Defining parameters
Level: | \( N \) | \(=\) | \( 85 = 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 85.j (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 85 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(18\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(85, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 24 | 0 |
Cusp forms | 16 | 16 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(85, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
85.2.j.a | $2$ | $0.679$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(-2\) | \(-4\) | \(-6\) | \(q-q^{2}+(i-1)q^{3}-q^{4}+(-i-2)q^{5}+\cdots\) |
85.2.j.b | $2$ | $0.679$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(2\) | \(-2\) | \(6\) | \(q+q^{2}+(-i+1)q^{3}-q^{4}+(-2 i-1)q^{5}+\cdots\) |
85.2.j.c | $12$ | $0.679$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{2}+(-\beta _{2}-\beta _{5}+\beta _{7})q^{3}+(1+\cdots)q^{4}+\cdots\) |