Properties

Label 85.2.e.a.81.5
Level $85$
Weight $2$
Character 85.81
Analytic conductor $0.679$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,2,Mod(21,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.21");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 83x^{8} + 152x^{6} + 111x^{4} + 22x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 81.5
Root \(0.455023i\) of defining polynomial
Character \(\chi\) \(=\) 85.81
Dual form 85.2.e.a.21.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.783476i q^{2} +(0.385357 + 0.385357i) q^{3} +1.38617 q^{4} +(-0.707107 - 0.707107i) q^{5} +(-0.301918 + 0.301918i) q^{6} +(-0.840380 + 0.840380i) q^{7} +2.65298i q^{8} -2.70300i q^{9} +(0.554001 - 0.554001i) q^{10} +(-1.80608 + 1.80608i) q^{11} +(0.534168 + 0.534168i) q^{12} -0.368117 q^{13} +(-0.658417 - 0.658417i) q^{14} -0.544977i q^{15} +0.693788 q^{16} +(-2.46531 - 3.30488i) q^{17} +2.11773 q^{18} -6.61138i q^{19} +(-0.980167 - 0.980167i) q^{20} -0.647692 q^{21} +(-1.41502 - 1.41502i) q^{22} +(-2.73186 + 2.73186i) q^{23} +(-1.02234 + 1.02234i) q^{24} +1.00000i q^{25} -0.288411i q^{26} +(2.19769 - 2.19769i) q^{27} +(-1.16491 + 1.16491i) q^{28} +(-1.63466 - 1.63466i) q^{29} +0.426976 q^{30} +(4.68480 + 4.68480i) q^{31} +5.84952i q^{32} -1.39197 q^{33} +(2.58929 - 1.93151i) q^{34} +1.18848 q^{35} -3.74681i q^{36} +(2.24619 + 2.24619i) q^{37} +5.17986 q^{38} +(-0.141856 - 0.141856i) q^{39} +(1.87594 - 1.87594i) q^{40} +(-5.16572 + 5.16572i) q^{41} -0.507451i q^{42} +6.82350i q^{43} +(-2.50353 + 2.50353i) q^{44} +(-1.91131 + 1.91131i) q^{45} +(-2.14034 - 2.14034i) q^{46} +7.80793 q^{47} +(0.267356 + 0.267356i) q^{48} +5.58752i q^{49} -0.783476 q^{50} +(0.323534 - 2.22358i) q^{51} -0.510272 q^{52} -8.01219i q^{53} +(1.72184 + 1.72184i) q^{54} +2.55419 q^{55} +(-2.22951 - 2.22951i) q^{56} +(2.54774 - 2.54774i) q^{57} +(1.28072 - 1.28072i) q^{58} +5.22381i q^{59} -0.755428i q^{60} +(5.74267 - 5.74267i) q^{61} +(-3.67043 + 3.67043i) q^{62} +(2.27155 + 2.27155i) q^{63} -3.19538 q^{64} +(0.260298 + 0.260298i) q^{65} -1.09058i q^{66} -7.94564 q^{67} +(-3.41733 - 4.58111i) q^{68} -2.10548 q^{69} +0.931143i q^{70} +(8.40610 + 8.40610i) q^{71} +7.17100 q^{72} +(-10.4176 - 10.4176i) q^{73} +(-1.75984 + 1.75984i) q^{74} +(-0.385357 + 0.385357i) q^{75} -9.16447i q^{76} -3.03559i q^{77} +(0.111141 - 0.111141i) q^{78} +(0.575011 - 0.575011i) q^{79} +(-0.490582 - 0.490582i) q^{80} -6.41521 q^{81} +(-4.04721 - 4.04721i) q^{82} -3.99116i q^{83} -0.897809 q^{84} +(-0.593666 + 4.08014i) q^{85} -5.34604 q^{86} -1.25986i q^{87} +(-4.79150 - 4.79150i) q^{88} +9.14311 q^{89} +(-1.49746 - 1.49746i) q^{90} +(0.309359 - 0.309359i) q^{91} +(-3.78681 + 3.78681i) q^{92} +3.61064i q^{93} +6.11732i q^{94} +(-4.67495 + 4.67495i) q^{95} +(-2.25415 + 2.25415i) q^{96} +(-4.99529 - 4.99529i) q^{97} -4.37769 q^{98} +(4.88185 + 4.88185i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} - 12 q^{4} - 4 q^{10} - 4 q^{11} - 8 q^{12} - 4 q^{14} + 4 q^{16} + 12 q^{17} + 28 q^{18} - 8 q^{20} - 16 q^{21} + 20 q^{22} + 12 q^{23} + 4 q^{24} - 4 q^{27} + 4 q^{28} - 12 q^{29} - 8 q^{30}+ \cdots + 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/85\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.783476i 0.554001i 0.960870 + 0.277000i \(0.0893404\pi\)
−0.960870 + 0.277000i \(0.910660\pi\)
\(3\) 0.385357 + 0.385357i 0.222486 + 0.222486i 0.809544 0.587059i \(-0.199714\pi\)
−0.587059 + 0.809544i \(0.699714\pi\)
\(4\) 1.38617 0.693083
\(5\) −0.707107 0.707107i −0.316228 0.316228i
\(6\) −0.301918 + 0.301918i −0.123257 + 0.123257i
\(7\) −0.840380 + 0.840380i −0.317634 + 0.317634i −0.847858 0.530224i \(-0.822108\pi\)
0.530224 + 0.847858i \(0.322108\pi\)
\(8\) 2.65298i 0.937970i
\(9\) 2.70300i 0.901000i
\(10\) 0.554001 0.554001i 0.175190 0.175190i
\(11\) −1.80608 + 1.80608i −0.544555 + 0.544555i −0.924861 0.380306i \(-0.875819\pi\)
0.380306 + 0.924861i \(0.375819\pi\)
\(12\) 0.534168 + 0.534168i 0.154201 + 0.154201i
\(13\) −0.368117 −0.102097 −0.0510487 0.998696i \(-0.516256\pi\)
−0.0510487 + 0.998696i \(0.516256\pi\)
\(14\) −0.658417 0.658417i −0.175969 0.175969i
\(15\) 0.544977i 0.140712i
\(16\) 0.693788 0.173447
\(17\) −2.46531 3.30488i −0.597926 0.801552i
\(18\) 2.11773 0.499155
\(19\) 6.61138i 1.51676i −0.651816 0.758378i \(-0.725992\pi\)
0.651816 0.758378i \(-0.274008\pi\)
\(20\) −0.980167 0.980167i −0.219172 0.219172i
\(21\) −0.647692 −0.141338
\(22\) −1.41502 1.41502i −0.301684 0.301684i
\(23\) −2.73186 + 2.73186i −0.569632 + 0.569632i −0.932025 0.362394i \(-0.881960\pi\)
0.362394 + 0.932025i \(0.381960\pi\)
\(24\) −1.02234 + 1.02234i −0.208685 + 0.208685i
\(25\) 1.00000i 0.200000i
\(26\) 0.288411i 0.0565621i
\(27\) 2.19769 2.19769i 0.422945 0.422945i
\(28\) −1.16491 + 1.16491i −0.220147 + 0.220147i
\(29\) −1.63466 1.63466i −0.303549 0.303549i 0.538851 0.842401i \(-0.318858\pi\)
−0.842401 + 0.538851i \(0.818858\pi\)
\(30\) 0.426976 0.0779548
\(31\) 4.68480 + 4.68480i 0.841415 + 0.841415i 0.989043 0.147628i \(-0.0471639\pi\)
−0.147628 + 0.989043i \(0.547164\pi\)
\(32\) 5.84952i 1.03406i
\(33\) −1.39197 −0.242311
\(34\) 2.58929 1.93151i 0.444060 0.331251i
\(35\) 1.18848 0.200889
\(36\) 3.74681i 0.624468i
\(37\) 2.24619 + 2.24619i 0.369271 + 0.369271i 0.867211 0.497940i \(-0.165910\pi\)
−0.497940 + 0.867211i \(0.665910\pi\)
\(38\) 5.17986 0.840284
\(39\) −0.141856 0.141856i −0.0227152 0.0227152i
\(40\) 1.87594 1.87594i 0.296612 0.296612i
\(41\) −5.16572 + 5.16572i −0.806749 + 0.806749i −0.984140 0.177391i \(-0.943234\pi\)
0.177391 + 0.984140i \(0.443234\pi\)
\(42\) 0.507451i 0.0783014i
\(43\) 6.82350i 1.04057i 0.853992 + 0.520287i \(0.174175\pi\)
−0.853992 + 0.520287i \(0.825825\pi\)
\(44\) −2.50353 + 2.50353i −0.377422 + 0.377422i
\(45\) −1.91131 + 1.91131i −0.284921 + 0.284921i
\(46\) −2.14034 2.14034i −0.315576 0.315576i
\(47\) 7.80793 1.13890 0.569452 0.822025i \(-0.307156\pi\)
0.569452 + 0.822025i \(0.307156\pi\)
\(48\) 0.267356 + 0.267356i 0.0385895 + 0.0385895i
\(49\) 5.58752i 0.798218i
\(50\) −0.783476 −0.110800
\(51\) 0.323534 2.22358i 0.0453038 0.311364i
\(52\) −0.510272 −0.0707620
\(53\) 8.01219i 1.10056i −0.834980 0.550280i \(-0.814521\pi\)
0.834980 0.550280i \(-0.185479\pi\)
\(54\) 1.72184 + 1.72184i 0.234312 + 0.234312i
\(55\) 2.55419 0.344407
\(56\) −2.22951 2.22951i −0.297931 0.297931i
\(57\) 2.54774 2.54774i 0.337456 0.337456i
\(58\) 1.28072 1.28072i 0.168167 0.168167i
\(59\) 5.22381i 0.680082i 0.940411 + 0.340041i \(0.110441\pi\)
−0.940411 + 0.340041i \(0.889559\pi\)
\(60\) 0.755428i 0.0975253i
\(61\) 5.74267 5.74267i 0.735273 0.735273i −0.236386 0.971659i \(-0.575963\pi\)
0.971659 + 0.236386i \(0.0759630\pi\)
\(62\) −3.67043 + 3.67043i −0.466145 + 0.466145i
\(63\) 2.27155 + 2.27155i 0.286188 + 0.286188i
\(64\) −3.19538 −0.399423
\(65\) 0.260298 + 0.260298i 0.0322860 + 0.0322860i
\(66\) 1.09058i 0.134241i
\(67\) −7.94564 −0.970715 −0.485357 0.874316i \(-0.661310\pi\)
−0.485357 + 0.874316i \(0.661310\pi\)
\(68\) −3.41733 4.58111i −0.414412 0.555542i
\(69\) −2.10548 −0.253470
\(70\) 0.931143i 0.111293i
\(71\) 8.40610 + 8.40610i 0.997621 + 0.997621i 0.999997 0.00237624i \(-0.000756380\pi\)
−0.00237624 + 0.999997i \(0.500756\pi\)
\(72\) 7.17100 0.845111
\(73\) −10.4176 10.4176i −1.21929 1.21929i −0.967881 0.251409i \(-0.919106\pi\)
−0.251409 0.967881i \(-0.580894\pi\)
\(74\) −1.75984 + 1.75984i −0.204577 + 0.204577i
\(75\) −0.385357 + 0.385357i −0.0444972 + 0.0444972i
\(76\) 9.16447i 1.05124i
\(77\) 3.03559i 0.345938i
\(78\) 0.111141 0.111141i 0.0125843 0.0125843i
\(79\) 0.575011 0.575011i 0.0646938 0.0646938i −0.674020 0.738713i \(-0.735434\pi\)
0.738713 + 0.674020i \(0.235434\pi\)
\(80\) −0.490582 0.490582i −0.0548488 0.0548488i
\(81\) −6.41521 −0.712801
\(82\) −4.04721 4.04721i −0.446940 0.446940i
\(83\) 3.99116i 0.438087i −0.975715 0.219044i \(-0.929706\pi\)
0.975715 0.219044i \(-0.0702937\pi\)
\(84\) −0.897809 −0.0979590
\(85\) −0.593666 + 4.08014i −0.0643921 + 0.442554i
\(86\) −5.34604 −0.576479
\(87\) 1.25986i 0.135071i
\(88\) −4.79150 4.79150i −0.510776 0.510776i
\(89\) 9.14311 0.969168 0.484584 0.874745i \(-0.338971\pi\)
0.484584 + 0.874745i \(0.338971\pi\)
\(90\) −1.49746 1.49746i −0.157847 0.157847i
\(91\) 0.309359 0.309359i 0.0324296 0.0324296i
\(92\) −3.78681 + 3.78681i −0.394802 + 0.394802i
\(93\) 3.61064i 0.374406i
\(94\) 6.11732i 0.630953i
\(95\) −4.67495 + 4.67495i −0.479640 + 0.479640i
\(96\) −2.25415 + 2.25415i −0.230063 + 0.230063i
\(97\) −4.99529 4.99529i −0.507195 0.507195i 0.406470 0.913664i \(-0.366760\pi\)
−0.913664 + 0.406470i \(0.866760\pi\)
\(98\) −4.37769 −0.442213
\(99\) 4.88185 + 4.88185i 0.490644 + 0.490644i
\(100\) 1.38617i 0.138617i
\(101\) 0.296263 0.0294793 0.0147396 0.999891i \(-0.495308\pi\)
0.0147396 + 0.999891i \(0.495308\pi\)
\(102\) 1.74212 + 0.253481i 0.172496 + 0.0250984i
\(103\) 17.0372 1.67873 0.839363 0.543571i \(-0.182928\pi\)
0.839363 + 0.543571i \(0.182928\pi\)
\(104\) 0.976608i 0.0957642i
\(105\) 0.457987 + 0.457987i 0.0446950 + 0.0446950i
\(106\) 6.27736 0.609711
\(107\) −2.69319 2.69319i −0.260360 0.260360i 0.564840 0.825200i \(-0.308938\pi\)
−0.825200 + 0.564840i \(0.808938\pi\)
\(108\) 3.04636 3.04636i 0.293136 0.293136i
\(109\) −8.51171 + 8.51171i −0.815274 + 0.815274i −0.985419 0.170145i \(-0.945576\pi\)
0.170145 + 0.985419i \(0.445576\pi\)
\(110\) 2.00114i 0.190802i
\(111\) 1.73117i 0.164315i
\(112\) −0.583046 + 0.583046i −0.0550926 + 0.0550926i
\(113\) 11.6545 11.6545i 1.09636 1.09636i 0.101526 0.994833i \(-0.467628\pi\)
0.994833 0.101526i \(-0.0323724\pi\)
\(114\) 1.99609 + 1.99609i 0.186951 + 0.186951i
\(115\) 3.86343 0.360267
\(116\) −2.26592 2.26592i −0.210385 0.210385i
\(117\) 0.995022i 0.0919898i
\(118\) −4.09272 −0.376766
\(119\) 4.84915 + 0.705558i 0.444521 + 0.0646784i
\(120\) 1.44581 0.131984
\(121\) 4.47612i 0.406920i
\(122\) 4.49924 + 4.49924i 0.407342 + 0.407342i
\(123\) −3.98129 −0.358980
\(124\) 6.49391 + 6.49391i 0.583170 + 0.583170i
\(125\) 0.707107 0.707107i 0.0632456 0.0632456i
\(126\) −1.77970 + 1.77970i −0.158548 + 0.158548i
\(127\) 4.48798i 0.398244i −0.979975 0.199122i \(-0.936191\pi\)
0.979975 0.199122i \(-0.0638090\pi\)
\(128\) 9.19554i 0.812779i
\(129\) −2.62948 + 2.62948i −0.231513 + 0.231513i
\(130\) −0.203937 + 0.203937i −0.0178865 + 0.0178865i
\(131\) −6.60646 6.60646i −0.577209 0.577209i 0.356924 0.934133i \(-0.383826\pi\)
−0.934133 + 0.356924i \(0.883826\pi\)
\(132\) −1.92951 −0.167942
\(133\) 5.55607 + 5.55607i 0.481773 + 0.481773i
\(134\) 6.22522i 0.537777i
\(135\) −3.10800 −0.267494
\(136\) 8.76778 6.54042i 0.751831 0.560836i
\(137\) 8.47822 0.724344 0.362172 0.932111i \(-0.382035\pi\)
0.362172 + 0.932111i \(0.382035\pi\)
\(138\) 1.64959i 0.140423i
\(139\) −4.24761 4.24761i −0.360277 0.360277i 0.503638 0.863915i \(-0.331995\pi\)
−0.863915 + 0.503638i \(0.831995\pi\)
\(140\) 1.64743 0.139233
\(141\) 3.00884 + 3.00884i 0.253390 + 0.253390i
\(142\) −6.58598 + 6.58598i −0.552683 + 0.552683i
\(143\) 0.664851 0.664851i 0.0555976 0.0555976i
\(144\) 1.87531i 0.156276i
\(145\) 2.31176i 0.191982i
\(146\) 8.16195 8.16195i 0.675488 0.675488i
\(147\) −2.15319 + 2.15319i −0.177592 + 0.177592i
\(148\) 3.11359 + 3.11359i 0.255936 + 0.255936i
\(149\) 9.11821 0.746993 0.373497 0.927632i \(-0.378159\pi\)
0.373497 + 0.927632i \(0.378159\pi\)
\(150\) −0.301918 0.301918i −0.0246515 0.0246515i
\(151\) 13.1144i 1.06724i 0.845725 + 0.533619i \(0.179168\pi\)
−0.845725 + 0.533619i \(0.820832\pi\)
\(152\) 17.5399 1.42267
\(153\) −8.93310 + 6.66374i −0.722198 + 0.538731i
\(154\) 2.37831 0.191650
\(155\) 6.62531i 0.532157i
\(156\) −0.196637 0.196637i −0.0157435 0.0157435i
\(157\) −20.0496 −1.60013 −0.800065 0.599913i \(-0.795202\pi\)
−0.800065 + 0.599913i \(0.795202\pi\)
\(158\) 0.450507 + 0.450507i 0.0358404 + 0.0358404i
\(159\) 3.08755 3.08755i 0.244859 0.244859i
\(160\) 4.13624 4.13624i 0.326998 0.326998i
\(161\) 4.59160i 0.361869i
\(162\) 5.02616i 0.394893i
\(163\) −10.0910 + 10.0910i −0.790386 + 0.790386i −0.981557 0.191170i \(-0.938772\pi\)
0.191170 + 0.981557i \(0.438772\pi\)
\(164\) −7.16054 + 7.16054i −0.559144 + 0.559144i
\(165\) 0.984274 + 0.984274i 0.0766256 + 0.0766256i
\(166\) 3.12698 0.242701
\(167\) −0.157215 0.157215i −0.0121656 0.0121656i 0.700998 0.713163i \(-0.252738\pi\)
−0.713163 + 0.700998i \(0.752738\pi\)
\(168\) 1.71831i 0.132571i
\(169\) −12.8645 −0.989576
\(170\) −3.19669 0.465123i −0.245175 0.0356733i
\(171\) −17.8706 −1.36660
\(172\) 9.45850i 0.721204i
\(173\) −14.1383 14.1383i −1.07492 1.07492i −0.996957 0.0779592i \(-0.975160\pi\)
−0.0779592 0.996957i \(-0.524840\pi\)
\(174\) 0.987067 0.0748294
\(175\) −0.840380 0.840380i −0.0635268 0.0635268i
\(176\) −1.25304 + 1.25304i −0.0944514 + 0.0944514i
\(177\) −2.01303 + 2.01303i −0.151308 + 0.151308i
\(178\) 7.16341i 0.536920i
\(179\) 24.3120i 1.81716i −0.417708 0.908581i \(-0.637166\pi\)
0.417708 0.908581i \(-0.362834\pi\)
\(180\) −2.64939 + 2.64939i −0.197474 + 0.197474i
\(181\) 8.40507 8.40507i 0.624744 0.624744i −0.321997 0.946741i \(-0.604354\pi\)
0.946741 + 0.321997i \(0.104354\pi\)
\(182\) 0.242375 + 0.242375i 0.0179660 + 0.0179660i
\(183\) 4.42595 0.327176
\(184\) −7.24756 7.24756i −0.534297 0.534297i
\(185\) 3.17659i 0.233548i
\(186\) −2.82885 −0.207421
\(187\) 10.4215 + 1.51634i 0.762092 + 0.110885i
\(188\) 10.8231 0.789354
\(189\) 3.69379i 0.268684i
\(190\) −3.66271 3.66271i −0.265721 0.265721i
\(191\) −17.2930 −1.25128 −0.625638 0.780114i \(-0.715161\pi\)
−0.625638 + 0.780114i \(0.715161\pi\)
\(192\) −1.23136 1.23136i −0.0888659 0.0888659i
\(193\) 1.27952 1.27952i 0.0921022 0.0921022i −0.659555 0.751657i \(-0.729255\pi\)
0.751657 + 0.659555i \(0.229255\pi\)
\(194\) 3.91369 3.91369i 0.280986 0.280986i
\(195\) 0.200615i 0.0143664i
\(196\) 7.74523i 0.553231i
\(197\) 11.7227 11.7227i 0.835207 0.835207i −0.153017 0.988224i \(-0.548899\pi\)
0.988224 + 0.153017i \(0.0488989\pi\)
\(198\) −3.82481 + 3.82481i −0.271817 + 0.271817i
\(199\) −17.7915 17.7915i −1.26121 1.26121i −0.950509 0.310698i \(-0.899437\pi\)
−0.310698 0.950509i \(-0.600563\pi\)
\(200\) −2.65298 −0.187594
\(201\) −3.06191 3.06191i −0.215970 0.215970i
\(202\) 0.232115i 0.0163315i
\(203\) 2.74748 0.192835
\(204\) 0.448472 3.08225i 0.0313993 0.215801i
\(205\) 7.30543 0.510233
\(206\) 13.3482i 0.930016i
\(207\) 7.38421 + 7.38421i 0.513238 + 0.513238i
\(208\) −0.255396 −0.0177085
\(209\) 11.9407 + 11.9407i 0.825956 + 0.825956i
\(210\) −0.358822 + 0.358822i −0.0247611 + 0.0247611i
\(211\) 5.94554 5.94554i 0.409308 0.409308i −0.472189 0.881497i \(-0.656536\pi\)
0.881497 + 0.472189i \(0.156536\pi\)
\(212\) 11.1062i 0.762779i
\(213\) 6.47870i 0.443913i
\(214\) 2.11005 2.11005i 0.144240 0.144240i
\(215\) 4.82494 4.82494i 0.329058 0.329058i
\(216\) 5.83042 + 5.83042i 0.396710 + 0.396710i
\(217\) −7.87402 −0.534524
\(218\) −6.66872 6.66872i −0.451663 0.451663i
\(219\) 8.02900i 0.542549i
\(220\) 3.54053 0.238702
\(221\) 0.907524 + 1.21658i 0.0610467 + 0.0818363i
\(222\) −1.35633 −0.0910308
\(223\) 16.5499i 1.10826i 0.832429 + 0.554132i \(0.186950\pi\)
−0.832429 + 0.554132i \(0.813050\pi\)
\(224\) −4.91582 4.91582i −0.328452 0.328452i
\(225\) 2.70300 0.180200
\(226\) 9.13098 + 9.13098i 0.607384 + 0.607384i
\(227\) −5.03248 + 5.03248i −0.334017 + 0.334017i −0.854110 0.520093i \(-0.825897\pi\)
0.520093 + 0.854110i \(0.325897\pi\)
\(228\) 3.53159 3.53159i 0.233885 0.233885i
\(229\) 1.46774i 0.0969907i −0.998823 0.0484953i \(-0.984557\pi\)
0.998823 0.0484953i \(-0.0154426\pi\)
\(230\) 3.02690i 0.199588i
\(231\) 1.16979 1.16979i 0.0769663 0.0769663i
\(232\) 4.33673 4.33673i 0.284720 0.284720i
\(233\) 16.3810 + 16.3810i 1.07316 + 1.07316i 0.997104 + 0.0760541i \(0.0242322\pi\)
0.0760541 + 0.997104i \(0.475768\pi\)
\(234\) −0.779575 −0.0509624
\(235\) −5.52104 5.52104i −0.360153 0.360153i
\(236\) 7.24106i 0.471353i
\(237\) 0.443169 0.0287869
\(238\) −0.552788 + 3.79919i −0.0358319 + 0.246265i
\(239\) −6.43252 −0.416085 −0.208042 0.978120i \(-0.566709\pi\)
−0.208042 + 0.978120i \(0.566709\pi\)
\(240\) 0.378098i 0.0244061i
\(241\) 19.3719 + 19.3719i 1.24785 + 1.24785i 0.956667 + 0.291183i \(0.0940490\pi\)
0.291183 + 0.956667i \(0.405951\pi\)
\(242\) −3.50693 −0.225434
\(243\) −9.06521 9.06521i −0.581534 0.581534i
\(244\) 7.96029 7.96029i 0.509605 0.509605i
\(245\) 3.95098 3.95098i 0.252419 0.252419i
\(246\) 3.11924i 0.198875i
\(247\) 2.43376i 0.154857i
\(248\) −12.4287 + 12.4287i −0.789221 + 0.789221i
\(249\) 1.53802 1.53802i 0.0974681 0.0974681i
\(250\) 0.554001 + 0.554001i 0.0350381 + 0.0350381i
\(251\) 0.234413 0.0147960 0.00739800 0.999973i \(-0.497645\pi\)
0.00739800 + 0.999973i \(0.497645\pi\)
\(252\) 3.14874 + 3.14874i 0.198352 + 0.198352i
\(253\) 9.86793i 0.620391i
\(254\) 3.51623 0.220628
\(255\) −1.80108 + 1.34354i −0.112788 + 0.0841355i
\(256\) −13.5952 −0.849703
\(257\) 3.56040i 0.222092i 0.993815 + 0.111046i \(0.0354201\pi\)
−0.993815 + 0.111046i \(0.964580\pi\)
\(258\) −2.06013 2.06013i −0.128258 0.128258i
\(259\) −3.77531 −0.234586
\(260\) 0.360817 + 0.360817i 0.0223769 + 0.0223769i
\(261\) −4.41850 + 4.41850i −0.273498 + 0.273498i
\(262\) 5.17600 5.17600i 0.319775 0.319775i
\(263\) 30.0000i 1.84988i 0.380112 + 0.924940i \(0.375885\pi\)
−0.380112 + 0.924940i \(0.624115\pi\)
\(264\) 3.69287i 0.227281i
\(265\) −5.66547 + 5.66547i −0.348027 + 0.348027i
\(266\) −4.35305 + 4.35305i −0.266902 + 0.266902i
\(267\) 3.52336 + 3.52336i 0.215626 + 0.215626i
\(268\) −11.0140 −0.672786
\(269\) −0.268165 0.268165i −0.0163503 0.0163503i 0.698884 0.715235i \(-0.253680\pi\)
−0.715235 + 0.698884i \(0.753680\pi\)
\(270\) 2.43504i 0.148192i
\(271\) 10.6144 0.644780 0.322390 0.946607i \(-0.395514\pi\)
0.322390 + 0.946607i \(0.395514\pi\)
\(272\) −1.71040 2.29289i −0.103708 0.139027i
\(273\) 0.238427 0.0144302
\(274\) 6.64248i 0.401287i
\(275\) −1.80608 1.80608i −0.108911 0.108911i
\(276\) −2.91854 −0.175676
\(277\) 21.5614 + 21.5614i 1.29550 + 1.29550i 0.931334 + 0.364167i \(0.118646\pi\)
0.364167 + 0.931334i \(0.381354\pi\)
\(278\) 3.32790 3.32790i 0.199594 0.199594i
\(279\) 12.6630 12.6630i 0.758115 0.758115i
\(280\) 3.15300i 0.188428i
\(281\) 26.4402i 1.57729i −0.614849 0.788645i \(-0.710783\pi\)
0.614849 0.788645i \(-0.289217\pi\)
\(282\) −2.35735 + 2.35735i −0.140378 + 0.140378i
\(283\) 13.1353 13.1353i 0.780813 0.780813i −0.199155 0.979968i \(-0.563820\pi\)
0.979968 + 0.199155i \(0.0638198\pi\)
\(284\) 11.6523 + 11.6523i 0.691434 + 0.691434i
\(285\) −3.60305 −0.213426
\(286\) 0.520895 + 0.520895i 0.0308011 + 0.0308011i
\(287\) 8.68233i 0.512502i
\(288\) 15.8113 0.931688
\(289\) −4.84448 + 16.2951i −0.284970 + 0.958537i
\(290\) −1.81121 −0.106358
\(291\) 3.84993i 0.225687i
\(292\) −14.4405 14.4405i −0.845069 0.845069i
\(293\) 3.59958 0.210289 0.105145 0.994457i \(-0.466469\pi\)
0.105145 + 0.994457i \(0.466469\pi\)
\(294\) −1.68697 1.68697i −0.0983861 0.0983861i
\(295\) 3.69379 3.69379i 0.215061 0.215061i
\(296\) −5.95910 + 5.95910i −0.346365 + 0.346365i
\(297\) 7.93842i 0.460634i
\(298\) 7.14390i 0.413835i
\(299\) 1.00564 1.00564i 0.0581579 0.0581579i
\(300\) −0.534168 + 0.534168i −0.0308402 + 0.0308402i
\(301\) −5.73433 5.73433i −0.330521 0.330521i
\(302\) −10.2748 −0.591251
\(303\) 0.114167 + 0.114167i 0.00655872 + 0.00655872i
\(304\) 4.58690i 0.263077i
\(305\) −8.12136 −0.465027
\(306\) −5.22087 6.99886i −0.298458 0.400098i
\(307\) −33.4128 −1.90697 −0.953486 0.301438i \(-0.902533\pi\)
−0.953486 + 0.301438i \(0.902533\pi\)
\(308\) 4.20784i 0.239764i
\(309\) 6.56540 + 6.56540i 0.373493 + 0.373493i
\(310\) 5.19077 0.294816
\(311\) 9.75529 + 9.75529i 0.553172 + 0.553172i 0.927355 0.374183i \(-0.122077\pi\)
−0.374183 + 0.927355i \(0.622077\pi\)
\(312\) 0.376342 0.376342i 0.0213062 0.0213062i
\(313\) 21.6164 21.6164i 1.22183 1.22183i 0.254853 0.966980i \(-0.417973\pi\)
0.966980 0.254853i \(-0.0820271\pi\)
\(314\) 15.7084i 0.886473i
\(315\) 3.21245i 0.181001i
\(316\) 0.797061 0.797061i 0.0448382 0.0448382i
\(317\) −2.27476 + 2.27476i −0.127763 + 0.127763i −0.768097 0.640334i \(-0.778796\pi\)
0.640334 + 0.768097i \(0.278796\pi\)
\(318\) 2.41902 + 2.41902i 0.135652 + 0.135652i
\(319\) 5.90468 0.330599
\(320\) 2.25948 + 2.25948i 0.126309 + 0.126309i
\(321\) 2.07568i 0.115853i
\(322\) 3.59740 0.200475
\(323\) −21.8498 + 16.2991i −1.21576 + 0.906907i
\(324\) −8.89255 −0.494031
\(325\) 0.368117i 0.0204195i
\(326\) −7.90604 7.90604i −0.437875 0.437875i
\(327\) −6.56009 −0.362774
\(328\) −13.7045 13.7045i −0.756706 0.756706i
\(329\) −6.56163 + 6.56163i −0.361754 + 0.361754i
\(330\) −0.771154 + 0.771154i −0.0424507 + 0.0424507i
\(331\) 29.7637i 1.63596i −0.575246 0.817981i \(-0.695094\pi\)
0.575246 0.817981i \(-0.304906\pi\)
\(332\) 5.53242i 0.303631i
\(333\) 6.07145 6.07145i 0.332714 0.332714i
\(334\) 0.123174 0.123174i 0.00673977 0.00673977i
\(335\) 5.61842 + 5.61842i 0.306967 + 0.306967i
\(336\) −0.449361 −0.0245147
\(337\) 7.58826 + 7.58826i 0.413359 + 0.413359i 0.882907 0.469548i \(-0.155583\pi\)
−0.469548 + 0.882907i \(0.655583\pi\)
\(338\) 10.0790i 0.548226i
\(339\) 8.98224 0.487848
\(340\) −0.822920 + 5.65575i −0.0446291 + 0.306726i
\(341\) −16.9223 −0.916393
\(342\) 14.0012i 0.757096i
\(343\) −10.5783 10.5783i −0.571175 0.571175i
\(344\) −18.1026 −0.976026
\(345\) 1.48880 + 1.48880i 0.0801542 + 0.0801542i
\(346\) 11.0770 11.0770i 0.595504 0.595504i
\(347\) 0.809045 0.809045i 0.0434318 0.0434318i −0.685057 0.728489i \(-0.740223\pi\)
0.728489 + 0.685057i \(0.240223\pi\)
\(348\) 1.74637i 0.0936153i
\(349\) 18.6531i 0.998476i 0.866465 + 0.499238i \(0.166387\pi\)
−0.866465 + 0.499238i \(0.833613\pi\)
\(350\) 0.658417 0.658417i 0.0351939 0.0351939i
\(351\) −0.809008 + 0.809008i −0.0431816 + 0.0431816i
\(352\) −10.5647 10.5647i −0.563102 0.563102i
\(353\) 4.34305 0.231157 0.115579 0.993298i \(-0.463128\pi\)
0.115579 + 0.993298i \(0.463128\pi\)
\(354\) −1.57716 1.57716i −0.0838250 0.0838250i
\(355\) 11.8880i 0.630951i
\(356\) 12.6739 0.671714
\(357\) 1.59676 + 2.14055i 0.0845096 + 0.113290i
\(358\) 19.0478 1.00671
\(359\) 6.35821i 0.335573i 0.985823 + 0.167787i \(0.0536620\pi\)
−0.985823 + 0.167787i \(0.946338\pi\)
\(360\) −5.07066 5.07066i −0.267247 0.267247i
\(361\) −24.7104 −1.30055
\(362\) 6.58517 + 6.58517i 0.346109 + 0.346109i
\(363\) −1.72490 + 1.72490i −0.0905339 + 0.0905339i
\(364\) 0.428822 0.428822i 0.0224764 0.0224764i
\(365\) 14.7327i 0.771147i
\(366\) 3.46762i 0.181256i
\(367\) −11.4655 + 11.4655i −0.598496 + 0.598496i −0.939912 0.341416i \(-0.889093\pi\)
0.341416 + 0.939912i \(0.389093\pi\)
\(368\) −1.89533 + 1.89533i −0.0988009 + 0.0988009i
\(369\) 13.9629 + 13.9629i 0.726881 + 0.726881i
\(370\) 2.48878 0.129386
\(371\) 6.73329 + 6.73329i 0.349575 + 0.349575i
\(372\) 5.00494i 0.259494i
\(373\) −18.5947 −0.962797 −0.481398 0.876502i \(-0.659871\pi\)
−0.481398 + 0.876502i \(0.659871\pi\)
\(374\) −1.18801 + 8.16495i −0.0614306 + 0.422200i
\(375\) 0.544977 0.0281425
\(376\) 20.7143i 1.06826i
\(377\) 0.601748 + 0.601748i 0.0309916 + 0.0309916i
\(378\) −2.89399 −0.148851
\(379\) −6.40722 6.40722i −0.329117 0.329117i 0.523134 0.852251i \(-0.324763\pi\)
−0.852251 + 0.523134i \(0.824763\pi\)
\(380\) −6.48026 + 6.48026i −0.332430 + 0.332430i
\(381\) 1.72947 1.72947i 0.0886037 0.0886037i
\(382\) 13.5486i 0.693208i
\(383\) 2.75136i 0.140588i −0.997526 0.0702941i \(-0.977606\pi\)
0.997526 0.0702941i \(-0.0223938\pi\)
\(384\) −3.54356 + 3.54356i −0.180832 + 0.180832i
\(385\) −2.14649 + 2.14649i −0.109395 + 0.109395i
\(386\) 1.00248 + 1.00248i 0.0510247 + 0.0510247i
\(387\) 18.4439 0.937557
\(388\) −6.92430 6.92430i −0.351528 0.351528i
\(389\) 27.3962i 1.38904i 0.719472 + 0.694521i \(0.244384\pi\)
−0.719472 + 0.694521i \(0.755616\pi\)
\(390\) −0.157177 −0.00795898
\(391\) 15.7633 + 2.29359i 0.797187 + 0.115992i
\(392\) −14.8236 −0.748704
\(393\) 5.09169i 0.256842i
\(394\) 9.18444 + 9.18444i 0.462705 + 0.462705i
\(395\) −0.813189 −0.0409160
\(396\) 6.76705 + 6.76705i 0.340057 + 0.340057i
\(397\) 17.6654 17.6654i 0.886603 0.886603i −0.107592 0.994195i \(-0.534314\pi\)
0.994195 + 0.107592i \(0.0343139\pi\)
\(398\) 13.9392 13.9392i 0.698710 0.698710i
\(399\) 4.28214i 0.214375i
\(400\) 0.693788i 0.0346894i
\(401\) 22.4405 22.4405i 1.12063 1.12063i 0.128978 0.991648i \(-0.458830\pi\)
0.991648 0.128978i \(-0.0411695\pi\)
\(402\) 2.39893 2.39893i 0.119648 0.119648i
\(403\) −1.72456 1.72456i −0.0859063 0.0859063i
\(404\) 0.410670 0.0204316
\(405\) 4.53624 + 4.53624i 0.225408 + 0.225408i
\(406\) 2.15258i 0.106831i
\(407\) −8.11362 −0.402177
\(408\) 5.89912 + 0.858329i 0.292050 + 0.0424936i
\(409\) 0.721793 0.0356904 0.0178452 0.999841i \(-0.494319\pi\)
0.0178452 + 0.999841i \(0.494319\pi\)
\(410\) 5.72362i 0.282670i
\(411\) 3.26714 + 3.26714i 0.161156 + 0.161156i
\(412\) 23.6164 1.16350
\(413\) −4.38998 4.38998i −0.216017 0.216017i
\(414\) −5.78535 + 5.78535i −0.284334 + 0.284334i
\(415\) −2.82218 + 2.82218i −0.138535 + 0.138535i
\(416\) 2.15331i 0.105575i
\(417\) 3.27369i 0.160313i
\(418\) −9.35526 + 9.35526i −0.457581 + 0.457581i
\(419\) −10.1371 + 10.1371i −0.495230 + 0.495230i −0.909949 0.414719i \(-0.863880\pi\)
0.414719 + 0.909949i \(0.363880\pi\)
\(420\) 0.634847 + 0.634847i 0.0309773 + 0.0309773i
\(421\) 2.94304 0.143435 0.0717175 0.997425i \(-0.477152\pi\)
0.0717175 + 0.997425i \(0.477152\pi\)
\(422\) 4.65818 + 4.65818i 0.226757 + 0.226757i
\(423\) 21.1048i 1.02615i
\(424\) 21.2562 1.03229
\(425\) 3.30488 2.46531i 0.160310 0.119585i
\(426\) −5.07590 −0.245928
\(427\) 9.65204i 0.467095i
\(428\) −3.73320 3.73320i −0.180451 0.180451i
\(429\) 0.512410 0.0247394
\(430\) 3.78022 + 3.78022i 0.182299 + 0.182299i
\(431\) −22.7514 + 22.7514i −1.09590 + 1.09590i −0.101013 + 0.994885i \(0.532208\pi\)
−0.994885 + 0.101013i \(0.967792\pi\)
\(432\) 1.52473 1.52473i 0.0733586 0.0733586i
\(433\) 1.76074i 0.0846158i −0.999105 0.0423079i \(-0.986529\pi\)
0.999105 0.0423079i \(-0.0134710\pi\)
\(434\) 6.16911i 0.296127i
\(435\) −0.890854 + 0.890854i −0.0427132 + 0.0427132i
\(436\) −11.7986 + 11.7986i −0.565053 + 0.565053i
\(437\) 18.0614 + 18.0614i 0.863992 + 0.863992i
\(438\) 6.29052 0.300573
\(439\) 0.390096 + 0.390096i 0.0186183 + 0.0186183i 0.716355 0.697736i \(-0.245809\pi\)
−0.697736 + 0.716355i \(0.745809\pi\)
\(440\) 6.77621i 0.323043i
\(441\) 15.1031 0.719194
\(442\) −0.953164 + 0.711023i −0.0453374 + 0.0338199i
\(443\) 2.19117 0.104106 0.0520528 0.998644i \(-0.483424\pi\)
0.0520528 + 0.998644i \(0.483424\pi\)
\(444\) 2.39969i 0.113884i
\(445\) −6.46516 6.46516i −0.306478 0.306478i
\(446\) −12.9665 −0.613980
\(447\) 3.51376 + 3.51376i 0.166195 + 0.166195i
\(448\) 2.68534 2.68534i 0.126870 0.126870i
\(449\) 1.52719 1.52719i 0.0720727 0.0720727i −0.670152 0.742224i \(-0.733771\pi\)
0.742224 + 0.670152i \(0.233771\pi\)
\(450\) 2.11773i 0.0998310i
\(451\) 18.6594i 0.878639i
\(452\) 16.1550 16.1550i 0.759868 0.759868i
\(453\) −5.05374 + 5.05374i −0.237445 + 0.237445i
\(454\) −3.94282 3.94282i −0.185046 0.185046i
\(455\) −0.437499 −0.0205103
\(456\) 6.75910 + 6.75910i 0.316524 + 0.316524i
\(457\) 9.46893i 0.442938i −0.975167 0.221469i \(-0.928915\pi\)
0.975167 0.221469i \(-0.0710851\pi\)
\(458\) 1.14993 0.0537329
\(459\) −12.6811 1.84512i −0.591903 0.0861226i
\(460\) 5.35536 0.249695
\(461\) 16.6646i 0.776149i −0.921628 0.388075i \(-0.873140\pi\)
0.921628 0.388075i \(-0.126860\pi\)
\(462\) 0.916499 + 0.916499i 0.0426394 + 0.0426394i
\(463\) 14.3738 0.668009 0.334005 0.942571i \(-0.391600\pi\)
0.334005 + 0.942571i \(0.391600\pi\)
\(464\) −1.13411 1.13411i −0.0526498 0.0526498i
\(465\) 2.55311 2.55311i 0.118397 0.118397i
\(466\) −12.8341 + 12.8341i −0.594530 + 0.594530i
\(467\) 12.9129i 0.597537i 0.954326 + 0.298769i \(0.0965759\pi\)
−0.954326 + 0.298769i \(0.903424\pi\)
\(468\) 1.37927i 0.0637565i
\(469\) 6.67736 6.67736i 0.308332 0.308332i
\(470\) 4.32560 4.32560i 0.199525 0.199525i
\(471\) −7.72624 7.72624i −0.356006 0.356006i
\(472\) −13.8586 −0.637896
\(473\) −12.3238 12.3238i −0.566650 0.566650i
\(474\) 0.347212i 0.0159480i
\(475\) 6.61138 0.303351
\(476\) 6.72173 + 0.978021i 0.308090 + 0.0448275i
\(477\) −21.6570 −0.991604
\(478\) 5.03972i 0.230511i
\(479\) 4.25108 + 4.25108i 0.194237 + 0.194237i 0.797524 0.603287i \(-0.206143\pi\)
−0.603287 + 0.797524i \(0.706143\pi\)
\(480\) 3.18785 0.145505
\(481\) −0.826862 0.826862i −0.0377017 0.0377017i
\(482\) −15.1774 + 15.1774i −0.691310 + 0.691310i
\(483\) 1.76940 1.76940i 0.0805106 0.0805106i
\(484\) 6.20464i 0.282029i
\(485\) 7.06440i 0.320778i
\(486\) 7.10237 7.10237i 0.322170 0.322170i
\(487\) 23.4059 23.4059i 1.06062 1.06062i 0.0625852 0.998040i \(-0.480065\pi\)
0.998040 0.0625852i \(-0.0199345\pi\)
\(488\) 15.2352 + 15.2352i 0.689664 + 0.689664i
\(489\) −7.77725 −0.351699
\(490\) 3.09549 + 3.09549i 0.139840 + 0.139840i
\(491\) 18.7705i 0.847099i −0.905873 0.423549i \(-0.860784\pi\)
0.905873 0.423549i \(-0.139216\pi\)
\(492\) −5.51872 −0.248803
\(493\) −1.37242 + 9.43233i −0.0618105 + 0.424811i
\(494\) −1.90680 −0.0857908
\(495\) 6.90397i 0.310311i
\(496\) 3.25026 + 3.25026i 0.145941 + 0.145941i
\(497\) −14.1286 −0.633756
\(498\) 1.20500 + 1.20500i 0.0539974 + 0.0539974i
\(499\) −5.05185 + 5.05185i −0.226152 + 0.226152i −0.811083 0.584931i \(-0.801122\pi\)
0.584931 + 0.811083i \(0.301122\pi\)
\(500\) 0.980167 0.980167i 0.0438344 0.0438344i
\(501\) 0.121167i 0.00541336i
\(502\) 0.183657i 0.00819700i
\(503\) −20.7561 + 20.7561i −0.925467 + 0.925467i −0.997409 0.0719417i \(-0.977080\pi\)
0.0719417 + 0.997409i \(0.477080\pi\)
\(504\) −6.02637 + 6.02637i −0.268436 + 0.268436i
\(505\) −0.209490 0.209490i −0.00932216 0.00932216i
\(506\) 7.73128 0.343697
\(507\) −4.95742 4.95742i −0.220167 0.220167i
\(508\) 6.22109i 0.276016i
\(509\) −9.83824 −0.436072 −0.218036 0.975941i \(-0.569965\pi\)
−0.218036 + 0.975941i \(0.569965\pi\)
\(510\) −1.05263 1.41110i −0.0466112 0.0624848i
\(511\) 17.5095 0.774575
\(512\) 7.73954i 0.342043i
\(513\) −14.5298 14.5298i −0.641505 0.641505i
\(514\) −2.78949 −0.123039
\(515\) −12.0471 12.0471i −0.530860 0.530860i
\(516\) −3.64490 + 3.64490i −0.160458 + 0.160458i
\(517\) −14.1018 + 14.1018i −0.620195 + 0.620195i
\(518\) 2.95786i 0.129961i
\(519\) 10.8966i 0.478307i
\(520\) −0.690566 + 0.690566i −0.0302833 + 0.0302833i
\(521\) −4.82486 + 4.82486i −0.211381 + 0.211381i −0.804854 0.593473i \(-0.797756\pi\)
0.593473 + 0.804854i \(0.297756\pi\)
\(522\) −3.46178 3.46178i −0.151518 0.151518i
\(523\) −7.90422 −0.345628 −0.172814 0.984955i \(-0.555286\pi\)
−0.172814 + 0.984955i \(0.555286\pi\)
\(524\) −9.15766 9.15766i −0.400054 0.400054i
\(525\) 0.647692i 0.0282676i
\(526\) −23.5043 −1.02484
\(527\) 3.93322 27.0322i 0.171334 1.17754i
\(528\) −0.965735 −0.0420282
\(529\) 8.07391i 0.351040i
\(530\) −4.43876 4.43876i −0.192807 0.192807i
\(531\) 14.1199 0.612754
\(532\) 7.70164 + 7.70164i 0.333908 + 0.333908i
\(533\) 1.90159 1.90159i 0.0823670 0.0823670i
\(534\) −2.76047 + 2.76047i −0.119457 + 0.119457i
\(535\) 3.80874i 0.164666i
\(536\) 21.0796i 0.910501i
\(537\) 9.36878 9.36878i 0.404293 0.404293i
\(538\) 0.210101 0.210101i 0.00905809 0.00905809i
\(539\) −10.0915 10.0915i −0.434673 0.434673i
\(540\) −4.30821 −0.185396
\(541\) −25.6567 25.6567i −1.10307 1.10307i −0.994039 0.109027i \(-0.965226\pi\)
−0.109027 0.994039i \(-0.534774\pi\)
\(542\) 8.31614i 0.357209i
\(543\) 6.47790 0.277993
\(544\) 19.3320 14.4209i 0.828852 0.618291i
\(545\) 12.0374 0.515625
\(546\) 0.186802i 0.00799437i
\(547\) 19.9968 + 19.9968i 0.855002 + 0.855002i 0.990744 0.135742i \(-0.0433420\pi\)
−0.135742 + 0.990744i \(0.543342\pi\)
\(548\) 11.7522 0.502030
\(549\) −15.5224 15.5224i −0.662481 0.662481i
\(550\) 1.41502 1.41502i 0.0603368 0.0603368i
\(551\) −10.8074 + 10.8074i −0.460410 + 0.460410i
\(552\) 5.58579i 0.237747i
\(553\) 0.966456i 0.0410979i
\(554\) −16.8928 + 16.8928i −0.717708 + 0.717708i
\(555\) 1.22412 1.22412i 0.0519611 0.0519611i
\(556\) −5.88789 5.88789i −0.249702 0.249702i
\(557\) −15.4059 −0.652768 −0.326384 0.945237i \(-0.605830\pi\)
−0.326384 + 0.945237i \(0.605830\pi\)
\(558\) 9.92116 + 9.92116i 0.419996 + 0.419996i
\(559\) 2.51185i 0.106240i
\(560\) 0.824551 0.0348437
\(561\) 3.43165 + 4.60031i 0.144884 + 0.194225i
\(562\) 20.7153 0.873820
\(563\) 8.51617i 0.358914i −0.983766 0.179457i \(-0.942566\pi\)
0.983766 0.179457i \(-0.0574340\pi\)
\(564\) 4.17075 + 4.17075i 0.175620 + 0.175620i
\(565\) −16.4819 −0.693398
\(566\) 10.2912 + 10.2912i 0.432571 + 0.432571i
\(567\) 5.39122 5.39122i 0.226410 0.226410i
\(568\) −22.3012 + 22.3012i −0.935738 + 0.935738i
\(569\) 10.0268i 0.420346i −0.977664 0.210173i \(-0.932597\pi\)
0.977664 0.210173i \(-0.0674027\pi\)
\(570\) 2.82290i 0.118238i
\(571\) −9.77041 + 9.77041i −0.408879 + 0.408879i −0.881347 0.472469i \(-0.843363\pi\)
0.472469 + 0.881347i \(0.343363\pi\)
\(572\) 0.921594 0.921594i 0.0385338 0.0385338i
\(573\) −6.66396 6.66396i −0.278391 0.278391i
\(574\) 6.80239 0.283926
\(575\) −2.73186 2.73186i −0.113926 0.113926i
\(576\) 8.63712i 0.359880i
\(577\) −13.6068 −0.566457 −0.283229 0.959052i \(-0.591406\pi\)
−0.283229 + 0.959052i \(0.591406\pi\)
\(578\) −12.7668 3.79554i −0.531030 0.157873i
\(579\) 0.986147 0.0409829
\(580\) 3.20449i 0.133059i
\(581\) 3.35409 + 3.35409i 0.139151 + 0.139151i
\(582\) 3.01633 0.125031
\(583\) 14.4707 + 14.4707i 0.599315 + 0.599315i
\(584\) 27.6377 27.6377i 1.14366 1.14366i
\(585\) 0.703586 0.703586i 0.0290897 0.0290897i
\(586\) 2.82018i 0.116501i
\(587\) 27.9191i 1.15234i 0.817329 + 0.576172i \(0.195454\pi\)
−0.817329 + 0.576172i \(0.804546\pi\)
\(588\) −2.98468 + 2.98468i −0.123086 + 0.123086i
\(589\) 30.9730 30.9730i 1.27622 1.27622i
\(590\) 2.89399 + 2.89399i 0.119144 + 0.119144i
\(591\) 9.03483 0.371643
\(592\) 1.55838 + 1.55838i 0.0640491 + 0.0640491i
\(593\) 40.0318i 1.64391i 0.569554 + 0.821954i \(0.307116\pi\)
−0.569554 + 0.821954i \(0.692884\pi\)
\(594\) −6.21956 −0.255192
\(595\) −2.92996 3.92778i −0.120117 0.161023i
\(596\) 12.6394 0.517728
\(597\) 13.7122i 0.561201i
\(598\) 0.787898 + 0.787898i 0.0322195 + 0.0322195i
\(599\) 25.5481 1.04387 0.521934 0.852986i \(-0.325211\pi\)
0.521934 + 0.852986i \(0.325211\pi\)
\(600\) −1.02234 1.02234i −0.0417370 0.0417370i
\(601\) 2.75133 2.75133i 0.112229 0.112229i −0.648762 0.760991i \(-0.724713\pi\)
0.760991 + 0.648762i \(0.224713\pi\)
\(602\) 4.49271 4.49271i 0.183109 0.183109i
\(603\) 21.4771i 0.874614i
\(604\) 18.1788i 0.739684i
\(605\) 3.16509 3.16509i 0.128679 0.128679i
\(606\) −0.0894470 + 0.0894470i −0.00363353 + 0.00363353i
\(607\) −6.94385 6.94385i −0.281842 0.281842i 0.552001 0.833843i \(-0.313864\pi\)
−0.833843 + 0.552001i \(0.813864\pi\)
\(608\) 38.6734 1.56841
\(609\) 1.05876 + 1.05876i 0.0429031 + 0.0429031i
\(610\) 6.36288i 0.257626i
\(611\) −2.87423 −0.116279
\(612\) −12.3828 + 9.23705i −0.500543 + 0.373385i
\(613\) 44.6175 1.80208 0.901042 0.433733i \(-0.142804\pi\)
0.901042 + 0.433733i \(0.142804\pi\)
\(614\) 26.1781i 1.05646i
\(615\) 2.81519 + 2.81519i 0.113520 + 0.113520i
\(616\) 8.05337 0.324479
\(617\) −25.2341 25.2341i −1.01589 1.01589i −0.999872 0.0160159i \(-0.994902\pi\)
−0.0160159 0.999872i \(-0.505098\pi\)
\(618\) −5.14383 + 5.14383i −0.206915 + 0.206915i
\(619\) −11.7276 + 11.7276i −0.471371 + 0.471371i −0.902358 0.430987i \(-0.858166\pi\)
0.430987 + 0.902358i \(0.358166\pi\)
\(620\) 9.18378i 0.368829i
\(621\) 12.0075i 0.481846i
\(622\) −7.64303 + 7.64303i −0.306458 + 0.306458i
\(623\) −7.68369 + 7.68369i −0.307841 + 0.307841i
\(624\) −0.0984184 0.0984184i −0.00393989 0.00393989i
\(625\) −1.00000 −0.0400000
\(626\) 16.9359 + 16.9359i 0.676897 + 0.676897i
\(627\) 9.20287i 0.367527i
\(628\) −27.7920 −1.10902
\(629\) 1.88584 12.9610i 0.0751932 0.516787i
\(630\) 2.51688 0.100275
\(631\) 38.0364i 1.51421i 0.653295 + 0.757103i \(0.273386\pi\)
−0.653295 + 0.757103i \(0.726614\pi\)
\(632\) 1.52549 + 1.52549i 0.0606808 + 0.0606808i
\(633\) 4.58231 0.182130
\(634\) −1.78222 1.78222i −0.0707811 0.0707811i
\(635\) −3.17348 + 3.17348i −0.125936 + 0.125936i
\(636\) 4.27986 4.27986i 0.169707 0.169707i
\(637\) 2.05686i 0.0814959i
\(638\) 4.62617i 0.183152i
\(639\) 22.7217 22.7217i 0.898857 0.898857i
\(640\) 6.50223 6.50223i 0.257023 0.257023i
\(641\) 2.57412 + 2.57412i 0.101672 + 0.101672i 0.756113 0.654441i \(-0.227096\pi\)
−0.654441 + 0.756113i \(0.727096\pi\)
\(642\) 1.62624 0.0641826
\(643\) 13.0129 + 13.0129i 0.513178 + 0.513178i 0.915499 0.402321i \(-0.131796\pi\)
−0.402321 + 0.915499i \(0.631796\pi\)
\(644\) 6.36472i 0.250805i
\(645\) 3.71865 0.146422
\(646\) −12.7700 17.1188i −0.502427 0.673531i
\(647\) 3.12579 0.122888 0.0614438 0.998111i \(-0.480429\pi\)
0.0614438 + 0.998111i \(0.480429\pi\)
\(648\) 17.0194i 0.668586i
\(649\) −9.43463 9.43463i −0.370342 0.370342i
\(650\) 0.288411 0.0113124
\(651\) −3.03431 3.03431i −0.118924 0.118924i
\(652\) −13.9878 + 13.9878i −0.547803 + 0.547803i
\(653\) 9.92621 9.92621i 0.388443 0.388443i −0.485689 0.874132i \(-0.661431\pi\)
0.874132 + 0.485689i \(0.161431\pi\)
\(654\) 5.13967i 0.200977i
\(655\) 9.34295i 0.365059i
\(656\) −3.58391 + 3.58391i −0.139928 + 0.139928i
\(657\) −28.1588 + 28.1588i −1.09858 + 1.09858i
\(658\) −5.14087 5.14087i −0.200412 0.200412i
\(659\) 4.52370 0.176218 0.0881092 0.996111i \(-0.471918\pi\)
0.0881092 + 0.996111i \(0.471918\pi\)
\(660\) 1.36437 + 1.36437i 0.0531079 + 0.0531079i
\(661\) 31.6484i 1.23098i 0.788145 + 0.615490i \(0.211042\pi\)
−0.788145 + 0.615490i \(0.788958\pi\)
\(662\) 23.3191 0.906324
\(663\) −0.119099 + 0.818539i −0.00462540 + 0.0317894i
\(664\) 10.5885 0.410912
\(665\) 7.85747i 0.304700i
\(666\) 4.75684 + 4.75684i 0.184324 + 0.184324i
\(667\) 8.93134 0.345823
\(668\) −0.217925 0.217925i −0.00843179 0.00843179i
\(669\) −6.37762 + 6.37762i −0.246573 + 0.246573i
\(670\) −4.40189 + 4.40189i −0.170060 + 0.170060i
\(671\) 20.7435i 0.800793i
\(672\) 3.78869i 0.146152i
\(673\) −7.91436 + 7.91436i −0.305076 + 0.305076i −0.842996 0.537920i \(-0.819210\pi\)
0.537920 + 0.842996i \(0.319210\pi\)
\(674\) −5.94522 + 5.94522i −0.229001 + 0.229001i
\(675\) 2.19769 + 2.19769i 0.0845891 + 0.0845891i
\(676\) −17.8323 −0.685858
\(677\) −4.61971 4.61971i −0.177550 0.177550i 0.612737 0.790287i \(-0.290069\pi\)
−0.790287 + 0.612737i \(0.790069\pi\)
\(678\) 7.03737i 0.270268i
\(679\) 8.39588 0.322204
\(680\) −10.8245 1.57498i −0.415102 0.0603979i
\(681\) −3.87860 −0.148628
\(682\) 13.2582i 0.507683i
\(683\) 16.7322 + 16.7322i 0.640239 + 0.640239i 0.950614 0.310376i \(-0.100455\pi\)
−0.310376 + 0.950614i \(0.600455\pi\)
\(684\) −24.7716 −0.947165
\(685\) −5.99501 5.99501i −0.229058 0.229058i
\(686\) 8.28784 8.28784i 0.316431 0.316431i
\(687\) 0.565602 0.565602i 0.0215790 0.0215790i
\(688\) 4.73406i 0.180484i
\(689\) 2.94943i 0.112364i
\(690\) −1.16644 + 1.16644i −0.0444055 + 0.0444055i
\(691\) −5.73536 + 5.73536i −0.218183 + 0.218183i −0.807732 0.589549i \(-0.799305\pi\)
0.589549 + 0.807732i \(0.299305\pi\)
\(692\) −19.5980 19.5980i −0.745006 0.745006i
\(693\) −8.20521 −0.311690
\(694\) 0.633867 + 0.633867i 0.0240613 + 0.0240613i
\(695\) 6.00703i 0.227859i
\(696\) 3.34237 0.126692
\(697\) 29.8072 + 4.33698i 1.12903 + 0.164275i
\(698\) −14.6142 −0.553157
\(699\) 12.6251i 0.477525i
\(700\) −1.16491 1.16491i −0.0440293 0.0440293i
\(701\) 35.4115 1.33748 0.668738 0.743498i \(-0.266835\pi\)
0.668738 + 0.743498i \(0.266835\pi\)
\(702\) −0.633838 0.633838i −0.0239227 0.0239227i
\(703\) 14.8504 14.8504i 0.560094 0.560094i
\(704\) 5.77113 5.77113i 0.217508 0.217508i
\(705\) 4.25514i 0.160258i
\(706\) 3.40268i 0.128061i
\(707\) −0.248973 + 0.248973i −0.00936361 + 0.00936361i
\(708\) −2.79039 + 2.79039i −0.104869 + 0.104869i
\(709\) −10.5641 10.5641i −0.396745 0.396745i 0.480338 0.877083i \(-0.340514\pi\)
−0.877083 + 0.480338i \(0.840514\pi\)
\(710\) 9.31398 0.349547
\(711\) −1.55426 1.55426i −0.0582891 0.0582891i
\(712\) 24.2565i 0.909050i
\(713\) −25.5964 −0.958593
\(714\) −1.67707 + 1.25102i −0.0627626 + 0.0468184i
\(715\) −0.940241 −0.0351630
\(716\) 33.7004i 1.25944i
\(717\) −2.47881 2.47881i −0.0925730 0.0925730i
\(718\) −4.98150 −0.185908
\(719\) −16.3734 16.3734i −0.610624 0.610624i 0.332485 0.943109i \(-0.392113\pi\)
−0.943109 + 0.332485i \(0.892113\pi\)
\(720\) −1.32604 + 1.32604i −0.0494188 + 0.0494188i
\(721\) −14.3177 + 14.3177i −0.533220 + 0.533220i
\(722\) 19.3600i 0.720504i
\(723\) 14.9301i 0.555258i
\(724\) 11.6508 11.6508i 0.433000 0.433000i
\(725\) 1.63466 1.63466i 0.0607099 0.0607099i
\(726\) −1.35142 1.35142i −0.0501559 0.0501559i
\(727\) 11.3367 0.420456 0.210228 0.977652i \(-0.432579\pi\)
0.210228 + 0.977652i \(0.432579\pi\)
\(728\) 0.820721 + 0.820721i 0.0304180 + 0.0304180i
\(729\) 12.2590i 0.454036i
\(730\) −11.5427 −0.427216
\(731\) 22.5509 16.8220i 0.834074 0.622186i
\(732\) 6.13510 0.226760
\(733\) 3.32332i 0.122750i −0.998115 0.0613748i \(-0.980452\pi\)
0.998115 0.0613748i \(-0.0195485\pi\)
\(734\) −8.98296 8.98296i −0.331567 0.331567i
\(735\) 3.04507 0.112319
\(736\) −15.9801 15.9801i −0.589033 0.589033i
\(737\) 14.3505 14.3505i 0.528607 0.528607i
\(738\) −10.9396 + 10.9396i −0.402693 + 0.402693i
\(739\) 12.5661i 0.462253i −0.972924 0.231127i \(-0.925759\pi\)
0.972924 0.231127i \(-0.0742412\pi\)
\(740\) 4.40329i 0.161868i
\(741\) −0.937867 + 0.937867i −0.0344534 + 0.0344534i
\(742\) −5.27537 + 5.27537i −0.193665 + 0.193665i
\(743\) −37.1805 37.1805i −1.36402 1.36402i −0.868724 0.495297i \(-0.835059\pi\)
−0.495297 0.868724i \(-0.664941\pi\)
\(744\) −9.57894 −0.351181
\(745\) −6.44755 6.44755i −0.236220 0.236220i
\(746\) 14.5685i 0.533390i
\(747\) −10.7881 −0.394717
\(748\) 14.4459 + 2.10189i 0.528193 + 0.0768528i
\(749\) 4.52660 0.165398
\(750\) 0.426976i 0.0155910i
\(751\) 2.78545 + 2.78545i 0.101642 + 0.101642i 0.756099 0.654457i \(-0.227103\pi\)
−0.654457 + 0.756099i \(0.727103\pi\)
\(752\) 5.41705 0.197539
\(753\) 0.0903325 + 0.0903325i 0.00329190 + 0.00329190i
\(754\) −0.471455 + 0.471455i −0.0171694 + 0.0171694i
\(755\) 9.27331 9.27331i 0.337490 0.337490i
\(756\) 5.12020i 0.186220i
\(757\) 6.38475i 0.232058i −0.993246 0.116029i \(-0.962984\pi\)
0.993246 0.116029i \(-0.0370165\pi\)
\(758\) 5.01990 5.01990i 0.182331 0.182331i
\(759\) 3.80267 3.80267i 0.138028 0.138028i
\(760\) −12.4025 12.4025i −0.449888 0.449888i
\(761\) −19.3638 −0.701938 −0.350969 0.936387i \(-0.614148\pi\)
−0.350969 + 0.936387i \(0.614148\pi\)
\(762\) 1.35500 + 1.35500i 0.0490865 + 0.0490865i
\(763\) 14.3061i 0.517917i
\(764\) −23.9709 −0.867238
\(765\) 11.0286 + 1.60468i 0.398741 + 0.0580173i
\(766\) 2.15563 0.0778860
\(767\) 1.92297i 0.0694346i
\(768\) −5.23902 5.23902i −0.189047 0.189047i
\(769\) 5.10469 0.184080 0.0920398 0.995755i \(-0.470661\pi\)
0.0920398 + 0.995755i \(0.470661\pi\)
\(770\) −1.68172 1.68172i −0.0606051 0.0606051i
\(771\) −1.37203 + 1.37203i −0.0494123 + 0.0494123i
\(772\) 1.77363 1.77363i 0.0638345 0.0638345i
\(773\) 3.00249i 0.107992i −0.998541 0.0539961i \(-0.982804\pi\)
0.998541 0.0539961i \(-0.0171958\pi\)
\(774\) 14.4504i 0.519408i
\(775\) −4.68480 + 4.68480i −0.168283 + 0.168283i
\(776\) 13.2524 13.2524i 0.475733 0.475733i
\(777\) −1.45484 1.45484i −0.0521921 0.0521921i
\(778\) −21.4642 −0.769531
\(779\) 34.1525 + 34.1525i 1.22364 + 1.22364i
\(780\) 0.278086i 0.00995708i
\(781\) −30.3643 −1.08652
\(782\) −1.79697 + 12.3502i −0.0642595 + 0.441642i
\(783\) −7.18497 −0.256770
\(784\) 3.87656i 0.138448i
\(785\) 14.1772 + 14.1772i 0.506006 + 0.506006i
\(786\) 3.98921 0.142291
\(787\) −1.86293 1.86293i −0.0664063 0.0664063i 0.673124 0.739530i \(-0.264952\pi\)
−0.739530 + 0.673124i \(0.764952\pi\)
\(788\) 16.2496 16.2496i 0.578868 0.578868i
\(789\) −11.5607 + 11.5607i −0.411572 + 0.411572i
\(790\) 0.637113i 0.0226675i
\(791\) 19.5883i 0.696481i
\(792\) −12.9514 + 12.9514i −0.460209 + 0.460209i
\(793\) −2.11398 + 2.11398i −0.0750695 + 0.0750695i
\(794\) 13.8404 + 13.8404i 0.491179 + 0.491179i
\(795\) −4.36646 −0.154862
\(796\) −24.6620 24.6620i −0.874121 0.874121i
\(797\) 27.2441i 0.965036i −0.875886 0.482518i \(-0.839722\pi\)
0.875886 0.482518i \(-0.160278\pi\)
\(798\) −3.35495 −0.118764
\(799\) −19.2490 25.8043i −0.680979 0.912890i
\(800\) −5.84952 −0.206812
\(801\) 24.7138i 0.873221i
\(802\) 17.5816 + 17.5816i 0.620827 + 0.620827i
\(803\) 37.6302 1.32794
\(804\) −4.24431 4.24431i −0.149685 0.149685i
\(805\) −3.24675 + 3.24675i −0.114433 + 0.114433i
\(806\) 1.35115 1.35115i 0.0475921 0.0475921i
\(807\) 0.206679i 0.00727543i
\(808\) 0.785979i 0.0276506i
\(809\) 26.0978 26.0978i 0.917549 0.917549i −0.0793013 0.996851i \(-0.525269\pi\)
0.996851 + 0.0793013i \(0.0252689\pi\)
\(810\) −3.55403 + 3.55403i −0.124876 + 0.124876i
\(811\) −11.9007 11.9007i −0.417891 0.417891i 0.466585 0.884476i \(-0.345484\pi\)
−0.884476 + 0.466585i \(0.845484\pi\)
\(812\) 3.80846 0.133651
\(813\) 4.09034 + 4.09034i 0.143454 + 0.143454i
\(814\) 6.35682i 0.222807i
\(815\) 14.2708 0.499884
\(816\) 0.224464 1.54270i 0.00785782 0.0540051i
\(817\) 45.1128 1.57830
\(818\) 0.565507i 0.0197725i
\(819\) −0.836196 0.836196i −0.0292191 0.0292191i
\(820\) 10.1265 0.353634
\(821\) 12.4565 + 12.4565i 0.434737 + 0.434737i 0.890236 0.455500i \(-0.150539\pi\)
−0.455500 + 0.890236i \(0.650539\pi\)
\(822\) −2.55972 + 2.55972i −0.0892806 + 0.0892806i
\(823\) −20.8831 + 20.8831i −0.727940 + 0.727940i −0.970209 0.242269i \(-0.922108\pi\)
0.242269 + 0.970209i \(0.422108\pi\)
\(824\) 45.1994i 1.57459i
\(825\) 1.39197i 0.0484623i
\(826\) 3.43944 3.43944i 0.119674 0.119674i
\(827\) −21.0943 + 21.0943i −0.733521 + 0.733521i −0.971316 0.237794i \(-0.923576\pi\)
0.237794 + 0.971316i \(0.423576\pi\)
\(828\) 10.2357 + 10.2357i 0.355717 + 0.355717i
\(829\) −53.2461 −1.84931 −0.924657 0.380802i \(-0.875648\pi\)
−0.924657 + 0.380802i \(0.875648\pi\)
\(830\) −2.21111 2.21111i −0.0767487 0.0767487i
\(831\) 16.6177i 0.576461i
\(832\) 1.17628 0.0407800
\(833\) 18.4661 13.7750i 0.639812 0.477275i
\(834\) 2.56486 0.0888137
\(835\) 0.222335i 0.00769422i
\(836\) 16.5518 + 16.5518i 0.572456 + 0.572456i
\(837\) 20.5915 0.711745
\(838\) −7.94217 7.94217i −0.274358 0.274358i
\(839\) −27.0544 + 27.0544i −0.934022 + 0.934022i −0.997954 0.0639326i \(-0.979636\pi\)
0.0639326 + 0.997954i \(0.479636\pi\)
\(840\) −1.21503 + 1.21503i −0.0419225 + 0.0419225i
\(841\) 23.6557i 0.815715i
\(842\) 2.30580i 0.0794632i
\(843\) 10.1889 10.1889i 0.350925 0.350925i
\(844\) 8.24150 8.24150i 0.283684 0.283684i
\(845\) 9.09657 + 9.09657i 0.312931 + 0.312931i
\(846\) 16.5351 0.568489
\(847\) −3.76164 3.76164i −0.129252 0.129252i
\(848\) 5.55876i 0.190889i
\(849\) 10.1236 0.347439
\(850\) 1.93151 + 2.58929i 0.0662503 + 0.0888121i
\(851\) −12.2725 −0.420697
\(852\) 8.98055i 0.307668i
\(853\) −4.75362 4.75362i −0.162761 0.162761i 0.621028 0.783789i \(-0.286715\pi\)
−0.783789 + 0.621028i \(0.786715\pi\)
\(854\) −7.56214 −0.258771
\(855\) 12.6364 + 12.6364i 0.432156 + 0.432156i
\(856\) 7.14497 7.14497i 0.244210 0.244210i
\(857\) −22.7593 + 22.7593i −0.777442 + 0.777442i −0.979395 0.201953i \(-0.935271\pi\)
0.201953 + 0.979395i \(0.435271\pi\)
\(858\) 0.401460i 0.0137056i
\(859\) 46.6741i 1.59250i 0.604968 + 0.796250i \(0.293186\pi\)
−0.604968 + 0.796250i \(0.706814\pi\)
\(860\) 6.68817 6.68817i 0.228065 0.228065i
\(861\) 3.34579 3.34579i 0.114024 0.114024i
\(862\) −17.8252 17.8252i −0.607129 0.607129i
\(863\) 9.97544 0.339568 0.169784 0.985481i \(-0.445693\pi\)
0.169784 + 0.985481i \(0.445693\pi\)
\(864\) 12.8554 + 12.8554i 0.437351 + 0.437351i
\(865\) 19.9946i 0.679836i
\(866\) 1.37950 0.0468772
\(867\) −8.14629 + 4.41258i −0.276662 + 0.149859i
\(868\) −10.9147 −0.370469
\(869\) 2.07704i 0.0704587i
\(870\) −0.697962 0.697962i −0.0236631 0.0236631i
\(871\) 2.92493 0.0991074
\(872\) −22.5814 22.5814i −0.764702 0.764702i
\(873\) −13.5023 + 13.5023i −0.456982 + 0.456982i
\(874\) −14.1506 + 14.1506i −0.478652 + 0.478652i
\(875\) 1.18848i 0.0401779i
\(876\) 11.1295i 0.376032i
\(877\) 1.09866 1.09866i 0.0370990 0.0370990i −0.688314 0.725413i \(-0.741649\pi\)
0.725413 + 0.688314i \(0.241649\pi\)
\(878\) −0.305631 + 0.305631i −0.0103145 + 0.0103145i
\(879\) 1.38712 + 1.38712i 0.0467864 + 0.0467864i
\(880\) 1.77207 0.0597363
\(881\) 19.2497 + 19.2497i 0.648540 + 0.648540i 0.952640 0.304100i \(-0.0983557\pi\)
−0.304100 + 0.952640i \(0.598356\pi\)
\(882\) 11.8329i 0.398434i
\(883\) 41.7225 1.40407 0.702037 0.712140i \(-0.252274\pi\)
0.702037 + 0.712140i \(0.252274\pi\)
\(884\) 1.25798 + 1.68639i 0.0423104 + 0.0567194i
\(885\) 2.84685 0.0956959
\(886\) 1.71673i 0.0576746i
\(887\) −5.40672 5.40672i −0.181540 0.181540i 0.610487 0.792027i \(-0.290974\pi\)
−0.792027 + 0.610487i \(0.790974\pi\)
\(888\) −4.59275 −0.154123
\(889\) 3.77161 + 3.77161i 0.126496 + 0.126496i
\(890\) 5.06529 5.06529i 0.169789 0.169789i
\(891\) 11.5864 11.5864i 0.388160 0.388160i
\(892\) 22.9409i 0.768120i
\(893\) 51.6212i 1.72744i
\(894\) −2.75295 + 2.75295i −0.0920724 + 0.0920724i
\(895\) −17.1912 + 17.1912i −0.574637 + 0.574637i
\(896\) −7.72775 7.72775i −0.258166 0.258166i
\(897\) 0.775063 0.0258786
\(898\) 1.19652 + 1.19652i 0.0399284 + 0.0399284i
\(899\) 15.3161i 0.510822i
\(900\) 3.74681 0.124894
\(901\) −26.4793 + 19.7525i −0.882155 + 0.658053i
\(902\) 14.6192 0.486767
\(903\) 4.41953i 0.147073i
\(904\) 30.9190 + 30.9190i 1.02835 + 1.02835i
\(905\) −11.8866 −0.395123
\(906\) −3.95948 3.95948i −0.131545 0.131545i
\(907\) 30.7988 30.7988i 1.02266 1.02266i 0.0229217 0.999737i \(-0.492703\pi\)
0.999737 0.0229217i \(-0.00729683\pi\)
\(908\) −6.97585 + 6.97585i −0.231502 + 0.231502i
\(909\) 0.800799i 0.0265608i
\(910\) 0.342770i 0.0113627i
\(911\) −23.4200 + 23.4200i −0.775938 + 0.775938i −0.979137 0.203200i \(-0.934866\pi\)
0.203200 + 0.979137i \(0.434866\pi\)
\(912\) 1.76759 1.76759i 0.0585308 0.0585308i
\(913\) 7.20838 + 7.20838i 0.238562 + 0.238562i
\(914\) 7.41867 0.245388
\(915\) −3.12962 3.12962i −0.103462 0.103462i
\(916\) 2.03453i 0.0672226i
\(917\) 11.1039 0.366682
\(918\) 1.44560 9.93532i 0.0477120 0.327915i
\(919\) 22.9512 0.757089 0.378545 0.925583i \(-0.376425\pi\)
0.378545 + 0.925583i \(0.376425\pi\)
\(920\) 10.2496i 0.337919i
\(921\) −12.8759 12.8759i −0.424274 0.424274i
\(922\) 13.0563 0.429987
\(923\) −3.09443 3.09443i −0.101855 0.101855i
\(924\) 1.62152 1.62152i 0.0533440 0.0533440i
\(925\) −2.24619 + 2.24619i −0.0738543 + 0.0738543i
\(926\) 11.2616i 0.370078i
\(927\) 46.0516i 1.51253i
\(928\) 9.56200 9.56200i 0.313888 0.313888i
\(929\) −13.6260 + 13.6260i −0.447055 + 0.447055i −0.894374 0.447320i \(-0.852379\pi\)
0.447320 + 0.894374i \(0.352379\pi\)
\(930\) 2.00030 + 2.00030i 0.0655923 + 0.0655923i
\(931\) 36.9412 1.21070
\(932\) 22.7068 + 22.7068i 0.743787 + 0.743787i
\(933\) 7.51853i 0.246146i
\(934\) −10.1169 −0.331036
\(935\) −6.29687 8.44129i −0.205930 0.276060i
\(936\) −2.63977 −0.0862836
\(937\) 23.6659i 0.773132i −0.922262 0.386566i \(-0.873661\pi\)
0.922262 0.386566i \(-0.126339\pi\)
\(938\) 5.23155 + 5.23155i 0.170816 + 0.170816i
\(939\) 16.6601 0.543681
\(940\) −7.65307 7.65307i −0.249616 0.249616i
\(941\) 2.22184 2.22184i 0.0724298 0.0724298i −0.669964 0.742394i \(-0.733690\pi\)
0.742394 + 0.669964i \(0.233690\pi\)
\(942\) 6.05332 6.05332i 0.197228 0.197228i
\(943\) 28.2240i 0.919100i
\(944\) 3.62421i 0.117958i
\(945\) 2.61190 2.61190i 0.0849652 0.0849652i
\(946\) 9.65541 9.65541i 0.313924 0.313924i
\(947\) 27.0812 + 27.0812i 0.880020 + 0.880020i 0.993536 0.113516i \(-0.0362114\pi\)
−0.113516 + 0.993536i \(0.536211\pi\)
\(948\) 0.614305 0.0199517
\(949\) 3.83491 + 3.83491i 0.124486 + 0.124486i
\(950\) 5.17986i 0.168057i
\(951\) −1.75319 −0.0568511
\(952\) −1.87183 + 12.8647i −0.0606664 + 0.416947i
\(953\) −34.0185 −1.10197 −0.550984 0.834516i \(-0.685747\pi\)
−0.550984 + 0.834516i \(0.685747\pi\)
\(954\) 16.9677i 0.549349i
\(955\) 12.2280 + 12.2280i 0.395688 + 0.395688i
\(956\) −8.91654 −0.288381
\(957\) 2.27541 + 2.27541i 0.0735535 + 0.0735535i
\(958\) −3.33062 + 3.33062i −0.107607 + 0.107607i
\(959\) −7.12493 + 7.12493i −0.230076 + 0.230076i
\(960\) 1.74141i 0.0562037i
\(961\) 12.8947i 0.415958i
\(962\) 0.647826 0.647826i 0.0208868 0.0208868i
\(963\) −7.27969 + 7.27969i −0.234585 + 0.234585i
\(964\) 26.8526 + 26.8526i 0.864864 + 0.864864i
\(965\) −1.80952 −0.0582505
\(966\) 1.38628 + 1.38628i 0.0446029 + 0.0446029i
\(967\) 33.0762i 1.06366i −0.846852 0.531829i \(-0.821505\pi\)
0.846852 0.531829i \(-0.178495\pi\)
\(968\) −11.8750 −0.381678
\(969\) −14.7009 2.13901i −0.472263 0.0687148i
\(970\) −5.53479 −0.177711
\(971\) 22.1601i 0.711152i −0.934647 0.355576i \(-0.884285\pi\)
0.934647 0.355576i \(-0.115715\pi\)
\(972\) −12.5659 12.5659i −0.403051 0.403051i
\(973\) 7.13921 0.228873
\(974\) 18.3380 + 18.3380i 0.587587 + 0.587587i
\(975\) 0.141856 0.141856i 0.00454304 0.00454304i
\(976\) 3.98419 3.98419i 0.127531 0.127531i
\(977\) 15.7856i 0.505025i −0.967594 0.252513i \(-0.918743\pi\)
0.967594 0.252513i \(-0.0812570\pi\)
\(978\) 6.09329i 0.194842i
\(979\) −16.5132 + 16.5132i −0.527765 + 0.527765i
\(980\) 5.47671 5.47671i 0.174947 0.174947i
\(981\) 23.0072 + 23.0072i 0.734562 + 0.734562i
\(982\) 14.7062 0.469293
\(983\) −27.4094 27.4094i −0.874223 0.874223i 0.118706 0.992929i \(-0.462125\pi\)
−0.992929 + 0.118706i \(0.962125\pi\)
\(984\) 10.5623i 0.336713i
\(985\) −16.5784 −0.528231
\(986\) −7.39000 1.07525i −0.235345 0.0342431i
\(987\) −5.05713 −0.160970
\(988\) 3.37360i 0.107329i
\(989\) −18.6408 18.6408i −0.592744 0.592744i
\(990\) 5.40909 0.171912
\(991\) −22.6272 22.6272i −0.718776 0.718776i 0.249578 0.968355i \(-0.419708\pi\)
−0.968355 + 0.249578i \(0.919708\pi\)
\(992\) −27.4038 + 27.4038i −0.870073 + 0.870073i
\(993\) 11.4696 11.4696i 0.363978 0.363978i
\(994\) 11.0694i 0.351102i
\(995\) 25.1610i 0.797657i
\(996\) 2.13195 2.13195i 0.0675535 0.0675535i
\(997\) −9.85607 + 9.85607i −0.312145 + 0.312145i −0.845740 0.533595i \(-0.820841\pi\)
0.533595 + 0.845740i \(0.320841\pi\)
\(998\) −3.95800 3.95800i −0.125288 0.125288i
\(999\) 9.87286 0.312363
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.e.a.81.5 yes 12
3.2 odd 2 765.2.k.b.676.2 12
4.3 odd 2 1360.2.bt.d.81.2 12
5.2 odd 4 425.2.j.c.149.2 12
5.3 odd 4 425.2.j.b.149.5 12
5.4 even 2 425.2.e.f.251.2 12
17.2 even 8 1445.2.a.o.1.2 6
17.4 even 4 inner 85.2.e.a.21.2 12
17.8 even 8 1445.2.d.g.866.9 12
17.9 even 8 1445.2.d.g.866.10 12
17.15 even 8 1445.2.a.n.1.2 6
51.38 odd 4 765.2.k.b.361.5 12
68.55 odd 4 1360.2.bt.d.1041.2 12
85.4 even 4 425.2.e.f.276.5 12
85.19 even 8 7225.2.a.z.1.5 6
85.38 odd 4 425.2.j.c.174.2 12
85.49 even 8 7225.2.a.bb.1.5 6
85.72 odd 4 425.2.j.b.174.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.2 12 17.4 even 4 inner
85.2.e.a.81.5 yes 12 1.1 even 1 trivial
425.2.e.f.251.2 12 5.4 even 2
425.2.e.f.276.5 12 85.4 even 4
425.2.j.b.149.5 12 5.3 odd 4
425.2.j.b.174.5 12 85.72 odd 4
425.2.j.c.149.2 12 5.2 odd 4
425.2.j.c.174.2 12 85.38 odd 4
765.2.k.b.361.5 12 51.38 odd 4
765.2.k.b.676.2 12 3.2 odd 2
1360.2.bt.d.81.2 12 4.3 odd 2
1360.2.bt.d.1041.2 12 68.55 odd 4
1445.2.a.n.1.2 6 17.15 even 8
1445.2.a.o.1.2 6 17.2 even 8
1445.2.d.g.866.9 12 17.8 even 8
1445.2.d.g.866.10 12 17.9 even 8
7225.2.a.z.1.5 6 85.19 even 8
7225.2.a.bb.1.5 6 85.49 even 8