.389648i
\(185\) 2.70150 1.05400i 0.198618 0.0774920i
\(186\) 3.37220 0.247262
\(187\) 0.701428 1.85082i 0.0512935 0.135346i
\(188\) 7.01717i 0.511780i
\(189\) 1.32111i 0.0960968i
\(190\) 0.835021 1.90345i 0.0605788 0.138091i
\(191\) −5.32111 −0.385022 −0.192511 0.981295i \(-0.561663\pi\)
−0.192511 + 0.981295i \(0.561663\pi\)
\(192\) −11.3992 + 11.3992i −0.822665 + 0.822665i
\(193\) −8.82609 8.82609i −0.635316 0.635316i 0.314081 0.949396i \(-0.398304\pi\)
−0.949396 + 0.314081i \(0.898304\pi\)
\(194\) −2.74732 + 2.74732i −0.197246 + 0.197246i
\(195\) 7.92163 + 20.3038i 0.567280 + 1.45398i
\(196\) 5.31820i 0.379871i
\(197\) 0.390156 + 0.390156i 0.0277974 + 0.0277974i 0.720869 0.693071i \(-0.243743\pi\)
−0.693071 + 0.720869i \(0.743743\pi\)
\(198\) −0.215579 0.215579i −0.0153205 0.0153205i
\(199\) −12.4445 12.4445i −0.882170 0.882170i 0.111585 0.993755i \(-0.464407\pi\)
−0.993755 + 0.111585i \(0.964407\pi\)
\(200\) 3.10509 + 3.37357i 0.219563 + 0.238547i
\(201\) 5.31820 + 5.31820i 0.375117 + 0.375117i
\(202\) 1.02525 0.0721364
\(203\) 2.14103i 0.150271i
\(204\) 6.80815 17.9643i 0.476666 1.25775i
\(205\) 22.4629 8.76401i 1.56887 0.612105i
\(206\) 4.05109i 0.282253i
\(207\) −15.7518 + 15.7518i −1.09483 + 1.09483i
\(208\) 14.9758i 1.03838i
\(209\) −1.35778 1.35778i −0.0939193 0.0939193i
\(210\) 2.35361 + 1.03250i 0.162415 + 0.0712494i
\(211\) −9.07234 + 9.07234i −0.624565 + 0.624565i −0.946695 0.322130i \(-0.895601\pi\)
0.322130 + 0.946695i \(0.395601\pi\)
\(212\) 11.9673 0.821915
\(213\) 4.35265 0.298238
\(214\) −0.856317 + 0.856317i −0.0585366 + 0.0585366i
\(215\) 15.2694 + 6.69848i 1.04136 + 0.456833i
\(216\) 0.414697 + 0.414697i 0.0282165 + 0.0282165i
\(217\) 12.5192i 0.849860i
\(218\) 1.33226 1.33226i 0.0902322 0.0902322i
\(219\) 29.1418i 1.96922i
\(220\) 1.94600 0.759241i 0.131199 0.0511880i
\(221\) −6.89199 15.3038i −0.463605 1.02944i
\(222\) 0.721590i 0.0484300i
\(223\) −4.07073 −0.272597 −0.136298 0.990668i \(-0.543521\pi\)
−0.136298 + 0.990668i \(0.543521\pi\)
\(224\) 3.92766 + 3.92766i 0.262428 + 0.262428i
\(225\) 10.0540 9.25389i 0.670267 0.616926i
\(226\) 0.570878 + 0.570878i 0.0379742 + 0.0379742i
\(227\) −11.1542 11.1542i −0.740333 0.740333i 0.232309 0.972642i \(-0.425372\pi\)
−0.972642 + 0.232309i \(0.925372\pi\)
\(228\) −13.1787 13.1787i −0.872783 0.872783i
\(229\) 14.9460i 0.987659i −0.869559 0.493830i \(-0.835597\pi\)
0.869559 0.493830i \(-0.164403\pi\)
\(230\) 1.53955 + 3.94600i 0.101515 + 0.260191i
\(231\) 1.67889 1.67889i 0.110463 0.110463i
\(232\) 0.672068 + 0.672068i 0.0441234 + 0.0441234i
\(233\) 0.514301 0.514301i 0.0336930 0.0336930i −0.690060 0.723753i \(-0.742416\pi\)
0.723753 + 0.690060i \(0.242416\pi\)
\(234\) −2.58530 −0.169007
\(235\) 3.23923 7.38390i 0.211304 0.481673i
\(236\) 11.6760i 0.760041i
\(237\) 24.4865i 1.59057i
\(238\) −1.85082 0.701428i −0.119971 0.0454668i
\(239\) −9.57379 −0.619277 −0.309639 0.950854i \(-0.600208\pi\)
−0.309639 + 0.950854i \(0.600208\pi\)
\(240\) 18.3493 7.15910i 1.18444 0.462118i
\(241\) 6.00000 + 6.00000i 0.386494 + 0.386494i 0.873435 0.486941i \(-0.161887\pi\)
−0.486941 + 0.873435i \(0.661887\pi\)
\(242\) 2.50273i 0.160882i
\(243\) 15.1167 15.1167i 0.969739 0.969739i
\(244\) 7.78398 7.78398i 0.498318 0.498318i
\(245\) 2.45496 5.59613i 0.156841 0.357524i
\(246\) 6.00000i 0.382546i
\(247\) −16.2829 −1.03606
\(248\) −3.92978 3.92978i −0.249541 0.249541i
\(249\) −3.78690 + 3.78690i −0.239985 + 0.239985i
\(250\) −0.843340 2.45751i −0.0533375 0.155427i
\(251\) −6.03666 −0.381031 −0.190515 0.981684i \(-0.561016\pi\)
−0.190515 + 0.981684i \(0.561016\pi\)
\(252\) 7.76812 7.76812i 0.489346 0.489346i
\(253\) 3.91297 0.246006
\(254\) 0.693313 0.0435023
\(255\) −15.4565 + 15.7604i −0.967926 + 0.986957i
\(256\) 11.8524 0.740776
\(257\) 27.2752 1.70138 0.850689 0.525670i \(-0.176185\pi\)
0.850689 + 0.525670i \(0.176185\pi\)
\(258\) −2.93389 + 2.93389i −0.182656 + 0.182656i
\(259\) −2.67889 −0.166458
\(260\) 7.11599 16.2211i 0.441315 1.00599i
\(261\) 2.00292 2.00292i 0.123977 0.123977i
\(262\) −1.18211 1.18211i −0.0730309 0.0730309i
\(263\) 12.3700 0.762765 0.381382 0.924417i \(-0.375448\pi\)
0.381382 + 0.924417i \(0.375448\pi\)
\(264\) 1.05400i 0.0648695i
\(265\) −12.5927 5.52426i −0.773563 0.339353i
\(266\) −1.35778 + 1.35778i −0.0832506 + 0.0832506i
\(267\) −15.8677 + 15.8677i −0.971086 + 0.971086i
\(268\) 6.11272i 0.373394i
\(269\) 14.1958 + 14.1958i 0.865531 + 0.865531i 0.991974 0.126443i \(-0.0403561\pi\)
−0.126443 + 0.991974i \(0.540356\pi\)
\(270\) −0.120794 0.309604i −0.00735127 0.0188419i
\(271\) −24.2102 −1.47066 −0.735332 0.677707i \(-0.762974\pi\)
−0.735332 + 0.677707i \(0.762974\pi\)
\(272\) −13.8306 + 6.22857i −0.838606 + 0.377663i
\(273\) 20.1338i 1.21855i
\(274\) 0.122435i 0.00739655i
\(275\) −2.39817 0.0993794i −0.144615 0.00599280i
\(276\) 37.9797 2.28611
\(277\) 4.78045 4.78045i 0.287230 0.287230i −0.548754 0.835984i \(-0.684898\pi\)
0.835984 + 0.548754i \(0.184898\pi\)
\(278\) −2.90453 2.90453i −0.174202 0.174202i
\(279\) −11.7116 + 11.7116i −0.701158 + 0.701158i
\(280\) −1.53955 3.94600i −0.0920058 0.235818i
\(281\) 18.0367i 1.07598i 0.842952 + 0.537989i \(0.180816\pi\)
−0.842952 + 0.537989i \(0.819184\pi\)
\(282\) 1.41876 + 1.41876i 0.0844858 + 0.0844858i
\(283\) 17.8308 + 17.8308i 1.05993 + 1.05993i 0.998086 + 0.0618440i \(0.0196981\pi\)
0.0618440 + 0.998086i \(0.480302\pi\)
\(284\) −2.50146 2.50146i −0.148434 0.148434i
\(285\) 7.78398 + 19.9510i 0.461083 + 1.18179i
\(286\) 0.321112 + 0.321112i 0.0189878 + 0.0189878i
\(287\) −22.2749 −1.31484
\(288\) 7.34861i 0.433021i
\(289\) 11.2671 12.7300i 0.662771 0.748822i
\(290\) −0.195761 0.501751i −0.0114955 0.0294639i
\(291\) 40.0308i 2.34665i
\(292\) 16.7477 16.7477i 0.980086 0.980086i
\(293\) 26.2584i 1.53403i 0.641627 + 0.767017i \(0.278260\pi\)
−0.641627 + 0.767017i \(0.721740\pi\)
\(294\) 1.07525 + 1.07525i 0.0627100 + 0.0627100i
\(295\) 5.38980 12.2862i 0.313806 0.715329i
\(296\) 0.840902 0.840902i 0.0488764 0.0488764i
\(297\) −0.307012 −0.0178147
\(298\) −1.70135 −0.0985565
\(299\) 23.4629 23.4629i 1.35689 1.35689i
\(300\) −23.2770 0.964588i −1.34390 0.0556905i
\(301\) −10.8920 10.8920i −0.627804 0.627804i
\(302\) 1.73497i 0.0998362i
\(303\) −7.46940 + 7.46940i −0.429106 + 0.429106i
\(304\) 14.7156i 0.843995i
\(305\) −11.7840 + 4.59759i −0.674749 + 0.263257i
\(306\) −1.07525 2.38762i −0.0614681 0.136491i
\(307\) 13.9136i 0.794088i 0.917800 + 0.397044i \(0.129964\pi\)
−0.917800 + 0.397044i \(0.870036\pi\)
\(308\) −1.92971 −0.109955
\(309\) 29.5140 + 29.5140i 1.67899 + 1.67899i
\(310\) 1.14467 + 2.93389i 0.0650130 + 0.166634i
\(311\) −6.18035 6.18035i −0.350455 0.350455i 0.509824 0.860279i \(-0.329711\pi\)
−0.860279 + 0.509824i \(0.829711\pi\)
\(312\) 6.32000 + 6.32000i 0.357800 + 0.357800i
\(313\) 4.91312 + 4.91312i 0.277706 + 0.277706i 0.832193 0.554487i \(-0.187085\pi\)
−0.554487 + 0.832193i \(0.687085\pi\)
\(314\) 2.89491i 0.163369i
\(315\) −11.7600 + 4.58822i −0.662600 + 0.258517i
\(316\) −14.0723 + 14.0723i −0.791631 + 0.791631i
\(317\) −2.98341 2.98341i −0.167565 0.167565i 0.618343 0.785908i \(-0.287804\pi\)
−0.785908 + 0.618343i \(0.787804\pi\)
\(318\) 2.41959 2.41959i 0.135684 0.135684i
\(319\) −0.497552 −0.0278575
\(320\) −13.7869 6.04815i −0.770712 0.338102i
\(321\) 12.4773i 0.696415i
\(322\) 3.91297i 0.218061i
\(323\) −6.77223 15.0378i −0.376817 0.836728i
\(324\) −18.9345 −1.05192
\(325\) −14.9758 + 13.7840i −0.830707 + 0.764598i
\(326\) −1.40787 1.40787i −0.0779749 0.0779749i
\(327\) 19.4122i 1.07350i
\(328\) 6.99207 6.99207i 0.386073 0.386073i
\(329\) −5.26711 + 5.26711i −0.290385 + 0.290385i
\(330\) 0.239942 0.546955i 0.0132084 0.0301089i
\(331\) 13.6760i 0.751699i 0.926681 + 0.375850i \(0.122649\pi\)
−0.926681 + 0.375850i \(0.877351\pi\)
\(332\) 4.35265 0.238883
\(333\) −2.50608 2.50608i −0.137332 0.137332i
\(334\) 1.55255 1.55255i 0.0849516 0.0849516i
\(335\) −2.82172 + 6.43218i −0.154167 + 0.351427i
\(336\) −18.1958 −0.992660
\(337\) 4.58504 4.58504i 0.249763 0.249763i −0.571110 0.820873i \(-0.693487\pi\)
0.820873 + 0.571110i \(0.193487\pi\)
\(338\) 0.829834 0.0451370
\(339\) −8.31820 −0.451782
\(340\) 17.9403 0.174646i 0.972952 0.00947148i
\(341\) 2.90933 0.157549
\(342\) −2.54038 −0.137368
\(343\) −14.2165 + 14.2165i −0.767621 + 0.767621i
\(344\) 6.83799 0.368679
\(345\) −39.9646 17.5320i −2.15162 0.943891i
\(346\) −2.71847 + 2.71847i −0.146146 + 0.146146i
\(347\) −3.53962 3.53962i −0.190017 0.190017i 0.605686 0.795703i \(-0.292899\pi\)
−0.795703 + 0.605686i \(0.792899\pi\)
\(348\) −4.82930 −0.258878
\(349\) 9.21310i 0.493166i 0.969122 + 0.246583i \(0.0793078\pi\)
−0.969122 + 0.246583i \(0.920692\pi\)
\(350\) −0.0993794 + 2.39817i −0.00531205 + 0.128188i
\(351\) −1.84090 + 1.84090i −0.0982601 + 0.0982601i
\(352\) 0.912747 0.912747i 0.0486496 0.0486496i
\(353\) 13.8600i 0.737693i −0.929490 0.368847i \(-0.879753\pi\)
0.929490 0.368847i \(-0.120247\pi\)
\(354\) 2.36069 + 2.36069i 0.125469 + 0.125469i
\(355\) 1.47748 + 3.78690i 0.0784165 + 0.200988i
\(356\) 18.2383 0.966626
\(357\) 18.5943 8.37386i 0.984114 0.443192i
\(358\) 4.53887i 0.239886i
\(359\) 11.5024i 0.607076i −0.952819 0.303538i \(-0.901832\pi\)
0.952819 0.303538i \(-0.0981679\pi\)
\(360\) 2.25121 5.13169i 0.118649 0.270464i
\(361\) 3.00000 0.157895
\(362\) −1.72242 + 1.72242i −0.0905283 + 0.0905283i
\(363\) 18.2335 + 18.2335i 0.957010 + 0.957010i
\(364\) −11.5709 + 11.5709i −0.606479 + 0.606479i
\(365\) −25.3540 + 9.89199i −1.32709 + 0.517770i
\(366\) 3.14759i 0.164527i
\(367\) 13.7349 + 13.7349i 0.716958 + 0.716958i 0.967981 0.251023i \(-0.0807669\pi\)
−0.251023 + 0.967981i \(0.580767\pi\)
\(368\) −21.2043 21.2043i −1.10535 1.10535i
\(369\) −20.8380 20.8380i −1.08478 1.08478i
\(370\) −0.627799 + 0.244939i −0.0326377 + 0.0127338i
\(371\) 8.98266 + 8.98266i 0.466356 + 0.466356i
\(372\) 28.2383 1.46409
\(373\) 5.58922i 0.289399i −0.989476 0.144699i \(-0.953779\pi\)
0.989476 0.144699i \(-0.0462215\pi\)
\(374\) −0.163004 + 0.430112i −0.00842876 + 0.0222406i
\(375\) 24.0482 + 11.7600i 1.24184 + 0.607282i
\(376\) 3.30669i 0.170529i
\(377\) −2.98341 + 2.98341i −0.153653 + 0.153653i
\(378\) 0.307012i 0.0157910i
\(379\) −0.393449 0.393449i −0.0202101 0.0202101i 0.696930 0.717140i \(-0.254549\pi\)
−0.717140 + 0.696930i \(0.754549\pi\)
\(380\) 6.99234 15.9392i 0.358700 0.817665i
\(381\) −5.05109 + 5.05109i −0.258775 + 0.258775i
\(382\) 1.23657 0.0632684
\(383\) −24.8020 −1.26732 −0.633662 0.773610i \(-0.718449\pi\)
−0.633662 + 0.773610i \(0.718449\pi\)
\(384\) 11.7541 11.7541i 0.599826 0.599826i
\(385\) 2.03056 + 0.890781i 0.103487 + 0.0453984i
\(386\) 2.05109 + 2.05109i 0.104398 + 0.104398i
\(387\) 20.3788i 1.03591i
\(388\) −23.0056 + 23.0056i −1.16793 + 1.16793i
\(389\) 8.76664i 0.444486i −0.974991 0.222243i \(-0.928662\pi\)
0.974991 0.222243i \(-0.0713379\pi\)
\(390\) −1.84090 4.71838i −0.0932177 0.238924i
\(391\) 31.4272 + 11.9103i 1.58934 + 0.602331i
\(392\) 2.50608i 0.126576i
\(393\) 17.2244 0.868854
\(394\) −0.0906680 0.0906680i −0.00456779 0.00456779i
\(395\) 21.3038 8.31179i 1.07191 0.418211i
\(396\) −1.80523 1.80523i −0.0907162 0.0907162i
\(397\) 4.97519 + 4.97519i 0.249698 + 0.249698i 0.820847 0.571149i \(-0.193502\pi\)
−0.571149 + 0.820847i \(0.693502\pi\)
\(398\) 2.89198 + 2.89198i 0.144962 + 0.144962i
\(399\) 19.7840i 0.990438i
\(400\) 12.4571 + 13.5342i 0.622857 + 0.676711i
\(401\) −7.51979 + 7.51979i −0.375520 + 0.375520i −0.869483 0.493963i \(-0.835548\pi\)
0.493963 + 0.869483i \(0.335548\pi\)
\(402\) −1.23589 1.23589i −0.0616407 0.0616407i
\(403\) 17.4449 17.4449i 0.868992 0.868992i
\(404\) 8.58530 0.427135
\(405\) 19.9240 + 8.74043i 0.990033 + 0.434316i
\(406\) 0.497552i 0.0246931i
\(407\) 0.622545i 0.0308584i
\(408\) −3.20819 + 8.46529i −0.158829 + 0.419094i
\(409\) −2.53421 −0.125309 −0.0626544 0.998035i \(-0.519957\pi\)
−0.0626544 + 0.998035i \(0.519957\pi\)
\(410\) −5.22013 + 2.03666i −0.257804 + 0.100584i
\(411\) −0.891990 0.891990i −0.0439986 0.0439986i
\(412\) 33.9232i 1.67128i
\(413\) −8.76401 + 8.76401i −0.431249 + 0.431249i
\(414\) 3.66056 3.66056i 0.179907 0.179907i
\(415\) −4.58012 2.00924i −0.224829 0.0986299i
\(416\) 10.9460i 0.536672i
\(417\) 42.3215 2.07249
\(418\) 0.315533 + 0.315533i 0.0154332 + 0.0154332i
\(419\) −18.6403 + 18.6403i −0.910638 + 0.910638i −0.996322 0.0856842i \(-0.972692\pi\)
0.0856842 + 0.996322i \(0.472692\pi\)
\(420\) 19.7088 + 8.64603i 0.961693 + 0.421883i
\(421\) −7.94308 −0.387122 −0.193561 0.981088i \(-0.562004\pi\)
−0.193561 + 0.981088i \(0.562004\pi\)
\(422\) 2.10831 2.10831i 0.102631 0.102631i
\(423\) −9.85469 −0.479151
\(424\) −5.63931 −0.273869
\(425\) −18.9585 8.09775i −0.919625 0.392798i
\(426\) −1.01151 −0.0490078
\(427\) 11.6854 0.565494
\(428\) −7.17068 + 7.17068i −0.346608 + 0.346608i
\(429\) −4.67889 −0.225899
\(430\) −3.54844 1.55666i −0.171121 0.0750686i
\(431\) −8.01833 + 8.01833i −0.386229 + 0.386229i −0.873340 0.487111i \(-0.838051\pi\)
0.487111 + 0.873340i \(0.338051\pi\)
\(432\) 1.66370 + 1.66370i 0.0800447 + 0.0800447i
\(433\) 6.24538 0.300134 0.150067 0.988676i \(-0.452051\pi\)
0.150067 + 0.988676i \(0.452051\pi\)
\(434\) 2.90933i 0.139652i
\(435\) 5.08168 + 2.22927i 0.243648 + 0.106885i
\(436\) 11.1562 11.1562i 0.534284 0.534284i
\(437\) 23.0552 23.0552i 1.10288 1.10288i
\(438\) 6.77223i 0.323590i
\(439\) −7.44454 7.44454i −0.355308 0.355308i 0.506772 0.862080i \(-0.330839\pi\)
−0.862080 + 0.506772i \(0.830839\pi\)
\(440\) −0.917007 + 0.357775i −0.0437166 + 0.0170563i
\(441\) −7.46870 −0.355652
\(442\) 1.60162 + 3.55643i 0.0761815 + 0.169162i
\(443\) 29.2669i 1.39051i −0.718761 0.695257i \(-0.755291\pi\)
0.718761 0.695257i \(-0.244709\pi\)
\(444\) 6.04250i 0.286764i
\(445\) −19.1914 8.41904i −0.909760 0.399101i
\(446\) 0.945995 0.0447942
\(447\) 12.3951 12.3951i 0.586267 0.586267i
\(448\) 9.83453 + 9.83453i 0.464638 + 0.464638i
\(449\) −23.1418 + 23.1418i −1.09213 + 1.09213i −0.0968256 + 0.995301i \(0.530869\pi\)
−0.995301 + 0.0968256i \(0.969131\pi\)
\(450\) −2.33644 + 2.15051i −0.110141 + 0.101376i
\(451\) 5.17644i 0.243749i
\(452\) 4.78045 + 4.78045i 0.224854 + 0.224854i
\(453\) −12.6400 12.6400i −0.593879 0.593879i
\(454\) 2.59213 + 2.59213i 0.121655 + 0.121655i
\(455\) 17.5169 6.83431i 0.821204 0.320397i
\(456\) 6.21019 + 6.21019i 0.290819 + 0.290819i
\(457\) −31.4752 −1.47235 −0.736174 0.676792i \(-0.763369\pi\)
−0.736174 + 0.676792i \(0.763369\pi\)
\(458\) 3.47329i 0.162296i
\(459\) −2.46579 0.934487i −0.115093 0.0436181i
\(460\) 12.8920 + 33.0432i 0.601092 + 1.54065i
\(461\) 26.6442i 1.24094i −0.784228 0.620472i \(-0.786941\pi\)
0.784228 0.620472i \(-0.213059\pi\)
\(462\) −0.390156 + 0.390156i −0.0181517 + 0.0181517i
\(463\) 14.2040i 0.660115i −0.943961 0.330058i \(-0.892932\pi\)
0.943961 0.330058i \(-0.107068\pi\)
\(464\) 2.69623 + 2.69623i 0.125169 + 0.125169i
\(465\) −29.7141 13.0352i −1.37796 0.604494i
\(466\) −0.119518 + 0.119518i −0.00553657 + 0.00553657i
\(467\) −29.1177 −1.34741 −0.673703 0.739002i \(-0.735297\pi\)
−0.673703 + 0.739002i \(0.735297\pi\)
\(468\) −21.6490 −1.00072
\(469\) 4.58822 4.58822i 0.211864 0.211864i
\(470\) −0.752762 + 1.71594i −0.0347223 + 0.0791504i
\(471\) 21.0907 + 21.0907i 0.971807 + 0.971807i
\(472\) 5.50204i 0.253252i
\(473\) −2.53118 + 2.53118i −0.116384 + 0.116384i
\(474\) 5.69040i 0.261369i
\(475\) −14.7156 + 13.5445i −0.675196 + 0.621463i
\(476\) −15.4985 5.87366i −0.710374 0.269219i
\(477\) 16.8064i 0.769514i
\(478\) 2.22485 0.101762
\(479\) −1.39053 1.39053i −0.0635350 0.0635350i 0.674625 0.738160i \(-0.264305\pi\)
−0.738160 + 0.674625i \(0.764305\pi\)
\(480\) −13.4118 + 5.23268i −0.612161 + 0.238838i
\(481\) 3.73289 + 3.73289i 0.170205 + 0.170205i
\(482\) −1.39434 1.39434i −0.0635103 0.0635103i
\(483\) 28.5077 + 28.5077i 1.29714 + 1.29714i
\(484\) 20.9575i 0.952614i
\(485\) 34.8277 13.5882i 1.58144 0.617009i
\(486\) −3.51297 + 3.51297i −0.159351 + 0.159351i
\(487\) 3.41883 + 3.41883i 0.154922 + 0.154922i 0.780312 0.625390i \(-0.215060\pi\)
−0.625390 + 0.780312i \(0.715060\pi\)
\(488\) −3.66803 + 3.66803i −0.166044 + 0.166044i
\(489\) 20.5140 0.927673
\(490\) −0.570505 + 1.30048i −0.0257728 + 0.0587498i
\(491\) 16.8949i 0.762456i −0.924481 0.381228i \(-0.875501\pi\)
0.924481 0.381228i \(-0.124499\pi\)
\(492\) 50.2431i 2.26514i
\(493\) −3.99611 1.51445i −0.179976 0.0682075i
\(494\) 3.78398 0.170249
\(495\) 1.06625 + 2.73289i 0.0479245 + 0.122834i
\(496\) −15.7656 15.7656i −0.707899 0.707899i
\(497\) 3.75520i 0.168444i
\(498\) 0.880035 0.880035i 0.0394353 0.0394353i
\(499\) 3.07234 3.07234i 0.137537 0.137537i −0.634987 0.772523i \(-0.718994\pi\)
0.772523 + 0.634987i \(0.218994\pi\)
\(500\) −7.06201 20.5789i −0.315822 0.920315i
\(501\) 22.6220i 1.01067i
\(502\) 1.40286 0.0626125
\(503\) 8.13721 + 8.13721i 0.362820 + 0.362820i 0.864850 0.502030i \(-0.167413\pi\)
−0.502030 + 0.864850i \(0.667413\pi\)
\(504\) −3.66056 + 3.66056i −0.163054 + 0.163054i
\(505\) −9.03398 3.96310i −0.402007 0.176356i
\(506\) −0.909332 −0.0404247
\(507\) −6.04570 + 6.04570i −0.268499 + 0.268499i
\(508\) 5.80570 0.257586
\(509\) 34.8177 1.54327 0.771634 0.636066i \(-0.219440\pi\)
0.771634 + 0.636066i \(0.219440\pi\)
\(510\) 3.59194 3.66256i 0.159054 0.162181i
\(511\) 25.1418 1.11221
\(512\) −16.6395 −0.735368
\(513\) −1.80891 + 1.80891i −0.0798655 + 0.0798655i
\(514\) −6.33845 −0.279577
\(515\) −15.6595 + 35.6961i −0.690038 + 1.57296i
\(516\) −24.5680 + 24.5680i −1.08154 + 1.08154i
\(517\) 1.22402 + 1.22402i 0.0538323 + 0.0538323i
\(518\) 0.622545 0.0273531
\(519\) 39.6105i 1.73871i
\(520\) −3.35325 + 7.64383i −0.147050 + 0.335204i
\(521\) 15.8746 15.8746i 0.695481 0.695481i −0.267951 0.963432i \(-0.586347\pi\)
0.963432 + 0.267951i \(0.0863467\pi\)
\(522\) −0.465456 + 0.465456i −0.0203725 + 0.0203725i
\(523\) 16.4943i 0.721243i −0.932712 0.360622i \(-0.882565\pi\)
0.932712 0.360622i \(-0.117435\pi\)
\(524\) −9.89881 9.89881i −0.432432 0.432432i
\(525\) −16.7477 18.1958i −0.730930 0.794128i
\(526\) −2.87465 −0.125341
\(527\) 23.3664 + 8.85545i 1.01786 + 0.385749i
\(528\) 4.22850i 0.184022i
\(529\) 43.4426i 1.88881i
\(530\) 2.92641 + 1.28378i 0.127115 + 0.0557638i
\(531\) −16.3974 −0.711585
\(532\) −11.3698 + 11.3698i −0.492944 + 0.492944i
\(533\) 31.0389 + 31.0389i 1.34444 + 1.34444i
\(534\) 3.68748 3.68748i 0.159573 0.159573i
\(535\) 10.8555 4.23534i 0.469325 0.183110i
\(536\) 2.88048i 0.124418i
\(537\) −33.0676 33.0676i −1.42697 1.42697i
\(538\) −3.29894 3.29894i −0.142228 0.142228i
\(539\) 0.927664 + 0.927664i 0.0399573 + 0.0399573i
\(540\) −1.01151 2.59258i −0.0435284 0.111567i
\(541\) −9.00000 9.00000i −0.386940 0.386940i 0.486654 0.873595i \(-0.338217\pi\)
−0.873595 + 0.486654i \(0.838217\pi\)
\(542\) 5.62619 0.241666
\(543\) 25.0972i 1.07702i
\(544\) 10.1090 4.55255i 0.433420 0.195189i
\(545\) −16.8891 + 6.58937i −0.723448 + 0.282257i
\(546\) 4.67889i 0.200238i
\(547\) 8.84290 8.84290i 0.378095 0.378095i −0.492320 0.870415i \(-0.663851\pi\)
0.870415 + 0.492320i \(0.163851\pi\)
\(548\) 1.02525i 0.0437965i
\(549\) 10.9316 + 10.9316i 0.466548 + 0.466548i
\(550\) 0.557310 + 0.0230947i 0.0237638 + 0.000984762i
\(551\) −2.93157 + 2.93157i −0.124889 + 0.124889i
\(552\) −17.8971 −0.761752
\(553\) −21.1255 −0.898346
\(554\) −1.11093 + 1.11093i −0.0471987 + 0.0471987i
\(555\) 2.78930 6.35829i 0.118399 0.269894i
\(556\) −24.3221 24.3221i −1.03149 1.03149i
\(557\) 38.9354i 1.64975i 0.565318 + 0.824873i \(0.308753\pi\)
−0.565318 + 0.824873i \(0.691247\pi\)
\(558\) 2.72166 2.72166i 0.115217 0.115217i
\(559\) 30.3549i 1.28387i
\(560\) −6.17644 15.8307i −0.261002 0.668970i
\(561\) −1.94600 4.32111i −0.0821600 0.182438i
\(562\) 4.19153i 0.176809i
\(563\) 8.17844 0.344680 0.172340 0.985038i \(-0.444867\pi\)
0.172340 + 0.985038i \(0.444867\pi\)
\(564\) 11.8805 + 11.8805i 0.500259 + 0.500259i
\(565\) −2.82356 7.23701i −0.118788 0.304463i
\(566\) −4.14368 4.14368i −0.174172 0.174172i
\(567\) −14.2123 14.2123i −0.596859 0.596859i
\(568\) 1.17876 + 1.17876i 0.0494595 + 0.0494595i
\(569\) 11.8920i 0.498538i 0.968434 + 0.249269i \(0.0801904\pi\)
−0.968434 + 0.249269i \(0.919810\pi\)
\(570\) −1.80891 4.63639i −0.0757671 0.194197i
\(571\) −2.80523 + 2.80523i −0.117395 + 0.117395i −0.763364 0.645969i \(-0.776454\pi\)
0.645969 + 0.763364i \(0.276454\pi\)
\(572\) 2.68895 + 2.68895i 0.112431 + 0.112431i
\(573\) −9.00895 + 9.00895i −0.376354 + 0.376354i
\(574\) 5.17644 0.216060
\(575\) 1.68747 40.7212i 0.0703725 1.69819i
\(576\) 18.4003i 0.766678i
\(577\) 6.58601i 0.274179i −0.990559 0.137090i \(-0.956225\pi\)
0.990559 0.137090i \(-0.0437749\pi\)
\(578\) −2.61836 + 2.95831i −0.108909 + 0.123049i
\(579\) −29.8862 −1.24203
\(580\) −1.63928 4.20159i −0.0680672 0.174462i
\(581\) 3.26711 + 3.26711i 0.135542 + 0.135542i
\(582\) 9.30274i 0.385611i
\(583\) 2.08747 2.08747i 0.0864543 0.0864543i
\(584\) −7.89199 + 7.89199i −0.326573 + 0.326573i
\(585\) 22.7804 + 9.99347i 0.941852 + 0.413179i
\(586\) 6.10218i 0.252079i
\(587\) −22.3369 −0.921944 −0.460972 0.887415i \(-0.652499\pi\)
−0.460972 + 0.887415i \(0.652499\pi\)
\(588\) 9.00402 + 9.00402i 0.371319 + 0.371319i
\(589\) 17.1418 17.1418i 0.706314 0.706314i
\(590\) −1.25253 + 2.85518i −0.0515659 + 0.117546i
\(591\) 1.32111 0.0543433
\(592\) 3.37357 3.37357i 0.138653 0.138653i
\(593\) 30.1344 1.23747 0.618736 0.785599i \(-0.287645\pi\)
0.618736 + 0.785599i \(0.287645\pi\)
\(594\) 0.0713464 0.00292738
\(595\) 13.5972 + 13.3350i 0.557429 + 0.546681i
\(596\) −14.2468 −0.583574
\(597\) −42.1387 −1.72462
\(598\) −5.45252 + 5.45252i −0.222970 + 0.222970i
\(599\) −8.88907 −0.363198 −0.181599 0.983373i \(-0.558127\pi\)
−0.181599 + 0.983373i \(0.558127\pi\)
\(600\) 10.9687 + 0.454541i 0.447797 + 0.0185566i
\(601\) 17.1418 17.1418i 0.699227 0.699227i −0.265017 0.964244i \(-0.585378\pi\)
0.964244 + 0.265017i \(0.0853776\pi\)
\(602\) 2.53118 + 2.53118i 0.103163 + 0.103163i
\(603\) 8.58450 0.349588
\(604\) 14.5284i 0.591151i
\(605\) −9.67429 + 22.0528i −0.393316 + 0.896573i
\(606\) 1.73581 1.73581i 0.0705124 0.0705124i
\(607\) −10.5442 + 10.5442i −0.427978 + 0.427978i −0.887939 0.459961i \(-0.847863\pi\)
0.459961 + 0.887939i \(0.347863\pi\)
\(608\) 10.7558i 0.436205i
\(609\) −3.62488 3.62488i −0.146888 0.146888i
\(610\) 2.73847 1.06843i 0.110877 0.0432595i
\(611\) 14.6789 0.593844
\(612\) −9.00402 19.9936i −0.363966 0.808192i
\(613\) 31.3459i 1.26605i −0.774132 0.633024i \(-0.781813\pi\)
0.774132 0.633024i \(-0.218187\pi\)
\(614\) 3.23336i 0.130488i
\(615\) 23.1930 52.8689i 0.935230 2.13188i
\(616\) 0.909332 0.0366380
\(617\) 10.9050 10.9050i 0.439020 0.439020i −0.452662 0.891682i \(-0.649526\pi\)
0.891682 + 0.452662i \(0.149526\pi\)
\(618\) −6.85873 6.85873i −0.275899 0.275899i
\(619\) 31.8930 31.8930i 1.28189 1.28189i 0.342294 0.939593i \(-0.388796\pi\)
0.939593 0.342294i \(-0.111204\pi\)
\(620\) 9.58533 + 24.5680i 0.384956 + 0.986673i
\(621\) 5.21310i 0.209195i
\(622\) 1.43625 + 1.43625i 0.0575882 + 0.0575882i
\(623\) 13.6897 + 13.6897i 0.548466 + 0.548466i
\(624\) 25.3549 + 25.3549i 1.01501 + 1.01501i
\(625\) −2.06843 + 24.9143i −0.0827372 + 0.996571i
\(626\) −1.14176 1.14176i −0.0456338 0.0456338i
\(627\) −4.59759 −0.183610
\(628\) 24.2415i 0.967343i
\(629\) −1.89491 + 5.00000i −0.0755549 + 0.199363i
\(630\) 2.73289 1.06625i 0.108881 0.0424805i
\(631\) 29.7493i 1.18430i 0.805827 + 0.592150i \(0.201721\pi\)
−0.805827 + 0.592150i \(0.798279\pi\)
\(632\) 6.63128 6.63128i 0.263778 0.263778i
\(633\) 30.7200i 1.22101i
\(634\) 0.693313 + 0.693313i 0.0275350 + 0.0275350i
\(635\) −6.10912 2.68000i −0.242433 0.106352i
\(636\) 20.2613 20.2613i 0.803412 0.803412i
\(637\) 11.1249 0.440784
\(638\) 0.115626 0.00457767
\(639\) 3.51297 3.51297i 0.138971 0.138971i
\(640\) 14.2162 + 6.23649i 0.561946 + 0.246519i
\(641\) 31.2131 + 31.2131i 1.23284 + 1.23284i 0.962867 + 0.269977i \(0.0870159\pi\)
0.269977 + 0.962867i \(0.412984\pi\)
\(642\) 2.89959i 0.114438i
\(643\) 5.36109 5.36109i 0.211421 0.211421i −0.593450 0.804871i \(-0.702235\pi\)
0.804871 + 0.593450i \(0.202235\pi\)
\(644\) 32.7666i 1.29119i
\(645\) 37.1928 14.5110i 1.46447 0.571370i
\(646\) 1.57379 + 3.49464i 0.0619201 + 0.137495i
\(647\) 10.2540i 0.403128i −0.979475 0.201564i \(-0.935398\pi\)
0.979475 0.201564i \(-0.0646024\pi\)
\(648\) 8.92246 0.350507
\(649\) 2.03666 + 2.03666i 0.0799460 + 0.0799460i
\(650\) 3.48021 3.20325i 0.136505 0.125642i
\(651\) 21.1958 + 21.1958i 0.830727 + 0.830727i
\(652\) −11.7893 11.7893i −0.461706 0.461706i
\(653\) −10.1207 10.1207i −0.396054 0.396054i 0.480785 0.876839i \(-0.340352\pi\)
−0.876839 + 0.480785i \(0.840352\pi\)
\(654\) 4.51120i 0.176402i
\(655\) 5.84671 + 14.9856i 0.228450 + 0.585535i
\(656\) 28.0511 28.0511i 1.09521 1.09521i
\(657\) 23.5199 + 23.5199i 0.917601 + 0.917601i
\(658\) 1.22402 1.22402i 0.0477172 0.0477172i
\(659\) −43.9653 −1.71265 −0.856323 0.516441i \(-0.827257\pi\)
−0.856323 + 0.516441i \(0.827257\pi\)
\(660\) 2.00924 4.58012i 0.0782097 0.178281i
\(661\) 20.7077i 0.805438i −0.915324 0.402719i \(-0.868065\pi\)
0.915324 0.402719i \(-0.131935\pi\)
\(662\) 3.17815i 0.123522i
\(663\) −37.5787 14.2416i −1.45944 0.553099i
\(664\) −2.05109 −0.0795977
\(665\) 17.2125 6.71555i 0.667472 0.260418i
\(666\) 0.582387 + 0.582387i 0.0225670 + 0.0225670i
\(667\) 8.44848i 0.327126i
\(668\) 13.0008 13.0008i 0.503016 0.503016i
\(669\) −6.89199 + 6.89199i −0.266460 + 0.266460i
\(670\) 0.655737 1.49477i 0.0253333 0.0577480i
\(671\) 2.71555i 0.104833i
\(672\) 13.2995 0.513040
\(673\) −32.7151 32.7151i −1.26108 1.26108i −0.950572 0.310503i \(-0.899503\pi\)
−0.310503 0.950572i \(-0.600497\pi\)
\(674\) −1.06551 + 1.06551i −0.0410420 + 0.0410420i
\(675\) −0.132399 + 3.19500i −0.00509606 + 0.122975i
\(676\) 6.94891 0.267266
\(677\) 1.24509 1.24509i 0.0478527 0.0478527i −0.682776 0.730628i \(-0.739227\pi\)
0.730628 + 0.682776i \(0.239227\pi\)
\(678\) 1.93306 0.0742387
\(679\) −34.5362 −1.32538
\(680\) −8.45399 + 0.0822978i −0.324196 + 0.00315598i
\(681\) −37.7696 −1.44733
\(682\) −0.676098 −0.0258891
\(683\) −16.2377 + 16.2377i −0.621317 + 0.621317i −0.945868 0.324551i \(-0.894787\pi\)
0.324551 + 0.945868i \(0.394787\pi\)
\(684\) −21.2728 −0.813385
\(685\) 0.473270 1.07883i 0.0180827 0.0412200i
\(686\) 3.30377 3.30377i 0.126139 0.126139i
\(687\) −25.3044 25.3044i −0.965425 0.965425i
\(688\) 27.4329 1.04587
\(689\) 25.0337i 0.953710i
\(690\) 9.28735 + 4.07425i 0.353563 + 0.155104i
\(691\) −18.2314 + 18.2314i −0.693556 + 0.693556i −0.963013 0.269456i \(-0.913156\pi\)
0.269456 + 0.963013i \(0.413156\pi\)
\(692\) −22.7641 + 22.7641i −0.865360 + 0.865360i
\(693\) 2.71002i 0.102945i
\(694\) 0.822571 + 0.822571i 0.0312244 + 0.0312244i
\(695\) 14.3658 + 36.8206i 0.544925 + 1.39669i
\(696\) 2.27570 0.0862602
\(697\) −15.7561 + 41.5748i −0.596804 + 1.57476i
\(698\) 2.14103i 0.0810391i
\(699\) 1.74148i 0.0658690i
\(700\) −0.832189 + 20.0820i −0.0314538 + 0.759027i
\(701\) −25.1195 −0.948751 −0.474376 0.880323i \(-0.657326\pi\)
−0.474376 + 0.880323i \(0.657326\pi\)
\(702\) 0.427806 0.427806i 0.0161465 0.0161465i
\(703\) 3.66803 + 3.66803i 0.138342 + 0.138342i
\(704\) 2.28544 2.28544i 0.0861357 0.0861357i
\(705\) −7.01717 17.9856i −0.264282 0.677376i
\(706\) 3.22092i 0.121221i
\(707\) 6.44415 + 6.44415i 0.242357 + 0.242357i
\(708\) 19.7681 + 19.7681i 0.742931 + 0.742931i
\(709\) −23.7156 23.7156i −0.890656 0.890656i 0.103929 0.994585i \(-0.466859\pi\)
−0.994585 + 0.103929i \(0.966859\pi\)
\(710\) −0.343350 0.880035i −0.0128857 0.0330271i
\(711\) −19.7627 19.7627i −0.741160 0.741160i
\(712\) −8.59437 −0.322088
\(713\) 49.4008i 1.85007i
\(714\) −4.32111 + 1.94600i −0.161714 + 0.0728270i
\(715\) −1.58822 4.07073i −0.0593961 0.152237i
\(716\) 38.0078i 1.42042i
\(717\) −16.2090 + 16.2090i −0.605336 + 0.605336i
\(718\) 2.67305i 0.0997572i
\(719\) 29.4812 + 29.4812i 1.09946 + 1.09946i 0.994473 + 0.104990i \(0.0334810\pi\)
0.104990 + 0.994473i \(0.466519\pi\)
\(720\) 9.03151 20.5875i 0.336584 0.767252i
\(721\) 25.4629 25.4629i 0.948287 0.948287i
\(722\) −0.697168 −0.0259459
\(723\) 20.3167 0.755586
\(724\) −14.4233 + 14.4233i −0.536037 + 0.536037i
\(725\) −0.214570 + 5.17789i −0.00796892 + 0.192302i
\(726\) −4.23727 4.23727i −0.157260 0.157260i
\(727\) 12.2458i 0.454172i 0.973875 + 0.227086i \(0.0729199\pi\)
−0.973875 + 0.227086i \(0.927080\pi\)
\(728\) 5.45252 5.45252i 0.202084 0.202084i
\(729\) 21.9971i 0.814707i
\(730\) 5.89199 2.29879i 0.218072 0.0850821i
\(731\) −28.0337 + 12.6249i −1.03687 + 0.466948i
\(732\) 26.3575i 0.974200i
\(733\) −32.8393 −1.21295 −0.606473 0.795104i \(-0.707416\pi\)
−0.606473 + 0.795104i \(0.707416\pi\)
\(734\) −3.19185 3.19185i −0.117814 0.117814i
\(735\) −5.31820 13.6310i −0.196165 0.502786i
\(736\) 15.4985 + 15.4985i 0.571284 + 0.571284i
\(737\) −1.06625 1.06625i −0.0392759 0.0392759i
\(738\) 4.84253 + 4.84253i 0.178256 + 0.178256i
\(739\) 6.00000i 0.220714i −0.993892 0.110357i \(-0.964801\pi\)
0.993892 0.110357i \(-0.0351994\pi\)
\(740\) −5.25710 + 2.05109i −0.193255 + 0.0753995i
\(741\) −27.5680 + 27.5680i −1.01273 + 1.01273i
\(742\) −2.08747 2.08747i −0.0766336 0.0766336i
\(743\) −16.1704 + 16.1704i −0.593236 + 0.593236i −0.938504 0.345268i \(-0.887788\pi\)
0.345268 + 0.938504i \(0.387788\pi\)
\(744\) −13.3067 −0.487847
\(745\) 14.9914 + 6.57655i 0.549243 + 0.240946i
\(746\) 1.29887i 0.0475552i
\(747\) 6.11272i 0.223653i
\(748\) −1.36498 + 3.60170i −0.0499085 + 0.131691i
\(749\) −10.7647 −0.393332
\(750\) −5.58854 2.73289i −0.204065 0.0997911i
\(751\) −22.6799 22.6799i −0.827600 0.827600i 0.159584 0.987184i \(-0.448985\pi\)
−0.987184 + 0.159584i \(0.948985\pi\)
\(752\) 13.2659i 0.483758i
\(753\) −10.2204 + 10.2204i −0.372453 + 0.372453i
\(754\) 0.693313 0.693313i 0.0252490 0.0252490i
\(755\) 6.70651 15.2877i 0.244075 0.556375i
\(756\) 2.57088i 0.0935019i
\(757\) −36.2220 −1.31651 −0.658256 0.752794i \(-0.728706\pi\)
−0.658256 + 0.752794i \(0.728706\pi\)
\(758\) 0.0914333 + 0.0914333i 0.00332101 + 0.00332101i
\(759\) 6.62488 6.62488i 0.240468 0.240468i
\(760\) −3.29499 + 7.51101i −0.119522 + 0.272453i
\(761\) 24.4851 0.887584 0.443792 0.896130i \(-0.353633\pi\)
0.443792 + 0.896130i \(0.353633\pi\)
\(762\) 1.17382 1.17382i 0.0425230 0.0425230i
\(763\) 16.7477 0.606308
\(764\) 10.3549 0.374626
\(765\) 0.245267 + 25.1948i 0.00886763 + 0.910921i
\(766\) 5.76372 0.208252
\(767\) 24.4244 0.881914
\(768\) 20.0668 20.0668i 0.724099 0.724099i
\(769\) −5.55937 −0.200476 −0.100238 0.994963i \(-0.531960\pi\)
−0.100238 + 0.994963i \(0.531960\pi\)
\(770\) −0.471880 0.207008i −0.0170054 0.00746005i
\(771\) 46.1784 46.1784i 1.66308 1.66308i
\(772\) 17.1755 + 17.1755i 0.618161 + 0.618161i
\(773\) 36.5376 1.31416 0.657082 0.753819i \(-0.271790\pi\)
0.657082 + 0.753819i \(0.271790\pi\)
\(774\) 4.73581i 0.170225i
\(775\) 1.25465 30.2766i 0.0450685 1.08757i
\(776\) 10.8409 10.8409i 0.389166 0.389166i
\(777\) −4.53551 + 4.53551i −0.162711 + 0.162711i
\(778\) 2.03727i 0.0730398i
\(779\) 30.4995 + 30.4995i 1.09276 + 1.09276i
\(780\) −15.4155 39.5110i −0.551962 1.41472i
\(781\) −0.872669 −0.0312265
\(782\) −7.30334 2.76783i −0.261167 0.0989775i
\(783\) 0.662870i 0.0236890i
\(784\) 10.0540i 0.359072i
\(785\) −11.1902 + 25.5084i −0.399397 + 0.910435i
\(786\) −4.00276 −0.142774
\(787\) −11.3490 + 11.3490i −0.404547 + 0.404547i −0.879832 0.475285i \(-0.842345\pi\)
0.475285 + 0.879832i \(0.342345\pi\)
\(788\) −0.759241 0.759241i −0.0270468 0.0270468i
\(789\) 20.9431 20.9431i 0.745593 0.745593i
\(790\) −4.95077 + 1.93157i −0.176140 + 0.0687222i
\(791\) 7.17644i 0.255165i
\(792\) 0.850674 + 0.850674i 0.0302274 + 0.0302274i
\(793\) −16.2829 16.2829i −0.578224 0.578224i
\(794\) −1.15618 1.15618i −0.0410313 0.0410313i
\(795\) −30.6731 + 11.9673i −1.08786 + 0.424435i
\(796\) 24.2170 + 24.2170i 0.858349 + 0.858349i
\(797\) 34.7907 1.23235 0.616175 0.787609i \(-0.288681\pi\)
0.616175 + 0.787609i \(0.288681\pi\)
\(798\) 4.59759i 0.162753i
\(799\) 6.10509 + 13.5565i 0.215983 + 0.479593i
\(800\) −9.10509 9.89234i −0.321914 0.349747i
\(801\) 25.6132i 0.904999i
\(802\) 1.74752 1.74752i 0.0617070 0.0617070i
\(803\) 5.84268i 0.206184i
\(804\) −10.3492 10.3492i −0.364988 0.364988i
\(805\) −15.1256 + 34.4791i −0.533106 + 1.21523i
\(806\) −4.05400 + 4.05400i −0.142796 + 0.142796i
\(807\) 48.0685 1.69209
\(808\) −4.04563 −0.142325
\(809\) −13.3549 + 13.3549i −0.469532 + 0.469532i −0.901763 0.432231i \(-0.857726\pi\)
0.432231 + 0.901763i \(0.357726\pi\)
\(810\) −4.63013 2.03118i −0.162686 0.0713685i
\(811\) −9.28544 9.28544i −0.326056 0.326056i 0.525029 0.851085i \(-0.324055\pi\)
−0.851085 + 0.525029i \(0.824055\pi\)
\(812\) 4.16643i 0.146213i
\(813\) −40.9893 + 40.9893i −1.43756 + 1.43756i
\(814\) 0.144673i 0.00507078i
\(815\) 6.96334 + 17.8476i 0.243915 + 0.625174i
\(816\) −12.8707 + 33.9614i −0.450566 + 1.18889i
\(817\) 29.8274i 1.04353i
\(818\) 0.588924 0.0205913
\(819\) −16.2498 16.2498i −0.567813 0.567813i
\(820\) −43.7126 + 17.0547i −1.52651 + 0.595577i
\(821\) −27.8206 27.8206i −0.970947 0.970947i 0.0286425 0.999590i \(-0.490882\pi\)
−0.999590 + 0.0286425i \(0.990882\pi\)
\(822\) 0.207289 + 0.207289i 0.00723004 + 0.00723004i
\(823\) −28.4414 28.4414i −0.991403 0.991403i 0.00855996 0.999963i \(-0.497275\pi\)
−0.999963 + 0.00855996i \(0.997275\pi\)
\(824\) 15.9856i 0.556884i
\(825\) −4.22850 + 3.89199i −0.147217 + 0.135502i
\(826\) 2.03666 2.03666i 0.0708646 0.0708646i
\(827\) −23.9764 23.9764i −0.833742 0.833742i 0.154284 0.988027i \(-0.450693\pi\)
−0.988027 + 0.154284i \(0.950693\pi\)
\(828\) 30.6530 30.6530i 1.06526 1.06526i
\(829\) −8.18134 −0.284150 −0.142075 0.989856i \(-0.545377\pi\)
−0.142075 + 0.989856i \(0.545377\pi\)
\(830\) 1.06437 + 0.466927i 0.0369449 + 0.0162073i
\(831\) 16.1872i 0.561527i
\(832\) 27.4078i 0.950195i
\(833\) 4.62695 + 10.2742i 0.160314 + 0.355980i
\(834\) −9.83507 −0.340561
\(835\) −19.6816 + 7.67889i −0.681110 + 0.265739i
\(836\) 2.64222 + 2.64222i 0.0913832 + 0.0913832i
\(837\) 3.87600i 0.133974i
\(838\) 4.33181 4.33181i 0.149640 0.149640i
\(839\) 15.5381 15.5381i 0.536436 0.536436i −0.386045 0.922480i \(-0.626159\pi\)
0.922480 + 0.386045i \(0.126159\pi\)
\(840\) −9.28735 4.07425i −0.320444 0.140575i
\(841\) 27.9257i 0.962956i
\(842\) 1.84589 0.0636135
\(843\) 30.5371 + 30.5371i 1.05175 + 1.05175i
\(844\) 17.6547 17.6547i 0.607701 0.607701i
\(845\) −7.31207 3.20772i −0.251543 0.110349i
\(846\) 2.29012 0.0787361
\(847\) 15.7308 15.7308i 0.540515 0.540515i
\(848\) −22.6240 −0.776912
\(849\) 60.3771 2.07214
\(850\) 4.40576 + 1.88183i 0.151116 + 0.0645462i
\(851\) −10.5709 −0.362365
\(852\) −8.47023 −0.290185
\(853\) 26.1383 26.1383i 0.894959 0.894959i −0.100026 0.994985i \(-0.531893\pi\)
0.994985 + 0.100026i \(0.0318927\pi\)
\(854\) −2.71555 −0.0929242
\(855\) 22.3845 + 9.81982i 0.765535 + 0.335831i
\(856\) 3.37902 3.37902i 0.115493 0.115493i
\(857\) 10.6231 + 10.6231i 0.362879 + 0.362879i 0.864872 0.501993i \(-0.167400\pi\)
−0.501993 + 0.864872i \(0.667400\pi\)
\(858\) 1.08732 0.0371206
\(859\) 40.2180i 1.37222i 0.727498 + 0.686110i \(0.240683\pi\)
−0.727498 + 0.686110i \(0.759317\pi\)
\(860\) −29.7141 13.0352i −1.01324 0.444497i
\(861\) −37.7126 + 37.7126i −1.28524 + 1.28524i
\(862\) 1.86337 1.86337i 0.0634668 0.0634668i
\(863\) 12.3865i 0.421643i 0.977525 + 0.210822i \(0.0676139\pi\)
−0.977525 + 0.210822i \(0.932386\pi\)
\(864\) −1.21602 1.21602i −0.0413698 0.0413698i
\(865\) 34.4620 13.4455i 1.17174 0.457162i
\(866\) −1.45136 −0.0493192
\(867\) −2.47672 40.6285i −0.0841139 1.37981i
\(868\) 24.3623i 0.826911i
\(869\) 4.90933i 0.166538i
\(870\) −1.18093 0.518059i −0.0400372 0.0175639i
\(871\) −12.7869 −0.433267
\(872\) −5.25710 + 5.25710i −0.178028 + 0.178028i
\(873\) −32.3084 32.3084i −1.09347 1.09347i
\(874\) −5.35778 + 5.35778i −0.181229 + 0.181229i
\(875\) 10.1458 20.7473i 0.342991 0.701387i
\(876\) 56.7097i 1.91604i
\(877\) 31.9433 + 31.9433i 1.07865 + 1.07865i 0.996631 + 0.0820188i \(0.0261368\pi\)
0.0820188 + 0.996631i \(0.473863\pi\)
\(878\) 1.73003 + 1.73003i 0.0583857 + 0.0583857i
\(879\) 44.4570 + 44.4570i 1.49950 + 1.49950i
\(880\) −3.67889 + 1.43534i −0.124015 + 0.0483853i
\(881\) −12.0367 12.0367i −0.405525 0.405525i 0.474649 0.880175i \(-0.342575\pi\)
−0.880175 + 0.474649i \(0.842575\pi\)
\(882\) 1.73565 0.0584423
\(883\) 13.3497i 0.449254i −0.974445 0.224627i \(-0.927884\pi\)
0.974445 0.224627i \(-0.0721164\pi\)
\(884\) 13.4118 + 29.7811i 0.451087 + 1.00165i
\(885\) −11.6760 29.9264i −0.392483 1.00597i
\(886\) 6.80132i 0.228495i
\(887\) 31.4868 31.4868i 1.05722 1.05722i 0.0589646 0.998260i \(-0.481220\pi\)
0.998260 0.0589646i \(-0.0187799\pi\)
\(888\) 2.84739i 0.0955522i
\(889\) 4.35778 + 4.35778i 0.146155 + 0.146155i
\(890\) 4.45988 + 1.95650i 0.149496 + 0.0655819i
\(891\) −3.30278 + 3.30278i −0.110647 + 0.110647i
\(892\) 7.92163 0.265236
\(893\) 14.4238 0.482675
\(894\) −2.88048 + 2.88048i −0.0963377 + 0.0963377i
\(895\) 17.5450 39.9942i 0.586463 1.33686i
\(896\) −10.1408 10.1408i −0.338779 0.338779i
\(897\) 79.4480i 2.65269i
\(898\) 5.37790 5.37790i 0.179463 0.179463i
\(899\) 6.28153i 0.209501i
\(900\) −19.5650 + 18.0080i −0.652168 + 0.600268i
\(901\) 23.1195 10.4118i 0.770223 0.346867i
\(902\) 1.20295i 0.0400538i
\(903\) −36.8815 −1.22734
\(904\) −2.25268 2.25268i −0.0749231 0.0749231i
\(905\) 21.8351 8.51907i 0.725822 0.283184i
\(906\) 2.93740 + 2.93740i 0.0975887 + 0.0975887i
\(907\) 23.2958 + 23.2958i 0.773526 + 0.773526i 0.978721 0.205195i \(-0.0657829\pi\)
−0.205195 + 0.978721i \(0.565783\pi\)
\(908\) 21.7061 + 21.7061i 0.720342 + 0.720342i
\(909\) 12.0569i 0.399903i
\(910\) −4.07073 + 1.58822i −0.134944 + 0.0526490i
\(911\) 25.1630 25.1630i 0.833688 0.833688i −0.154332 0.988019i \(-0.549322\pi\)
0.988019 + 0.154332i \(0.0493224\pi\)
\(912\) 24.9143 + 24.9143i 0.824994 + 0.824994i
\(913\) 0.759241 0.759241i 0.0251272 0.0251272i
\(914\) 7.31450 0.241942
\(915\) −12.1670 + 27.7349i −0.402228 + 0.916889i
\(916\) 29.0848i 0.960990i
\(917\) 14.8601i 0.490725i
\(918\) 0.573022 + 0.217165i 0.0189125 + 0.00716750i
\(919\) 28.5997 0.943418 0.471709 0.881754i \(-0.343637\pi\)
0.471709 + 0.881754i \(0.343637\pi\)
\(920\) −6.07507 15.5709i −0.200289 0.513357i
\(921\) 23.5565 + 23.5565i 0.776212 + 0.776212i
\(922\) 6.19183i 0.203917i
\(923\) −5.23268 + 5.23268i −0.172236 + 0.172236i
\(924\) −3.26711 + 3.26711i −0.107480 + 0.107480i
\(925\) 6.47866 + 0.268473i 0.213017 + 0.00882735i
\(926\) 3.30085i 0.108473i
\(927\) 47.6407 1.56473
\(928\) −1.97071 1.97071i −0.0646917 0.0646917i
\(929\) −8.98266 + 8.98266i −0.294711 + 0.294711i −0.838938 0.544227i \(-0.816823\pi\)
0.544227 + 0.838938i \(0.316823\pi\)
\(930\) 6.90524 + 3.02925i 0.226432 + 0.0993329i
\(931\) 10.9316 0.358268
\(932\) −1.00083 + 1.00083i −0.0327832 + 0.0327832i
\(933\) −20.9274 −0.685131
\(934\) 6.76664 0.221411
\(935\) 3.09891 3.15983i 0.101345 0.103338i
\(936\) 10.2016 0.333450
\(937\) 30.7655 1.00506 0.502532 0.864558i \(-0.332402\pi\)
0.502532 + 0.864558i \(0.332402\pi\)
\(938\) −1.06625 + 1.06625i −0.0348144 + 0.0348144i
\(939\) 16.6364 0.542908
\(940\) −6.30352 + 14.3690i −0.205598 + 0.468666i
\(941\) −27.7522 + 27.7522i −0.904696 + 0.904696i −0.995838 0.0911416i \(-0.970948\pi\)
0.0911416 + 0.995838i \(0.470948\pi\)
\(942\) −4.90125 4.90125i −0.159691 0.159691i
\(943\) −87.8965 −2.86230
\(944\) 22.0733i 0.718426i
\(945\) 1.18675 2.70524i 0.0386051 0.0880013i
\(946\) 0.588220 0.588220i 0.0191247 0.0191247i
\(947\) 2.52289 2.52289i 0.0819830 0.0819830i −0.664926 0.746909i \(-0.731537\pi\)
0.746909 + 0.664926i \(0.231537\pi\)
\(948\) 47.6506i 1.54762i
\(949\) −35.0337 35.0337i −1.13724 1.13724i
\(950\) 3.41974 3.14759i 0.110951 0.102121i
\(951\) −10.1022 −0.327586
\(952\) 7.30334 + 2.76783i 0.236703 + 0.0897059i
\(953\) 53.8491i 1.74434i 0.489200 + 0.872172i \(0.337289\pi\)
−0.489200 + 0.872172i \(0.662711\pi\)
\(954\) 3.90564i 0.126450i
\(955\) −10.8960 4.77995i −0.352587 0.154676i
\(956\) 18.6306 0.602555
\(957\) −0.842384 + 0.842384i −0.0272304 + 0.0272304i
\(958\) 0.323145 + 0.323145i 0.0104403 + 0.0104403i
\(959\) −0.769556 + 0.769556i −0.0248503 + 0.0248503i
\(960\) −33.5819 + 13.1022i −1.08385 + 0.422871i
\(961\) 5.72998i 0.184838i
\(962\) −0.867484 0.867484i −0.0279688 0.0279688i
\(963\) −10.0703 10.0703i −0.324510 0.324510i
\(964\) −11.6760 11.6760i −0.376058 0.376058i
\(965\) −10.1447 26.0016i −0.326569 0.837021i
\(966\) −6.62488 6.62488i −0.213152 0.213152i
\(967\) 14.6688 0.471716 0.235858 0.971788i \(-0.424210\pi\)
0.235858 + 0.971788i \(0.424210\pi\)
\(968\) 9.87576i 0.317419i
\(969\) −36.9257 13.9942i −1.18623 0.449557i
\(970\) −8.09358 + 3.15776i −0.259869 + 0.101389i
\(971\) 14.2468i 0.457203i 0.973520 + 0.228602i \(0.0734153\pi\)
−0.973520 + 0.228602i \(0.926585\pi\)
\(972\) −29.4171 + 29.4171i −0.943553 + 0.943553i
\(973\) 36.5125i 1.17054i
\(974\) −0.794499 0.794499i −0.0254574 0.0254574i
\(975\) −2.01778 + 48.6919i −0.0646206 + 1.55939i
\(976\) −14.7156 + 14.7156i −0.471033 + 0.471033i
\(977\) −20.9141 −0.669103 −0.334551 0.942378i \(-0.608585\pi\)
−0.334551 + 0.942378i \(0.608585\pi\)
\(978\) −4.76722 −0.152439
\(979\) 3.18134 3.18134i 0.101676 0.101676i
\(980\) −4.77733 + 10.8900i −0.152606 + 0.347870i
\(981\) 15.6674 + 15.6674i 0.500221 + 0.500221i
\(982\) 3.92620i 0.125290i
\(983\) 12.3036 12.3036i 0.392425 0.392425i −0.483126 0.875551i \(-0.660499\pi\)
0.875551 + 0.483126i \(0.160499\pi\)
\(984\) 23.6760i 0.754762i
\(985\) 0.448443 + 1.14940i 0.0142886 + 0.0366228i
\(986\) 0.928654 + 0.351942i 0.0295744 + 0.0112081i
\(987\) 17.8350i 0.567696i
\(988\) 31.6865 1.00808
\(989\) −42.9797 42.9797i −1.36668 1.36668i
\(990\) −0.247786 0.635095i −0.00787515 0.0201846i
\(991\) 3.73190 + 3.73190i 0.118548 + 0.118548i 0.763892 0.645344i \(-0.223286\pi\)
−0.645344 + 0.763892i \(0.723286\pi\)
\(992\) 11.5233 + 11.5233i 0.365866 + 0.365866i
\(993\) 23.1542 + 23.1542i 0.734777 + 0.734777i
\(994\) 0.872669i 0.0276794i
\(995\) −14.3037 36.6615i −0.453458 1.16225i
\(996\) 7.36928 7.36928i 0.233505 0.233505i
\(997\) −18.1295 18.1295i −0.574167 0.574167i 0.359123 0.933290i \(-0.383076\pi\)
−0.933290 + 0.359123i \(0.883076\pi\)
\(998\) −0.713978 + 0.713978i −0.0226006 + 0.0226006i
\(999\) 0.829394 0.0262409
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.j.c.64.3 yes 12
3.2 odd 2 765.2.t.e.64.4 12
5.2 odd 4 425.2.e.d.251.3 12
5.3 odd 4 425.2.e.d.251.4 12
5.4 even 2 inner 85.2.j.c.64.4 yes 12
15.14 odd 2 765.2.t.e.64.3 12
17.2 even 8 1445.2.b.f.579.5 12
17.4 even 4 inner 85.2.j.c.4.4 yes 12
17.15 even 8 1445.2.b.f.579.6 12
51.38 odd 4 765.2.t.e.514.3 12
85.2 odd 8 7225.2.a.bp.1.7 12
85.4 even 4 inner 85.2.j.c.4.3 12
85.19 even 8 1445.2.b.f.579.8 12
85.32 odd 8 7225.2.a.bp.1.8 12
85.38 odd 4 425.2.e.d.276.3 12
85.49 even 8 1445.2.b.f.579.7 12
85.53 odd 8 7225.2.a.bp.1.6 12
85.72 odd 4 425.2.e.d.276.4 12
85.83 odd 8 7225.2.a.bp.1.5 12
255.89 odd 4 765.2.t.e.514.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.c.4.3 12 85.4 even 4 inner
85.2.j.c.4.4 yes 12 17.4 even 4 inner
85.2.j.c.64.3 yes 12 1.1 even 1 trivial
85.2.j.c.64.4 yes 12 5.4 even 2 inner
425.2.e.d.251.3 12 5.2 odd 4
425.2.e.d.251.4 12 5.3 odd 4
425.2.e.d.276.3 12 85.38 odd 4
425.2.e.d.276.4 12 85.72 odd 4
765.2.t.e.64.3 12 15.14 odd 2
765.2.t.e.64.4 12 3.2 odd 2
765.2.t.e.514.3 12 51.38 odd 4
765.2.t.e.514.4 12 255.89 odd 4
1445.2.b.f.579.5 12 17.2 even 8
1445.2.b.f.579.6 12 17.15 even 8
1445.2.b.f.579.7 12 85.49 even 8
1445.2.b.f.579.8 12 85.19 even 8
7225.2.a.bp.1.5 12 85.83 odd 8
7225.2.a.bp.1.6 12 85.53 odd 8
7225.2.a.bp.1.7 12 85.2 odd 8
7225.2.a.bp.1.8 12 85.32 odd 8