Properties

Label 85.2.e.a.81.4
Level $85$
Weight $2$
Character 85.81
Analytic conductor $0.679$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,2,Mod(21,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.21");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 83x^{8} + 152x^{6} + 111x^{4} + 22x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 81.4
Root \(-1.35757i\) of defining polynomial
Character \(\chi\) \(=\) 85.81
Dual form 85.2.e.a.21.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.677603i q^{2} +(-1.66705 - 1.66705i) q^{3} +1.54085 q^{4} +(0.707107 + 0.707107i) q^{5} +(1.12960 - 1.12960i) q^{6} +(3.02462 - 3.02462i) q^{7} +2.39929i q^{8} +2.55814i q^{9} +(-0.479138 + 0.479138i) q^{10} +(-1.17133 + 1.17133i) q^{11} +(-2.56869 - 2.56869i) q^{12} -6.21427 q^{13} +(2.04950 + 2.04950i) q^{14} -2.35757i q^{15} +1.45594 q^{16} +(-1.32974 + 3.90279i) q^{17} -1.73340 q^{18} +3.38977i q^{19} +(1.08955 + 1.08955i) q^{20} -10.0844 q^{21} +(-0.793694 - 0.793694i) q^{22} +(3.30530 - 3.30530i) q^{23} +(3.99975 - 3.99975i) q^{24} +1.00000i q^{25} -4.21081i q^{26} +(-0.736610 + 0.736610i) q^{27} +(4.66050 - 4.66050i) q^{28} +(-2.57924 - 2.57924i) q^{29} +1.59750 q^{30} +(-2.12106 - 2.12106i) q^{31} +5.78514i q^{32} +3.90532 q^{33} +(-2.64455 - 0.901035i) q^{34} +4.27746 q^{35} +3.94171i q^{36} +(3.78314 + 3.78314i) q^{37} -2.29692 q^{38} +(10.3595 + 10.3595i) q^{39} +(-1.69656 + 1.69656i) q^{40} +(-1.54740 + 1.54740i) q^{41} -6.83324i q^{42} -0.998176i q^{43} +(-1.80484 + 1.80484i) q^{44} +(-1.80888 + 1.80888i) q^{45} +(2.23968 + 2.23968i) q^{46} -2.00393 q^{47} +(-2.42713 - 2.42713i) q^{48} -11.2967i q^{49} -0.677603 q^{50} +(8.72291 - 4.28942i) q^{51} -9.57528 q^{52} +6.95444i q^{53} +(-0.499130 - 0.499130i) q^{54} -1.65650 q^{55} +(7.25696 + 7.25696i) q^{56} +(5.65093 - 5.65093i) q^{57} +(1.74770 - 1.74770i) q^{58} -6.30165i q^{59} -3.63267i q^{60} +(4.62096 - 4.62096i) q^{61} +(1.43724 - 1.43724i) q^{62} +(7.73740 + 7.73740i) q^{63} -1.00815 q^{64} +(-4.39415 - 4.39415i) q^{65} +2.64626i q^{66} +5.80078 q^{67} +(-2.04893 + 6.01363i) q^{68} -11.0202 q^{69} +2.89842i q^{70} +(-9.60714 - 9.60714i) q^{71} -6.13772 q^{72} +(-7.01789 - 7.01789i) q^{73} +(-2.56347 + 2.56347i) q^{74} +(1.66705 - 1.66705i) q^{75} +5.22314i q^{76} +7.08564i q^{77} +(-7.01965 + 7.01965i) q^{78} +(0.820929 - 0.820929i) q^{79} +(1.02950 + 1.02950i) q^{80} +10.1303 q^{81} +(-1.04853 - 1.04853i) q^{82} -3.65934i q^{83} -15.5386 q^{84} +(-3.69996 + 1.81943i) q^{85} +0.676367 q^{86} +8.59945i q^{87} +(-2.81035 - 2.81035i) q^{88} +2.69634 q^{89} +(-1.22570 - 1.22570i) q^{90} +(-18.7958 + 18.7958i) q^{91} +(5.09298 - 5.09298i) q^{92} +7.07184i q^{93} -1.35787i q^{94} +(-2.39693 + 2.39693i) q^{95} +(9.64413 - 9.64413i) q^{96} +(7.40348 + 7.40348i) q^{97} +7.65468 q^{98} +(-2.99641 - 2.99641i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} - 12 q^{4} - 4 q^{10} - 4 q^{11} - 8 q^{12} - 4 q^{14} + 4 q^{16} + 12 q^{17} + 28 q^{18} - 8 q^{20} - 16 q^{21} + 20 q^{22} + 12 q^{23} + 4 q^{24} - 4 q^{27} + 4 q^{28} - 12 q^{29} - 8 q^{30}+ \cdots + 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/85\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.677603i 0.479138i 0.970879 + 0.239569i \(0.0770061\pi\)
−0.970879 + 0.239569i \(0.922994\pi\)
\(3\) −1.66705 1.66705i −0.962474 0.962474i 0.0368470 0.999321i \(-0.488269\pi\)
−0.999321 + 0.0368470i \(0.988269\pi\)
\(4\) 1.54085 0.770427
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 1.12960 1.12960i 0.461158 0.461158i
\(7\) 3.02462 3.02462i 1.14320 1.14320i 0.155339 0.987861i \(-0.450353\pi\)
0.987861 0.155339i \(-0.0496470\pi\)
\(8\) 2.39929i 0.848279i
\(9\) 2.55814i 0.852712i
\(10\) −0.479138 + 0.479138i −0.151517 + 0.151517i
\(11\) −1.17133 + 1.17133i −0.353168 + 0.353168i −0.861287 0.508119i \(-0.830341\pi\)
0.508119 + 0.861287i \(0.330341\pi\)
\(12\) −2.56869 2.56869i −0.741516 0.741516i
\(13\) −6.21427 −1.72353 −0.861764 0.507309i \(-0.830640\pi\)
−0.861764 + 0.507309i \(0.830640\pi\)
\(14\) 2.04950 + 2.04950i 0.547751 + 0.547751i
\(15\) 2.35757i 0.608722i
\(16\) 1.45594 0.363984
\(17\) −1.32974 + 3.90279i −0.322509 + 0.946566i
\(18\) −1.73340 −0.408567
\(19\) 3.38977i 0.777667i 0.921308 + 0.388834i \(0.127122\pi\)
−0.921308 + 0.388834i \(0.872878\pi\)
\(20\) 1.08955 + 1.08955i 0.243630 + 0.243630i
\(21\) −10.0844 −2.20060
\(22\) −0.793694 0.793694i −0.169216 0.169216i
\(23\) 3.30530 3.30530i 0.689202 0.689202i −0.272854 0.962056i \(-0.587967\pi\)
0.962056 + 0.272854i \(0.0879675\pi\)
\(24\) 3.99975 3.99975i 0.816446 0.816446i
\(25\) 1.00000i 0.200000i
\(26\) 4.21081i 0.825808i
\(27\) −0.736610 + 0.736610i −0.141761 + 0.141761i
\(28\) 4.66050 4.66050i 0.880752 0.880752i
\(29\) −2.57924 2.57924i −0.478952 0.478952i 0.425844 0.904796i \(-0.359977\pi\)
−0.904796 + 0.425844i \(0.859977\pi\)
\(30\) 1.59750 0.291662
\(31\) −2.12106 2.12106i −0.380953 0.380953i 0.490492 0.871446i \(-0.336817\pi\)
−0.871446 + 0.490492i \(0.836817\pi\)
\(32\) 5.78514i 1.02268i
\(33\) 3.90532 0.679830
\(34\) −2.64455 0.901035i −0.453536 0.154526i
\(35\) 4.27746 0.723023
\(36\) 3.94171i 0.656952i
\(37\) 3.78314 + 3.78314i 0.621945 + 0.621945i 0.946029 0.324083i \(-0.105056\pi\)
−0.324083 + 0.946029i \(0.605056\pi\)
\(38\) −2.29692 −0.372610
\(39\) 10.3595 + 10.3595i 1.65885 + 1.65885i
\(40\) −1.69656 + 1.69656i −0.268249 + 0.268249i
\(41\) −1.54740 + 1.54740i −0.241664 + 0.241664i −0.817538 0.575874i \(-0.804662\pi\)
0.575874 + 0.817538i \(0.304662\pi\)
\(42\) 6.83324i 1.05439i
\(43\) 0.998176i 0.152220i −0.997099 0.0761102i \(-0.975750\pi\)
0.997099 0.0761102i \(-0.0242501\pi\)
\(44\) −1.80484 + 1.80484i −0.272090 + 0.272090i
\(45\) −1.80888 + 1.80888i −0.269651 + 0.269651i
\(46\) 2.23968 + 2.23968i 0.330223 + 0.330223i
\(47\) −2.00393 −0.292303 −0.146152 0.989262i \(-0.546689\pi\)
−0.146152 + 0.989262i \(0.546689\pi\)
\(48\) −2.42713 2.42713i −0.350326 0.350326i
\(49\) 11.2967i 1.61381i
\(50\) −0.677603 −0.0958276
\(51\) 8.72291 4.28942i 1.22145 0.600639i
\(52\) −9.57528 −1.32785
\(53\) 6.95444i 0.955266i 0.878560 + 0.477633i \(0.158505\pi\)
−0.878560 + 0.477633i \(0.841495\pi\)
\(54\) −0.499130 0.499130i −0.0679229 0.0679229i
\(55\) −1.65650 −0.223363
\(56\) 7.25696 + 7.25696i 0.969752 + 0.969752i
\(57\) 5.65093 5.65093i 0.748484 0.748484i
\(58\) 1.74770 1.74770i 0.229484 0.229484i
\(59\) 6.30165i 0.820405i −0.911995 0.410202i \(-0.865458\pi\)
0.911995 0.410202i \(-0.134542\pi\)
\(60\) 3.63267i 0.468976i
\(61\) 4.62096 4.62096i 0.591653 0.591653i −0.346425 0.938078i \(-0.612604\pi\)
0.938078 + 0.346425i \(0.112604\pi\)
\(62\) 1.43724 1.43724i 0.182529 0.182529i
\(63\) 7.73740 + 7.73740i 0.974821 + 0.974821i
\(64\) −1.00815 −0.126019
\(65\) −4.39415 4.39415i −0.545028 0.545028i
\(66\) 2.64626i 0.325732i
\(67\) 5.80078 0.708678 0.354339 0.935117i \(-0.384706\pi\)
0.354339 + 0.935117i \(0.384706\pi\)
\(68\) −2.04893 + 6.01363i −0.248469 + 0.729260i
\(69\) −11.0202 −1.32668
\(70\) 2.89842i 0.346428i
\(71\) −9.60714 9.60714i −1.14016 1.14016i −0.988421 0.151736i \(-0.951514\pi\)
−0.151736 0.988421i \(-0.548486\pi\)
\(72\) −6.13772 −0.723337
\(73\) −7.01789 7.01789i −0.821382 0.821382i 0.164924 0.986306i \(-0.447262\pi\)
−0.986306 + 0.164924i \(0.947262\pi\)
\(74\) −2.56347 + 2.56347i −0.297997 + 0.297997i
\(75\) 1.66705 1.66705i 0.192495 0.192495i
\(76\) 5.22314i 0.599136i
\(77\) 7.08564i 0.807483i
\(78\) −7.01965 + 7.01965i −0.794818 + 0.794818i
\(79\) 0.820929 0.820929i 0.0923617 0.0923617i −0.659416 0.751778i \(-0.729197\pi\)
0.751778 + 0.659416i \(0.229197\pi\)
\(80\) 1.02950 + 1.02950i 0.115102 + 0.115102i
\(81\) 10.1303 1.12559
\(82\) −1.04853 1.04853i −0.115790 0.115790i
\(83\) 3.65934i 0.401665i −0.979626 0.200832i \(-0.935635\pi\)
0.979626 0.200832i \(-0.0643647\pi\)
\(84\) −15.5386 −1.69540
\(85\) −3.69996 + 1.81943i −0.401317 + 0.197344i
\(86\) 0.676367 0.0729346
\(87\) 8.59945i 0.921958i
\(88\) −2.81035 2.81035i −0.299585 0.299585i
\(89\) 2.69634 0.285811 0.142906 0.989736i \(-0.454355\pi\)
0.142906 + 0.989736i \(0.454355\pi\)
\(90\) −1.22570 1.22570i −0.129200 0.129200i
\(91\) −18.7958 + 18.7958i −1.97034 + 1.97034i
\(92\) 5.09298 5.09298i 0.530980 0.530980i
\(93\) 7.07184i 0.733315i
\(94\) 1.35787i 0.140054i
\(95\) −2.39693 + 2.39693i −0.245920 + 0.245920i
\(96\) 9.64413 9.64413i 0.984300 0.984300i
\(97\) 7.40348 + 7.40348i 0.751709 + 0.751709i 0.974798 0.223089i \(-0.0716141\pi\)
−0.223089 + 0.974798i \(0.571614\pi\)
\(98\) 7.65468 0.773239
\(99\) −2.99641 2.99641i −0.301151 0.301151i
\(100\) 1.54085i 0.154085i
\(101\) 11.5529 1.14956 0.574779 0.818309i \(-0.305088\pi\)
0.574779 + 0.818309i \(0.305088\pi\)
\(102\) 2.90653 + 5.91067i 0.287789 + 0.585244i
\(103\) 11.3302 1.11640 0.558198 0.829708i \(-0.311493\pi\)
0.558198 + 0.829708i \(0.311493\pi\)
\(104\) 14.9099i 1.46203i
\(105\) −7.13076 7.13076i −0.695891 0.695891i
\(106\) −4.71235 −0.457704
\(107\) −4.29282 4.29282i −0.415003 0.415003i 0.468474 0.883477i \(-0.344804\pi\)
−0.883477 + 0.468474i \(0.844804\pi\)
\(108\) −1.13501 + 1.13501i −0.109216 + 0.109216i
\(109\) −2.17036 + 2.17036i −0.207882 + 0.207882i −0.803367 0.595484i \(-0.796960\pi\)
0.595484 + 0.803367i \(0.296960\pi\)
\(110\) 1.12245i 0.107022i
\(111\) 12.6134i 1.19721i
\(112\) 4.40366 4.40366i 0.416107 0.416107i
\(113\) 5.22143 5.22143i 0.491191 0.491191i −0.417491 0.908681i \(-0.637090\pi\)
0.908681 + 0.417491i \(0.137090\pi\)
\(114\) 3.82909 + 3.82909i 0.358627 + 0.358627i
\(115\) 4.67439 0.435890
\(116\) −3.97422 3.97422i −0.368998 0.368998i
\(117\) 15.8969i 1.46967i
\(118\) 4.27002 0.393087
\(119\) 7.78253 + 15.8264i 0.713423 + 1.45081i
\(120\) 5.65650 0.516366
\(121\) 8.25599i 0.750545i
\(122\) 3.13118 + 3.13118i 0.283484 + 0.283484i
\(123\) 5.15921 0.465191
\(124\) −3.26824 3.26824i −0.293497 0.293497i
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) −5.24289 + 5.24289i −0.467074 + 0.467074i
\(127\) 14.3835i 1.27633i −0.769900 0.638164i \(-0.779694\pi\)
0.769900 0.638164i \(-0.220306\pi\)
\(128\) 10.8871i 0.962297i
\(129\) −1.66401 + 1.66401i −0.146508 + 0.146508i
\(130\) 2.97749 2.97749i 0.261143 0.261143i
\(131\) −3.29797 3.29797i −0.288145 0.288145i 0.548202 0.836346i \(-0.315313\pi\)
−0.836346 + 0.548202i \(0.815313\pi\)
\(132\) 6.01753 0.523759
\(133\) 10.2528 + 10.2528i 0.889029 + 0.889029i
\(134\) 3.93063i 0.339554i
\(135\) −1.04172 −0.0896573
\(136\) −9.36395 3.19043i −0.802952 0.273577i
\(137\) −14.5618 −1.24410 −0.622049 0.782978i \(-0.713700\pi\)
−0.622049 + 0.782978i \(0.713700\pi\)
\(138\) 7.46733i 0.635662i
\(139\) −3.79682 3.79682i −0.322042 0.322042i 0.527508 0.849550i \(-0.323127\pi\)
−0.849550 + 0.527508i \(0.823127\pi\)
\(140\) 6.59095 0.557037
\(141\) 3.34066 + 3.34066i 0.281334 + 0.281334i
\(142\) 6.50983 6.50983i 0.546293 0.546293i
\(143\) 7.27893 7.27893i 0.608695 0.608695i
\(144\) 3.72449i 0.310374i
\(145\) 3.64759i 0.302916i
\(146\) 4.75535 4.75535i 0.393555 0.393555i
\(147\) −18.8322 + 18.8322i −1.55325 + 1.55325i
\(148\) 5.82927 + 5.82927i 0.479163 + 0.479163i
\(149\) −12.6885 −1.03948 −0.519741 0.854324i \(-0.673971\pi\)
−0.519741 + 0.854324i \(0.673971\pi\)
\(150\) 1.12960 + 1.12960i 0.0922315 + 0.0922315i
\(151\) 16.2607i 1.32327i 0.749824 + 0.661637i \(0.230138\pi\)
−0.749824 + 0.661637i \(0.769862\pi\)
\(152\) −8.13306 −0.659678
\(153\) −9.98388 3.40165i −0.807149 0.275007i
\(154\) −4.80125 −0.386896
\(155\) 2.99963i 0.240936i
\(156\) 15.9625 + 15.9625i 1.27802 + 1.27802i
\(157\) 10.0238 0.799985 0.399993 0.916518i \(-0.369013\pi\)
0.399993 + 0.916518i \(0.369013\pi\)
\(158\) 0.556264 + 0.556264i 0.0442540 + 0.0442540i
\(159\) 11.5934 11.5934i 0.919418 0.919418i
\(160\) −4.09071 + 4.09071i −0.323399 + 0.323399i
\(161\) 19.9946i 1.57579i
\(162\) 6.86436i 0.539315i
\(163\) −5.68932 + 5.68932i −0.445622 + 0.445622i −0.893896 0.448274i \(-0.852039\pi\)
0.448274 + 0.893896i \(0.352039\pi\)
\(164\) −2.38432 + 2.38432i −0.186184 + 0.186184i
\(165\) 2.76148 + 2.76148i 0.214981 + 0.214981i
\(166\) 2.47958 0.192453
\(167\) 9.12361 + 9.12361i 0.706006 + 0.706006i 0.965693 0.259687i \(-0.0836192\pi\)
−0.259687 + 0.965693i \(0.583619\pi\)
\(168\) 24.1955i 1.86672i
\(169\) 25.6171 1.97055
\(170\) −1.23285 2.50710i −0.0945552 0.192286i
\(171\) −8.67150 −0.663126
\(172\) 1.53804i 0.117275i
\(173\) −11.6412 11.6412i −0.885065 0.885065i 0.108979 0.994044i \(-0.465242\pi\)
−0.994044 + 0.108979i \(0.965242\pi\)
\(174\) −5.82701 −0.441745
\(175\) 3.02462 + 3.02462i 0.228640 + 0.228640i
\(176\) −1.70538 + 1.70538i −0.128548 + 0.128548i
\(177\) −10.5052 + 10.5052i −0.789618 + 0.789618i
\(178\) 1.82705i 0.136943i
\(179\) 13.9304i 1.04121i −0.853799 0.520603i \(-0.825707\pi\)
0.853799 0.520603i \(-0.174293\pi\)
\(180\) −2.78721 + 2.78721i −0.207747 + 0.207747i
\(181\) −9.22755 + 9.22755i −0.685878 + 0.685878i −0.961318 0.275440i \(-0.911176\pi\)
0.275440 + 0.961318i \(0.411176\pi\)
\(182\) −12.7361 12.7361i −0.944064 0.944064i
\(183\) −15.4068 −1.13890
\(184\) 7.93038 + 7.93038i 0.584635 + 0.584635i
\(185\) 5.35017i 0.393353i
\(186\) −4.79190 −0.351359
\(187\) −3.01389 6.12900i −0.220397 0.448197i
\(188\) −3.08776 −0.225198
\(189\) 4.45594i 0.324122i
\(190\) −1.62417 1.62417i −0.117830 0.117830i
\(191\) 4.75563 0.344105 0.172053 0.985088i \(-0.444960\pi\)
0.172053 + 0.985088i \(0.444960\pi\)
\(192\) 1.68064 + 1.68064i 0.121290 + 0.121290i
\(193\) −9.85705 + 9.85705i −0.709526 + 0.709526i −0.966435 0.256910i \(-0.917296\pi\)
0.256910 + 0.966435i \(0.417296\pi\)
\(194\) −5.01662 + 5.01662i −0.360172 + 0.360172i
\(195\) 14.6506i 1.04915i
\(196\) 17.4066i 1.24333i
\(197\) 10.6844 10.6844i 0.761232 0.761232i −0.215313 0.976545i \(-0.569077\pi\)
0.976545 + 0.215313i \(0.0690771\pi\)
\(198\) 2.03038 2.03038i 0.144293 0.144293i
\(199\) −1.44944 1.44944i −0.102748 0.102748i 0.653864 0.756612i \(-0.273147\pi\)
−0.756612 + 0.653864i \(0.773147\pi\)
\(200\) −2.39929 −0.169656
\(201\) −9.67021 9.67021i −0.682084 0.682084i
\(202\) 7.82829i 0.550797i
\(203\) −15.6024 −1.09508
\(204\) 13.4407 6.60937i 0.941039 0.462749i
\(205\) −2.18836 −0.152842
\(206\) 7.67737i 0.534907i
\(207\) 8.45540 + 8.45540i 0.587691 + 0.587691i
\(208\) −9.04759 −0.627337
\(209\) −3.97053 3.97053i −0.274647 0.274647i
\(210\) 4.83183 4.83183i 0.333428 0.333428i
\(211\) −0.309914 + 0.309914i −0.0213353 + 0.0213353i −0.717694 0.696359i \(-0.754802\pi\)
0.696359 + 0.717694i \(0.254802\pi\)
\(212\) 10.7158i 0.735962i
\(213\) 32.0312i 2.19474i
\(214\) 2.90883 2.90883i 0.198844 0.198844i
\(215\) 0.705817 0.705817i 0.0481363 0.0481363i
\(216\) −1.76734 1.76734i −0.120253 0.120253i
\(217\) −12.8308 −0.871012
\(218\) −1.47064 1.47064i −0.0996044 0.0996044i
\(219\) 23.3984i 1.58112i
\(220\) −2.55243 −0.172085
\(221\) 8.26335 24.2530i 0.555853 1.63143i
\(222\) 8.54689 0.573630
\(223\) 27.2421i 1.82427i −0.409893 0.912134i \(-0.634434\pi\)
0.409893 0.912134i \(-0.365566\pi\)
\(224\) 17.4979 + 17.4979i 1.16913 + 1.16913i
\(225\) −2.55814 −0.170542
\(226\) 3.53806 + 3.53806i 0.235348 + 0.235348i
\(227\) 6.54878 6.54878i 0.434658 0.434658i −0.455551 0.890209i \(-0.650558\pi\)
0.890209 + 0.455551i \(0.150558\pi\)
\(228\) 8.70726 8.70726i 0.576652 0.576652i
\(229\) 11.0731i 0.731728i 0.930668 + 0.365864i \(0.119227\pi\)
−0.930668 + 0.365864i \(0.880773\pi\)
\(230\) 3.16739i 0.208851i
\(231\) 11.8121 11.8121i 0.777182 0.777182i
\(232\) 6.18835 6.18835i 0.406285 0.406285i
\(233\) −10.9498 10.9498i −0.717344 0.717344i 0.250717 0.968060i \(-0.419334\pi\)
−0.968060 + 0.250717i \(0.919334\pi\)
\(234\) 10.7718 0.704176
\(235\) −1.41699 1.41699i −0.0924344 0.0924344i
\(236\) 9.70992i 0.632062i
\(237\) −2.73706 −0.177791
\(238\) −10.7240 + 5.27347i −0.695137 + 0.341828i
\(239\) 2.34216 0.151501 0.0757507 0.997127i \(-0.475865\pi\)
0.0757507 + 0.997127i \(0.475865\pi\)
\(240\) 3.43248i 0.221565i
\(241\) 21.5910 + 21.5910i 1.39080 + 1.39080i 0.823545 + 0.567251i \(0.191993\pi\)
0.567251 + 0.823545i \(0.308007\pi\)
\(242\) −5.59429 −0.359615
\(243\) −14.6780 14.6780i −0.941594 0.941594i
\(244\) 7.12022 7.12022i 0.455826 0.455826i
\(245\) 7.98797 7.98797i 0.510333 0.510333i
\(246\) 3.49590i 0.222890i
\(247\) 21.0650i 1.34033i
\(248\) 5.08904 5.08904i 0.323154 0.323154i
\(249\) −6.10032 + 6.10032i −0.386592 + 0.386592i
\(250\) −0.479138 0.479138i −0.0303033 0.0303033i
\(251\) −9.23001 −0.582593 −0.291297 0.956633i \(-0.594087\pi\)
−0.291297 + 0.956633i \(0.594087\pi\)
\(252\) 11.9222 + 11.9222i 0.751028 + 0.751028i
\(253\) 7.74315i 0.486808i
\(254\) 9.74630 0.611537
\(255\) 9.20111 + 3.13495i 0.576196 + 0.196318i
\(256\) −9.39347 −0.587092
\(257\) 3.23036i 0.201504i −0.994912 0.100752i \(-0.967875\pi\)
0.994912 0.100752i \(-0.0321249\pi\)
\(258\) −1.12754 1.12754i −0.0701976 0.0701976i
\(259\) 22.8852 1.42202
\(260\) −6.77075 6.77075i −0.419904 0.419904i
\(261\) 6.59804 6.59804i 0.408408 0.408408i
\(262\) 2.23471 2.23471i 0.138061 0.138061i
\(263\) 12.4719i 0.769051i 0.923114 + 0.384526i \(0.125635\pi\)
−0.923114 + 0.384526i \(0.874365\pi\)
\(264\) 9.37002i 0.576685i
\(265\) −4.91753 + 4.91753i −0.302082 + 0.302082i
\(266\) −6.94732 + 6.94732i −0.425968 + 0.425968i
\(267\) −4.49494 4.49494i −0.275086 0.275086i
\(268\) 8.93815 0.545984
\(269\) 0.219219 + 0.219219i 0.0133660 + 0.0133660i 0.713758 0.700392i \(-0.246992\pi\)
−0.700392 + 0.713758i \(0.746992\pi\)
\(270\) 0.705876i 0.0429582i
\(271\) −18.3441 −1.11433 −0.557164 0.830403i \(-0.688110\pi\)
−0.557164 + 0.830403i \(0.688110\pi\)
\(272\) −1.93602 + 5.68222i −0.117388 + 0.344535i
\(273\) 62.6673 3.79280
\(274\) 9.86712i 0.596094i
\(275\) −1.17133 1.17133i −0.0706336 0.0706336i
\(276\) −16.9805 −1.02211
\(277\) 9.01877 + 9.01877i 0.541885 + 0.541885i 0.924081 0.382196i \(-0.124832\pi\)
−0.382196 + 0.924081i \(0.624832\pi\)
\(278\) 2.57274 2.57274i 0.154303 0.154303i
\(279\) 5.42596 5.42596i 0.324843 0.324843i
\(280\) 10.2629i 0.613325i
\(281\) 31.1275i 1.85691i 0.371441 + 0.928457i \(0.378864\pi\)
−0.371441 + 0.928457i \(0.621136\pi\)
\(282\) −2.26364 + 2.26364i −0.134798 + 0.134798i
\(283\) −19.6967 + 19.6967i −1.17084 + 1.17084i −0.188836 + 0.982009i \(0.560472\pi\)
−0.982009 + 0.188836i \(0.939528\pi\)
\(284\) −14.8032 14.8032i −0.878408 0.878408i
\(285\) 7.99163 0.473383
\(286\) 4.93223 + 4.93223i 0.291649 + 0.291649i
\(287\) 9.36063i 0.552541i
\(288\) −14.7992 −0.872049
\(289\) −13.4636 10.3794i −0.791976 0.610552i
\(290\) 2.47162 0.145138
\(291\) 24.6840i 1.44700i
\(292\) −10.8135 10.8135i −0.632815 0.632815i
\(293\) 31.4302 1.83617 0.918086 0.396381i \(-0.129734\pi\)
0.918086 + 0.396381i \(0.129734\pi\)
\(294\) −12.7608 12.7608i −0.744223 0.744223i
\(295\) 4.45594 4.45594i 0.259435 0.259435i
\(296\) −9.07688 + 9.07688i −0.527583 + 0.527583i
\(297\) 1.72562i 0.100131i
\(298\) 8.59776i 0.498055i
\(299\) −20.5400 + 20.5400i −1.18786 + 1.18786i
\(300\) 2.56869 2.56869i 0.148303 0.148303i
\(301\) −3.01911 3.01911i −0.174018 0.174018i
\(302\) −11.0183 −0.634031
\(303\) −19.2593 19.2593i −1.10642 1.10642i
\(304\) 4.93530i 0.283059i
\(305\) 6.53502 0.374194
\(306\) 2.30497 6.76511i 0.131766 0.386736i
\(307\) −4.21985 −0.240839 −0.120420 0.992723i \(-0.538424\pi\)
−0.120420 + 0.992723i \(0.538424\pi\)
\(308\) 10.9179i 0.622107i
\(309\) −18.8880 18.8880i −1.07450 1.07450i
\(310\) 2.03256 0.115442
\(311\) 10.8965 + 10.8965i 0.617882 + 0.617882i 0.944988 0.327105i \(-0.106073\pi\)
−0.327105 + 0.944988i \(0.606073\pi\)
\(312\) −24.8555 + 24.8555i −1.40717 + 1.40717i
\(313\) 7.67977 7.67977i 0.434086 0.434086i −0.455930 0.890016i \(-0.650693\pi\)
0.890016 + 0.455930i \(0.150693\pi\)
\(314\) 6.79215i 0.383303i
\(315\) 10.9423i 0.616531i
\(316\) 1.26493 1.26493i 0.0711579 0.0711579i
\(317\) 20.4263 20.4263i 1.14726 1.14726i 0.160167 0.987090i \(-0.448797\pi\)
0.987090 0.160167i \(-0.0512032\pi\)
\(318\) 7.85574 + 7.85574i 0.440528 + 0.440528i
\(319\) 6.04225 0.338301
\(320\) −0.712871 0.712871i −0.0398507 0.0398507i
\(321\) 14.3127i 0.798859i
\(322\) 13.5484 0.755022
\(323\) −13.2296 4.50751i −0.736114 0.250804i
\(324\) 15.6094 0.867188
\(325\) 6.21427i 0.344706i
\(326\) −3.85510 3.85510i −0.213514 0.213514i
\(327\) 7.23620 0.400163
\(328\) −3.71268 3.71268i −0.204998 0.204998i
\(329\) −6.06113 + 6.06113i −0.334161 + 0.334161i
\(330\) −1.87119 + 1.87119i −0.103006 + 0.103006i
\(331\) 7.29249i 0.400832i −0.979711 0.200416i \(-0.935771\pi\)
0.979711 0.200416i \(-0.0642293\pi\)
\(332\) 5.63851i 0.309453i
\(333\) −9.67780 + 9.67780i −0.530340 + 0.530340i
\(334\) −6.18219 + 6.18219i −0.338274 + 0.338274i
\(335\) 4.10177 + 4.10177i 0.224104 + 0.224104i
\(336\) −14.6823 −0.800985
\(337\) −9.47979 9.47979i −0.516397 0.516397i 0.400082 0.916479i \(-0.368982\pi\)
−0.916479 + 0.400082i \(0.868982\pi\)
\(338\) 17.3583i 0.944165i
\(339\) −17.4088 −0.945516
\(340\) −5.70109 + 2.80347i −0.309185 + 0.152039i
\(341\) 4.96890 0.269081
\(342\) 5.87584i 0.317729i
\(343\) −12.9959 12.9959i −0.701712 0.701712i
\(344\) 2.39492 0.129125
\(345\) −7.79247 7.79247i −0.419532 0.419532i
\(346\) 7.88813 7.88813i 0.424068 0.424068i
\(347\) −23.6284 + 23.6284i −1.26844 + 1.26844i −0.321543 + 0.946895i \(0.604202\pi\)
−0.946895 + 0.321543i \(0.895798\pi\)
\(348\) 13.2505i 0.710301i
\(349\) 22.4213i 1.20019i −0.799930 0.600093i \(-0.795130\pi\)
0.799930 0.600093i \(-0.204870\pi\)
\(350\) −2.04950 + 2.04950i −0.109550 + 0.109550i
\(351\) 4.57749 4.57749i 0.244329 0.244329i
\(352\) −6.77628 6.77628i −0.361177 0.361177i
\(353\) 22.2555 1.18454 0.592270 0.805739i \(-0.298232\pi\)
0.592270 + 0.805739i \(0.298232\pi\)
\(354\) −7.11835 7.11835i −0.378336 0.378336i
\(355\) 13.5865i 0.721099i
\(356\) 4.15466 0.220197
\(357\) 13.4096 39.3574i 0.709713 2.08302i
\(358\) 9.43927 0.498881
\(359\) 36.6674i 1.93523i 0.252424 + 0.967617i \(0.418772\pi\)
−0.252424 + 0.967617i \(0.581228\pi\)
\(360\) −4.34002 4.34002i −0.228739 0.228739i
\(361\) 7.50945 0.395234
\(362\) −6.25262 6.25262i −0.328630 0.328630i
\(363\) 13.7632 13.7632i 0.722380 0.722380i
\(364\) −28.9616 + 28.9616i −1.51800 + 1.51800i
\(365\) 9.92480i 0.519488i
\(366\) 10.4397i 0.545691i
\(367\) −0.0960113 + 0.0960113i −0.00501175 + 0.00501175i −0.709608 0.704596i \(-0.751128\pi\)
0.704596 + 0.709608i \(0.251128\pi\)
\(368\) 4.81231 4.81231i 0.250859 0.250859i
\(369\) −3.95847 3.95847i −0.206070 0.206070i
\(370\) −3.62530 −0.188470
\(371\) 21.0346 + 21.0346i 1.09206 + 1.09206i
\(372\) 10.8967i 0.564966i
\(373\) −0.927465 −0.0480223 −0.0240111 0.999712i \(-0.507644\pi\)
−0.0240111 + 0.999712i \(0.507644\pi\)
\(374\) 4.15303 2.04222i 0.214748 0.105601i
\(375\) 2.35757 0.121744
\(376\) 4.80802i 0.247955i
\(377\) 16.0281 + 16.0281i 0.825487 + 0.825487i
\(378\) −3.01936 −0.155299
\(379\) 5.93013 + 5.93013i 0.304610 + 0.304610i 0.842814 0.538204i \(-0.180897\pi\)
−0.538204 + 0.842814i \(0.680897\pi\)
\(380\) −3.69332 + 3.69332i −0.189463 + 0.189463i
\(381\) −23.9780 + 23.9780i −1.22843 + 1.22843i
\(382\) 3.22243i 0.164874i
\(383\) 21.9106i 1.11958i 0.828635 + 0.559789i \(0.189118\pi\)
−0.828635 + 0.559789i \(0.810882\pi\)
\(384\) 18.1495 18.1495i 0.926186 0.926186i
\(385\) −5.01030 + 5.01030i −0.255349 + 0.255349i
\(386\) −6.67917 6.67917i −0.339961 0.339961i
\(387\) 2.55347 0.129800
\(388\) 11.4077 + 11.4077i 0.579137 + 0.579137i
\(389\) 12.7622i 0.647071i −0.946216 0.323536i \(-0.895128\pi\)
0.946216 0.323536i \(-0.104872\pi\)
\(390\) −9.92728 −0.502687
\(391\) 8.50471 + 17.2951i 0.430102 + 0.874649i
\(392\) 27.1041 1.36896
\(393\) 10.9958i 0.554663i
\(394\) 7.23979 + 7.23979i 0.364735 + 0.364735i
\(395\) 1.16097 0.0584147
\(396\) −4.61703 4.61703i −0.232014 0.232014i
\(397\) −17.8029 + 17.8029i −0.893501 + 0.893501i −0.994851 0.101350i \(-0.967684\pi\)
0.101350 + 0.994851i \(0.467684\pi\)
\(398\) 0.982144 0.982144i 0.0492304 0.0492304i
\(399\) 34.1839i 1.71133i
\(400\) 1.45594i 0.0727969i
\(401\) 4.08634 4.08634i 0.204062 0.204062i −0.597676 0.801738i \(-0.703909\pi\)
0.801738 + 0.597676i \(0.203909\pi\)
\(402\) 6.55256 6.55256i 0.326812 0.326812i
\(403\) 13.1808 + 13.1808i 0.656584 + 0.656584i
\(404\) 17.8014 0.885650
\(405\) 7.16324 + 7.16324i 0.355944 + 0.355944i
\(406\) 10.5723i 0.524693i
\(407\) −8.86259 −0.439302
\(408\) 10.2916 + 20.9288i 0.509509 + 1.03613i
\(409\) −15.4742 −0.765149 −0.382575 0.923925i \(-0.624963\pi\)
−0.382575 + 0.923925i \(0.624963\pi\)
\(410\) 1.48284i 0.0732323i
\(411\) 24.2753 + 24.2753i 1.19741 + 1.19741i
\(412\) 17.4581 0.860101
\(413\) −19.0601 19.0601i −0.937887 0.937887i
\(414\) −5.72941 + 5.72941i −0.281585 + 0.281585i
\(415\) 2.58755 2.58755i 0.127018 0.127018i
\(416\) 35.9504i 1.76261i
\(417\) 12.6590i 0.619915i
\(418\) 2.69044 2.69044i 0.131594 0.131594i
\(419\) 12.8210 12.8210i 0.626348 0.626348i −0.320799 0.947147i \(-0.603952\pi\)
0.947147 + 0.320799i \(0.103952\pi\)
\(420\) −10.9875 10.9875i −0.536133 0.536133i
\(421\) 9.81137 0.478177 0.239089 0.970998i \(-0.423151\pi\)
0.239089 + 0.970998i \(0.423151\pi\)
\(422\) −0.209998 0.209998i −0.0102226 0.0102226i
\(423\) 5.12633i 0.249250i
\(424\) −16.6857 −0.810331
\(425\) −3.90279 1.32974i −0.189313 0.0645018i
\(426\) −21.7045 −1.05158
\(427\) 27.9533i 1.35276i
\(428\) −6.61461 6.61461i −0.319729 0.319729i
\(429\) −24.2687 −1.17171
\(430\) 0.478264 + 0.478264i 0.0230639 + 0.0230639i
\(431\) 12.8168 12.8168i 0.617364 0.617364i −0.327490 0.944855i \(-0.606203\pi\)
0.944855 + 0.327490i \(0.106203\pi\)
\(432\) −1.07246 + 1.07246i −0.0515987 + 0.0515987i
\(433\) 12.8308i 0.616610i 0.951287 + 0.308305i \(0.0997618\pi\)
−0.951287 + 0.308305i \(0.900238\pi\)
\(434\) 8.69420i 0.417335i
\(435\) −6.08073 + 6.08073i −0.291549 + 0.291549i
\(436\) −3.34420 + 3.34420i −0.160158 + 0.160158i
\(437\) 11.2042 + 11.2042i 0.535970 + 0.535970i
\(438\) −15.8548 −0.757573
\(439\) −17.1720 17.1720i −0.819573 0.819573i 0.166473 0.986046i \(-0.446762\pi\)
−0.986046 + 0.166473i \(0.946762\pi\)
\(440\) 3.97444i 0.189474i
\(441\) 28.8985 1.37612
\(442\) 16.4339 + 5.59927i 0.781682 + 0.266330i
\(443\) −16.1216 −0.765962 −0.382981 0.923756i \(-0.625103\pi\)
−0.382981 + 0.923756i \(0.625103\pi\)
\(444\) 19.4354i 0.922364i
\(445\) 1.90660 + 1.90660i 0.0903815 + 0.0903815i
\(446\) 18.4594 0.874076
\(447\) 21.1524 + 21.1524i 1.00047 + 1.00047i
\(448\) −3.04928 + 3.04928i −0.144065 + 0.144065i
\(449\) 13.5245 13.5245i 0.638259 0.638259i −0.311867 0.950126i \(-0.600954\pi\)
0.950126 + 0.311867i \(0.100954\pi\)
\(450\) 1.73340i 0.0817133i
\(451\) 3.62503i 0.170696i
\(452\) 8.04546 8.04546i 0.378426 0.378426i
\(453\) 27.1074 27.1074i 1.27362 1.27362i
\(454\) 4.43748 + 4.43748i 0.208261 + 0.208261i
\(455\) −26.5813 −1.24615
\(456\) 13.5582 + 13.5582i 0.634923 + 0.634923i
\(457\) 3.68314i 0.172290i 0.996283 + 0.0861451i \(0.0274549\pi\)
−0.996283 + 0.0861451i \(0.972545\pi\)
\(458\) −7.50314 −0.350599
\(459\) −1.89534 3.85434i −0.0884669 0.179905i
\(460\) 7.20256 0.335821
\(461\) 19.7569i 0.920172i 0.887874 + 0.460086i \(0.152181\pi\)
−0.887874 + 0.460086i \(0.847819\pi\)
\(462\) 8.00394 + 8.00394i 0.372377 + 0.372377i
\(463\) 23.6496 1.09909 0.549545 0.835464i \(-0.314801\pi\)
0.549545 + 0.835464i \(0.314801\pi\)
\(464\) −3.75521 3.75521i −0.174331 0.174331i
\(465\) −5.00054 + 5.00054i −0.231895 + 0.231895i
\(466\) 7.41961 7.41961i 0.343707 0.343707i
\(467\) 5.50118i 0.254564i −0.991867 0.127282i \(-0.959375\pi\)
0.991867 0.127282i \(-0.0406254\pi\)
\(468\) 24.4949i 1.13228i
\(469\) 17.5452 17.5452i 0.810161 0.810161i
\(470\) 0.960159 0.960159i 0.0442888 0.0442888i
\(471\) −16.7102 16.7102i −0.769965 0.769965i
\(472\) 15.1195 0.695932
\(473\) 1.16919 + 1.16919i 0.0537594 + 0.0537594i
\(474\) 1.85464i 0.0851866i
\(475\) −3.38977 −0.155533
\(476\) 11.9917 + 24.3862i 0.549640 + 1.11774i
\(477\) −17.7904 −0.814567
\(478\) 1.58705i 0.0725901i
\(479\) 7.89487 + 7.89487i 0.360726 + 0.360726i 0.864080 0.503354i \(-0.167901\pi\)
−0.503354 + 0.864080i \(0.667901\pi\)
\(480\) 13.6389 0.622526
\(481\) −23.5095 23.5095i −1.07194 1.07194i
\(482\) −14.6301 + 14.6301i −0.666383 + 0.666383i
\(483\) −33.3320 + 33.3320i −1.51666 + 1.51666i
\(484\) 12.7213i 0.578240i
\(485\) 10.4701i 0.475423i
\(486\) 9.94586 9.94586i 0.451154 0.451154i
\(487\) −25.0619 + 25.0619i −1.13566 + 1.13566i −0.146443 + 0.989219i \(0.546782\pi\)
−0.989219 + 0.146443i \(0.953218\pi\)
\(488\) 11.0870 + 11.0870i 0.501887 + 0.501887i
\(489\) 18.9688 0.857799
\(490\) 5.41268 + 5.41268i 0.244520 + 0.244520i
\(491\) 12.8558i 0.580175i 0.957000 + 0.290087i \(0.0936844\pi\)
−0.957000 + 0.290087i \(0.906316\pi\)
\(492\) 7.94959 0.358395
\(493\) 13.4959 6.63652i 0.607826 0.298894i
\(494\) 14.2737 0.642203
\(495\) 4.23756i 0.190464i
\(496\) −3.08813 3.08813i −0.138661 0.138661i
\(497\) −58.1159 −2.60686
\(498\) −4.13360 4.13360i −0.185231 0.185231i
\(499\) −13.1434 + 13.1434i −0.588380 + 0.588380i −0.937192 0.348813i \(-0.886585\pi\)
0.348813 + 0.937192i \(0.386585\pi\)
\(500\) −1.08955 + 1.08955i −0.0487261 + 0.0487261i
\(501\) 30.4191i 1.35903i
\(502\) 6.25429i 0.279143i
\(503\) −24.0464 + 24.0464i −1.07217 + 1.07217i −0.0749899 + 0.997184i \(0.523892\pi\)
−0.997184 + 0.0749899i \(0.976108\pi\)
\(504\) −18.5643 + 18.5643i −0.826920 + 0.826920i
\(505\) 8.16914 + 8.16914i 0.363522 + 0.363522i
\(506\) −5.24679 −0.233248
\(507\) −42.7052 42.7052i −1.89660 1.89660i
\(508\) 22.1629i 0.983318i
\(509\) −29.8369 −1.32250 −0.661249 0.750167i \(-0.729973\pi\)
−0.661249 + 0.750167i \(0.729973\pi\)
\(510\) −2.12425 + 6.23470i −0.0940635 + 0.276077i
\(511\) −42.4530 −1.87801
\(512\) 15.4092i 0.680999i
\(513\) −2.49694 2.49694i −0.110243 0.110243i
\(514\) 2.18890 0.0965483
\(515\) 8.01165 + 8.01165i 0.353035 + 0.353035i
\(516\) −2.56400 + 2.56400i −0.112874 + 0.112874i
\(517\) 2.34725 2.34725i 0.103232 0.103232i
\(518\) 15.5071i 0.681342i
\(519\) 38.8131i 1.70370i
\(520\) 10.5429 10.5429i 0.462335 0.462335i
\(521\) −27.1655 + 27.1655i −1.19014 + 1.19014i −0.213116 + 0.977027i \(0.568361\pi\)
−0.977027 + 0.213116i \(0.931639\pi\)
\(522\) 4.47085 + 4.47085i 0.195684 + 0.195684i
\(523\) 20.2414 0.885093 0.442547 0.896745i \(-0.354075\pi\)
0.442547 + 0.896745i \(0.354075\pi\)
\(524\) −5.08168 5.08168i −0.221994 0.221994i
\(525\) 10.0844i 0.440120i
\(526\) −8.45101 −0.368482
\(527\) 11.0985 5.45760i 0.483458 0.237737i
\(528\) 5.68591 0.247447
\(529\) 1.15003i 0.0500014i
\(530\) −3.33214 3.33214i −0.144739 0.144739i
\(531\) 16.1205 0.699569
\(532\) 15.7980 + 15.7980i 0.684932 + 0.684932i
\(533\) 9.61599 9.61599i 0.416515 0.416515i
\(534\) 3.04579 3.04579i 0.131804 0.131804i
\(535\) 6.07097i 0.262471i
\(536\) 13.9178i 0.601156i
\(537\) −23.2227 + 23.2227i −1.00213 + 1.00213i
\(538\) −0.148544 + 0.148544i −0.00640417 + 0.00640417i
\(539\) 13.2321 + 13.2321i 0.569947 + 0.569947i
\(540\) −1.60514 −0.0690744
\(541\) 5.16605 + 5.16605i 0.222106 + 0.222106i 0.809385 0.587279i \(-0.199801\pi\)
−0.587279 + 0.809385i \(0.699801\pi\)
\(542\) 12.4301i 0.533916i
\(543\) 30.7656 1.32028
\(544\) −22.5782 7.69271i −0.968032 0.329822i
\(545\) −3.06935 −0.131476
\(546\) 42.4636i 1.81727i
\(547\) −30.9108 30.9108i −1.32165 1.32165i −0.912442 0.409207i \(-0.865806\pi\)
−0.409207 0.912442i \(-0.634194\pi\)
\(548\) −22.4376 −0.958486
\(549\) 11.8210 + 11.8210i 0.504510 + 0.504510i
\(550\) 0.793694 0.793694i 0.0338432 0.0338432i
\(551\) 8.74302 8.74302i 0.372465 0.372465i
\(552\) 26.4407i 1.12539i
\(553\) 4.96600i 0.211176i
\(554\) −6.11115 + 6.11115i −0.259638 + 0.259638i
\(555\) 8.91903 8.91903i 0.378592 0.378592i
\(556\) −5.85035 5.85035i −0.248110 0.248110i
\(557\) 29.0497 1.23088 0.615438 0.788185i \(-0.288979\pi\)
0.615438 + 0.788185i \(0.288979\pi\)
\(558\) 3.67665 + 3.67665i 0.155645 + 0.155645i
\(559\) 6.20293i 0.262356i
\(560\) 6.22772 0.263169
\(561\) −5.19306 + 15.2417i −0.219251 + 0.643504i
\(562\) −21.0921 −0.889718
\(563\) 39.3006i 1.65632i −0.560489 0.828162i \(-0.689387\pi\)
0.560489 0.828162i \(-0.310613\pi\)
\(564\) 5.14747 + 5.14747i 0.216747 + 0.216747i
\(565\) 7.38421 0.310656
\(566\) −13.3465 13.3465i −0.560996 0.560996i
\(567\) 30.6405 30.6405i 1.28678 1.28678i
\(568\) 23.0503 23.0503i 0.967171 0.967171i
\(569\) 14.3009i 0.599525i −0.954014 0.299763i \(-0.903093\pi\)
0.954014 0.299763i \(-0.0969075\pi\)
\(570\) 5.41515i 0.226816i
\(571\) 16.9121 16.9121i 0.707750 0.707750i −0.258311 0.966062i \(-0.583166\pi\)
0.966062 + 0.258311i \(0.0831660\pi\)
\(572\) 11.2158 11.2158i 0.468955 0.468955i
\(573\) −7.92789 7.92789i −0.331192 0.331192i
\(574\) −6.34280 −0.264743
\(575\) 3.30530 + 3.30530i 0.137840 + 0.137840i
\(576\) 2.57899i 0.107458i
\(577\) −5.85190 −0.243618 −0.121809 0.992554i \(-0.538869\pi\)
−0.121809 + 0.992554i \(0.538869\pi\)
\(578\) 7.03310 9.12298i 0.292539 0.379466i
\(579\) 32.8645 1.36580
\(580\) 5.62040i 0.233375i
\(581\) −11.0681 11.0681i −0.459183 0.459183i
\(582\) 16.7259 0.693313
\(583\) −8.14591 8.14591i −0.337369 0.337369i
\(584\) 16.8380 16.8380i 0.696761 0.696761i
\(585\) 11.2408 11.2408i 0.464752 0.464752i
\(586\) 21.2972i 0.879779i
\(587\) 2.30210i 0.0950176i −0.998871 0.0475088i \(-0.984872\pi\)
0.998871 0.0475088i \(-0.0151282\pi\)
\(588\) −29.0177 + 29.0177i −1.19667 + 1.19667i
\(589\) 7.18990 7.18990i 0.296255 0.296255i
\(590\) 3.01936 + 3.01936i 0.124305 + 0.124305i
\(591\) −35.6230 −1.46533
\(592\) 5.50802 + 5.50802i 0.226378 + 0.226378i
\(593\) 4.89325i 0.200942i 0.994940 + 0.100471i \(0.0320349\pi\)
−0.994940 + 0.100471i \(0.967965\pi\)
\(594\) 1.16929 0.0479764
\(595\) −5.68791 + 16.6941i −0.233181 + 0.684390i
\(596\) −19.5511 −0.800844
\(597\) 4.83258i 0.197784i
\(598\) −13.9180 13.9180i −0.569148 0.569148i
\(599\) −6.54372 −0.267369 −0.133685 0.991024i \(-0.542681\pi\)
−0.133685 + 0.991024i \(0.542681\pi\)
\(600\) 3.99975 + 3.99975i 0.163289 + 0.163289i
\(601\) 11.3611 11.3611i 0.463431 0.463431i −0.436347 0.899778i \(-0.643728\pi\)
0.899778 + 0.436347i \(0.143728\pi\)
\(602\) 2.04576 2.04576i 0.0833788 0.0833788i
\(603\) 14.8392i 0.604298i
\(604\) 25.0553i 1.01949i
\(605\) −5.83787 + 5.83787i −0.237343 + 0.237343i
\(606\) 13.0502 13.0502i 0.530128 0.530128i
\(607\) 30.8472 + 30.8472i 1.25205 + 1.25205i 0.954801 + 0.297247i \(0.0960685\pi\)
0.297247 + 0.954801i \(0.403932\pi\)
\(608\) −19.6103 −0.795302
\(609\) 26.0101 + 26.0101i 1.05398 + 1.05398i
\(610\) 4.42815i 0.179291i
\(611\) 12.4530 0.503793
\(612\) −15.3837 5.24145i −0.621849 0.211873i
\(613\) −24.9253 −1.00672 −0.503362 0.864076i \(-0.667904\pi\)
−0.503362 + 0.864076i \(0.667904\pi\)
\(614\) 2.85938i 0.115395i
\(615\) 3.64811 + 3.64811i 0.147106 + 0.147106i
\(616\) −17.0005 −0.684971
\(617\) −12.6091 12.6091i −0.507625 0.507625i 0.406172 0.913797i \(-0.366863\pi\)
−0.913797 + 0.406172i \(0.866863\pi\)
\(618\) 12.7986 12.7986i 0.514834 0.514834i
\(619\) 19.5300 19.5300i 0.784977 0.784977i −0.195689 0.980666i \(-0.562694\pi\)
0.980666 + 0.195689i \(0.0626944\pi\)
\(620\) 4.62199i 0.185624i
\(621\) 4.86943i 0.195404i
\(622\) −7.38349 + 7.38349i −0.296051 + 0.296051i
\(623\) 8.15541 8.15541i 0.326740 0.326740i
\(624\) 15.0828 + 15.0828i 0.603796 + 0.603796i
\(625\) −1.00000 −0.0400000
\(626\) 5.20384 + 5.20384i 0.207987 + 0.207987i
\(627\) 13.2382i 0.528681i
\(628\) 15.4452 0.616330
\(629\) −19.7954 + 9.73424i −0.789295 + 0.388130i
\(630\) −7.41456 −0.295403
\(631\) 38.2023i 1.52081i −0.649448 0.760406i \(-0.725000\pi\)
0.649448 0.760406i \(-0.275000\pi\)
\(632\) 1.96965 + 1.96965i 0.0783484 + 0.0783484i
\(633\) 1.03329 0.0410694
\(634\) 13.8409 + 13.8409i 0.549694 + 0.549694i
\(635\) 10.1707 10.1707i 0.403610 0.403610i
\(636\) 17.8638 17.8638i 0.708345 0.708345i
\(637\) 70.2007i 2.78145i
\(638\) 4.09425i 0.162093i
\(639\) 24.5764 24.5764i 0.972226 0.972226i
\(640\) −7.69837 + 7.69837i −0.304305 + 0.304305i
\(641\) −16.4472 16.4472i −0.649623 0.649623i 0.303279 0.952902i \(-0.401919\pi\)
−0.952902 + 0.303279i \(0.901919\pi\)
\(642\) −9.69836 −0.382764
\(643\) −4.84007 4.84007i −0.190874 0.190874i 0.605200 0.796074i \(-0.293093\pi\)
−0.796074 + 0.605200i \(0.793093\pi\)
\(644\) 30.8087i 1.21403i
\(645\) −2.35327 −0.0926599
\(646\) 3.05430 8.96441i 0.120170 0.352700i
\(647\) 39.1427 1.53886 0.769429 0.638732i \(-0.220541\pi\)
0.769429 + 0.638732i \(0.220541\pi\)
\(648\) 24.3057i 0.954817i
\(649\) 7.38128 + 7.38128i 0.289741 + 0.289741i
\(650\) 4.21081 0.165162
\(651\) 21.3896 + 21.3896i 0.838326 + 0.838326i
\(652\) −8.76641 + 8.76641i −0.343319 + 0.343319i
\(653\) 9.72867 9.72867i 0.380712 0.380712i −0.490646 0.871359i \(-0.663239\pi\)
0.871359 + 0.490646i \(0.163239\pi\)
\(654\) 4.90327i 0.191733i
\(655\) 4.66403i 0.182239i
\(656\) −2.25292 + 2.25292i −0.0879619 + 0.0879619i
\(657\) 17.9527 17.9527i 0.700402 0.700402i
\(658\) −4.10704 4.10704i −0.160109 0.160109i
\(659\) −19.0767 −0.743124 −0.371562 0.928408i \(-0.621178\pi\)
−0.371562 + 0.928408i \(0.621178\pi\)
\(660\) 4.25504 + 4.25504i 0.165627 + 0.165627i
\(661\) 3.89804i 0.151616i 0.997122 + 0.0758082i \(0.0241537\pi\)
−0.997122 + 0.0758082i \(0.975846\pi\)
\(662\) 4.94142 0.192054
\(663\) −54.2065 + 26.6556i −2.10521 + 1.03522i
\(664\) 8.77984 0.340724
\(665\) 14.4996i 0.562271i
\(666\) −6.55771 6.55771i −0.254106 0.254106i
\(667\) −17.0503 −0.660189
\(668\) 14.0582 + 14.0582i 0.543926 + 0.543926i
\(669\) −45.4141 + 45.4141i −1.75581 + 1.75581i
\(670\) −2.77937 + 2.77937i −0.107377 + 0.107377i
\(671\) 10.8253i 0.417906i
\(672\) 58.3398i 2.25050i
\(673\) −6.34918 + 6.34918i −0.244743 + 0.244743i −0.818809 0.574066i \(-0.805365\pi\)
0.574066 + 0.818809i \(0.305365\pi\)
\(674\) 6.42353 6.42353i 0.247425 0.247425i
\(675\) −0.736610 0.736610i −0.0283521 0.0283521i
\(676\) 39.4723 1.51816
\(677\) 21.8144 + 21.8144i 0.838397 + 0.838397i 0.988648 0.150251i \(-0.0480081\pi\)
−0.150251 + 0.988648i \(0.548008\pi\)
\(678\) 11.7963i 0.453033i
\(679\) 44.7855 1.71871
\(680\) −4.36534 8.87729i −0.167403 0.340428i
\(681\) −21.8343 −0.836694
\(682\) 3.36694i 0.128927i
\(683\) 3.16023 + 3.16023i 0.120923 + 0.120923i 0.764979 0.644056i \(-0.222749\pi\)
−0.644056 + 0.764979i \(0.722749\pi\)
\(684\) −13.3615 −0.510890
\(685\) −10.2967 10.2967i −0.393418 0.393418i
\(686\) 8.80606 8.80606i 0.336217 0.336217i
\(687\) 18.4594 18.4594i 0.704270 0.704270i
\(688\) 1.45328i 0.0554059i
\(689\) 43.2168i 1.64643i
\(690\) 5.28020 5.28020i 0.201014 0.201014i
\(691\) 8.55423 8.55423i 0.325418 0.325418i −0.525423 0.850841i \(-0.676093\pi\)
0.850841 + 0.525423i \(0.176093\pi\)
\(692\) −17.9374 17.9374i −0.681878 0.681878i
\(693\) −18.1260 −0.688551
\(694\) −16.0107 16.0107i −0.607757 0.607757i
\(695\) 5.36952i 0.203677i
\(696\) −20.6326 −0.782077
\(697\) −3.98156 8.09684i −0.150812 0.306690i
\(698\) 15.1928 0.575054
\(699\) 36.5077i 1.38085i
\(700\) 4.66050 + 4.66050i 0.176150 + 0.176150i
\(701\) −8.83630 −0.333742 −0.166871 0.985979i \(-0.553366\pi\)
−0.166871 + 0.985979i \(0.553366\pi\)
\(702\) 3.10173 + 3.10173i 0.117067 + 0.117067i
\(703\) −12.8240 + 12.8240i −0.483666 + 0.483666i
\(704\) 1.18087 1.18087i 0.0445059 0.0445059i
\(705\) 4.72440i 0.177931i
\(706\) 15.0804i 0.567558i
\(707\) 34.9432 34.9432i 1.31418 1.31418i
\(708\) −16.1870 + 16.1870i −0.608343 + 0.608343i
\(709\) 18.9439 + 18.9439i 0.711452 + 0.711452i 0.966839 0.255387i \(-0.0822028\pi\)
−0.255387 + 0.966839i \(0.582203\pi\)
\(710\) 9.20629 0.345506
\(711\) 2.10005 + 2.10005i 0.0787579 + 0.0787579i
\(712\) 6.46931i 0.242448i
\(713\) −14.0214 −0.525107
\(714\) 26.6687 + 9.08641i 0.998052 + 0.340050i
\(715\) 10.2940 0.384972
\(716\) 21.4647i 0.802172i
\(717\) −3.90450 3.90450i −0.145816 0.145816i
\(718\) −24.8460 −0.927244
\(719\) 31.0488 + 31.0488i 1.15792 + 1.15792i 0.984922 + 0.173001i \(0.0553465\pi\)
0.173001 + 0.984922i \(0.444653\pi\)
\(720\) −2.63361 + 2.63361i −0.0981489 + 0.0981489i
\(721\) 34.2695 34.2695i 1.27626 1.27626i
\(722\) 5.08842i 0.189372i
\(723\) 71.9866i 2.67721i
\(724\) −14.2183 + 14.2183i −0.528419 + 0.528419i
\(725\) 2.57924 2.57924i 0.0957904 0.0957904i
\(726\) 9.32598 + 9.32598i 0.346120 + 0.346120i
\(727\) −2.37306 −0.0880118 −0.0440059 0.999031i \(-0.514012\pi\)
−0.0440059 + 0.999031i \(0.514012\pi\)
\(728\) −45.0967 45.0967i −1.67140 1.67140i
\(729\) 18.5470i 0.686926i
\(730\) 6.72507 0.248906
\(731\) 3.89567 + 1.32731i 0.144087 + 0.0490924i
\(732\) −23.7396 −0.877440
\(733\) 27.2035i 1.00478i 0.864640 + 0.502391i \(0.167546\pi\)
−0.864640 + 0.502391i \(0.832454\pi\)
\(734\) −0.0650576 0.0650576i −0.00240132 0.00240132i
\(735\) −26.6328 −0.982364
\(736\) 19.1216 + 19.1216i 0.704831 + 0.704831i
\(737\) −6.79460 + 6.79460i −0.250282 + 0.250282i
\(738\) 2.68227 2.68227i 0.0987359 0.0987359i
\(739\) 10.3375i 0.380270i −0.981758 0.190135i \(-0.939107\pi\)
0.981758 0.190135i \(-0.0608926\pi\)
\(740\) 8.24384i 0.303049i
\(741\) −35.1164 + 35.1164i −1.29003 + 1.29003i
\(742\) −14.2531 + 14.2531i −0.523247 + 0.523247i
\(743\) −8.35033 8.35033i −0.306344 0.306344i 0.537146 0.843490i \(-0.319503\pi\)
−0.843490 + 0.537146i \(0.819503\pi\)
\(744\) −16.9674 −0.622056
\(745\) −8.97211 8.97211i −0.328713 0.328713i
\(746\) 0.628453i 0.0230093i
\(747\) 9.36110 0.342505
\(748\) −4.64396 9.44389i −0.169800 0.345303i
\(749\) −25.9684 −0.948863
\(750\) 1.59750i 0.0583324i
\(751\) 14.1573 + 14.1573i 0.516607 + 0.516607i 0.916543 0.399936i \(-0.130968\pi\)
−0.399936 + 0.916543i \(0.630968\pi\)
\(752\) −2.91760 −0.106394
\(753\) 15.3869 + 15.3869i 0.560731 + 0.560731i
\(754\) −10.8607 + 10.8607i −0.395522 + 0.395522i
\(755\) −11.4980 + 11.4980i −0.418456 + 0.418456i
\(756\) 6.86595i 0.249712i
\(757\) 4.41769i 0.160564i −0.996772 0.0802818i \(-0.974418\pi\)
0.996772 0.0802818i \(-0.0255820\pi\)
\(758\) −4.01827 + 4.01827i −0.145950 + 0.145950i
\(759\) 12.9083 12.9083i 0.468540 0.468540i
\(760\) −5.75094 5.75094i −0.208609 0.208609i
\(761\) −41.6749 −1.51071 −0.755357 0.655314i \(-0.772537\pi\)
−0.755357 + 0.655314i \(0.772537\pi\)
\(762\) −16.2476 16.2476i −0.588589 0.588589i
\(763\) 13.1290i 0.475303i
\(764\) 7.32773 0.265108
\(765\) −4.65434 9.46500i −0.168278 0.342208i
\(766\) −14.8467 −0.536432
\(767\) 39.1601i 1.41399i
\(768\) 15.6594 + 15.6594i 0.565061 + 0.565061i
\(769\) −30.7653 −1.10942 −0.554712 0.832043i \(-0.687171\pi\)
−0.554712 + 0.832043i \(0.687171\pi\)
\(770\) −3.39500 3.39500i −0.122347 0.122347i
\(771\) −5.38518 + 5.38518i −0.193942 + 0.193942i
\(772\) −15.1883 + 15.1883i −0.546638 + 0.546638i
\(773\) 25.2932i 0.909735i −0.890559 0.454867i \(-0.849687\pi\)
0.890559 0.454867i \(-0.150313\pi\)
\(774\) 1.73024i 0.0621922i
\(775\) 2.12106 2.12106i 0.0761907 0.0761907i
\(776\) −17.7631 + 17.7631i −0.637659 + 0.637659i
\(777\) −38.1508 38.1508i −1.36865 1.36865i
\(778\) 8.64773 0.310036
\(779\) −5.24535 5.24535i −0.187934 0.187934i
\(780\) 22.5744i 0.808293i
\(781\) 22.5062 0.805334
\(782\) −11.7192 + 5.76282i −0.419078 + 0.206078i
\(783\) 3.79978 0.135793
\(784\) 16.4473i 0.587403i
\(785\) 7.08789 + 7.08789i 0.252978 + 0.252978i
\(786\) −7.45077 −0.265760
\(787\) 13.9008 + 13.9008i 0.495509 + 0.495509i 0.910037 0.414528i \(-0.136053\pi\)
−0.414528 + 0.910037i \(0.636053\pi\)
\(788\) 16.4631 16.4631i 0.586474 0.586474i
\(789\) 20.7913 20.7913i 0.740192 0.740192i
\(790\) 0.786676i 0.0279887i
\(791\) 31.5857i 1.12306i
\(792\) 7.18927 7.18927i 0.255460 0.255460i
\(793\) −28.7159 + 28.7159i −1.01973 + 1.01973i
\(794\) −12.0633 12.0633i −0.428110 0.428110i
\(795\) 16.3956 0.581491
\(796\) −2.23337 2.23337i −0.0791598 0.0791598i
\(797\) 27.3888i 0.970159i −0.874470 0.485080i \(-0.838791\pi\)
0.874470 0.485080i \(-0.161209\pi\)
\(798\) 23.1631 0.819965
\(799\) 2.66470 7.82092i 0.0942703 0.276684i
\(800\) −5.78514 −0.204535
\(801\) 6.89760i 0.243715i
\(802\) 2.76892 + 2.76892i 0.0977739 + 0.0977739i
\(803\) 16.4405 0.580171
\(804\) −14.9004 14.9004i −0.525496 0.525496i
\(805\) 14.1383 14.1383i 0.498309 0.498309i
\(806\) −8.93137 + 8.93137i −0.314594 + 0.314594i
\(807\) 0.730900i 0.0257289i
\(808\) 27.7188i 0.975145i
\(809\) −2.66487 + 2.66487i −0.0936919 + 0.0936919i −0.752399 0.658707i \(-0.771104\pi\)
0.658707 + 0.752399i \(0.271104\pi\)
\(810\) −4.85383 + 4.85383i −0.170546 + 0.170546i
\(811\) 24.0130 + 24.0130i 0.843209 + 0.843209i 0.989275 0.146066i \(-0.0466612\pi\)
−0.146066 + 0.989275i \(0.546661\pi\)
\(812\) −24.0411 −0.843676
\(813\) 30.5807 + 30.5807i 1.07251 + 1.07251i
\(814\) 6.00532i 0.210486i
\(815\) −8.04592 −0.281836
\(816\) 12.7000 6.24513i 0.444589 0.218623i
\(817\) 3.38359 0.118377
\(818\) 10.4854i 0.366612i
\(819\) −48.0823 48.0823i −1.68013 1.68013i
\(820\) −3.37194 −0.117753
\(821\) 19.1918 + 19.1918i 0.669797 + 0.669797i 0.957669 0.287872i \(-0.0929477\pi\)
−0.287872 + 0.957669i \(0.592948\pi\)
\(822\) −16.4490 + 16.4490i −0.573725 + 0.573725i
\(823\) −1.36590 + 1.36590i −0.0476123 + 0.0476123i −0.730512 0.682900i \(-0.760719\pi\)
0.682900 + 0.730512i \(0.260719\pi\)
\(824\) 27.1844i 0.947015i
\(825\) 3.90532i 0.135966i
\(826\) 12.9152 12.9152i 0.449377 0.449377i
\(827\) −13.9206 + 13.9206i −0.484067 + 0.484067i −0.906428 0.422361i \(-0.861201\pi\)
0.422361 + 0.906428i \(0.361201\pi\)
\(828\) 13.0285 + 13.0285i 0.452773 + 0.452773i
\(829\) −21.3907 −0.742930 −0.371465 0.928447i \(-0.621145\pi\)
−0.371465 + 0.928447i \(0.621145\pi\)
\(830\) 1.75333 + 1.75333i 0.0608589 + 0.0608589i
\(831\) 30.0696i 1.04310i
\(832\) 6.26493 0.217197
\(833\) 44.0887 + 15.0216i 1.52758 + 0.520469i
\(834\) −8.57779 −0.297025
\(835\) 12.9027i 0.446518i
\(836\) −6.11800 6.11800i −0.211595 0.211595i
\(837\) 3.12479 0.108008
\(838\) 8.68757 + 8.68757i 0.300107 + 0.300107i
\(839\) 20.3873 20.3873i 0.703846 0.703846i −0.261387 0.965234i \(-0.584180\pi\)
0.965234 + 0.261387i \(0.0841800\pi\)
\(840\) 17.1088 17.1088i 0.590310 0.590310i
\(841\) 15.6951i 0.541210i
\(842\) 6.64822i 0.229113i
\(843\) 51.8913 51.8913i 1.78723 1.78723i
\(844\) −0.477531 + 0.477531i −0.0164373 + 0.0164373i
\(845\) 18.1141 + 18.1141i 0.623143 + 0.623143i
\(846\) 3.47362 0.119425
\(847\) 24.9713 + 24.9713i 0.858023 + 0.858023i
\(848\) 10.1252i 0.347702i
\(849\) 65.6708 2.25382
\(850\) 0.901035 2.64455i 0.0309052 0.0907072i
\(851\) 25.0088 0.857292
\(852\) 49.3554i 1.69089i
\(853\) −8.13732 8.13732i −0.278617 0.278617i 0.553940 0.832557i \(-0.313124\pi\)
−0.832557 + 0.553940i \(0.813124\pi\)
\(854\) 18.9413 0.648157
\(855\) −6.13168 6.13168i −0.209699 0.209699i
\(856\) 10.2997 10.2997i 0.352038 0.352038i
\(857\) 15.3959 15.3959i 0.525913 0.525913i −0.393438 0.919351i \(-0.628714\pi\)
0.919351 + 0.393438i \(0.128714\pi\)
\(858\) 16.4446i 0.561409i
\(859\) 0.00614837i 0.000209780i −1.00000 0.000104890i \(-0.999967\pi\)
1.00000 0.000104890i \(-3.33875e-5\pi\)
\(860\) 1.08756 1.08756i 0.0370855 0.0370855i
\(861\) 15.6047 15.6047i 0.531806 0.531806i
\(862\) 8.68472 + 8.68472i 0.295803 + 0.295803i
\(863\) 21.5322 0.732964 0.366482 0.930425i \(-0.380562\pi\)
0.366482 + 0.930425i \(0.380562\pi\)
\(864\) −4.26139 4.26139i −0.144975 0.144975i
\(865\) 16.4632i 0.559764i
\(866\) −8.69421 −0.295441
\(867\) 5.14155 + 39.7475i 0.174616 + 1.34990i
\(868\) −19.7704 −0.671051
\(869\) 1.92315i 0.0652384i
\(870\) −4.12032 4.12032i −0.139692 0.139692i
\(871\) −36.0476 −1.22143
\(872\) −5.20732 5.20732i −0.176342 0.176342i
\(873\) −18.9391 + 18.9391i −0.640991 + 0.640991i
\(874\) −7.59200 + 7.59200i −0.256803 + 0.256803i
\(875\) 4.27746i 0.144605i
\(876\) 36.0535i 1.21814i
\(877\) −0.789882 + 0.789882i −0.0266724 + 0.0266724i −0.720317 0.693645i \(-0.756004\pi\)
0.693645 + 0.720317i \(0.256004\pi\)
\(878\) 11.6358 11.6358i 0.392688 0.392688i
\(879\) −52.3958 52.3958i −1.76727 1.76727i
\(880\) −2.41177 −0.0813006
\(881\) −33.6544 33.6544i −1.13385 1.13385i −0.989532 0.144313i \(-0.953903\pi\)
−0.144313 0.989532i \(-0.546097\pi\)
\(882\) 19.5817i 0.659351i
\(883\) −20.9432 −0.704796 −0.352398 0.935850i \(-0.614634\pi\)
−0.352398 + 0.935850i \(0.614634\pi\)
\(884\) 12.7326 37.3703i 0.428244 1.25690i
\(885\) −14.8566 −0.499398
\(886\) 10.9241i 0.367001i
\(887\) −13.4400 13.4400i −0.451271 0.451271i 0.444506 0.895776i \(-0.353379\pi\)
−0.895776 + 0.444506i \(0.853379\pi\)
\(888\) 30.2633 1.01557
\(889\) −43.5046 43.5046i −1.45910 1.45910i
\(890\) −1.29192 + 1.29192i −0.0433052 + 0.0433052i
\(891\) −11.8659 + 11.8659i −0.397524 + 0.397524i
\(892\) 41.9761i 1.40546i
\(893\) 6.79286i 0.227315i
\(894\) −14.3329 + 14.3329i −0.479365 + 0.479365i
\(895\) 9.85026 9.85026i 0.329258 0.329258i
\(896\) 32.9295 + 32.9295i 1.10010 + 1.10010i
\(897\) 68.4826 2.28657
\(898\) 9.16422 + 9.16422i 0.305814 + 0.305814i
\(899\) 10.9414i 0.364917i
\(900\) −3.94171 −0.131390
\(901\) −27.1417 9.24758i −0.904222 0.308082i
\(902\) 2.45633 0.0817869
\(903\) 10.0660i 0.334976i
\(904\) 12.5277 + 12.5277i 0.416667 + 0.416667i
\(905\) −13.0497 −0.433787
\(906\) 18.3681 + 18.3681i 0.610238 + 0.610238i
\(907\) 9.63742 9.63742i 0.320005 0.320005i −0.528764 0.848769i \(-0.677344\pi\)
0.848769 + 0.528764i \(0.177344\pi\)
\(908\) 10.0907 10.0907i 0.334872 0.334872i
\(909\) 29.5539i 0.980242i
\(910\) 18.0116i 0.597078i
\(911\) −23.8810 + 23.8810i −0.791214 + 0.791214i −0.981692 0.190477i \(-0.938996\pi\)
0.190477 + 0.981692i \(0.438996\pi\)
\(912\) 8.22741 8.22741i 0.272437 0.272437i
\(913\) 4.28628 + 4.28628i 0.141855 + 0.141855i
\(914\) −2.49571 −0.0825507
\(915\) −10.8942 10.8942i −0.360152 0.360152i
\(916\) 17.0620i 0.563743i
\(917\) −19.9502 −0.658814
\(918\) 2.61171 1.28429i 0.0861993 0.0423878i
\(919\) −31.7339 −1.04681 −0.523403 0.852085i \(-0.675338\pi\)
−0.523403 + 0.852085i \(0.675338\pi\)
\(920\) 11.2152i 0.369756i
\(921\) 7.03471 + 7.03471i 0.231802 + 0.231802i
\(922\) −13.3874 −0.440889
\(923\) 59.7013 + 59.7013i 1.96509 + 1.96509i
\(924\) 18.2008 18.2008i 0.598762 0.598762i
\(925\) −3.78314 + 3.78314i −0.124389 + 0.124389i
\(926\) 16.0251i 0.526616i
\(927\) 28.9841i 0.951964i
\(928\) 14.9212 14.9212i 0.489813 0.489813i
\(929\) 5.97435 5.97435i 0.196012 0.196012i −0.602276 0.798288i \(-0.705739\pi\)
0.798288 + 0.602276i \(0.205739\pi\)
\(930\) −3.38838 3.38838i −0.111109 0.111109i
\(931\) 38.2932 1.25501
\(932\) −16.8720 16.8720i −0.552661 0.552661i
\(933\) 36.3300i 1.18939i
\(934\) 3.72762 0.121971
\(935\) 2.20272 6.46499i 0.0720365 0.211428i
\(936\) 38.1415 1.24669
\(937\) 18.0115i 0.588409i −0.955742 0.294205i \(-0.904945\pi\)
0.955742 0.294205i \(-0.0950547\pi\)
\(938\) 11.8887 + 11.8887i 0.388179 + 0.388179i
\(939\) −25.6052 −0.835593
\(940\) −2.18338 2.18338i −0.0712139 0.0712139i
\(941\) −15.1411 + 15.1411i −0.493586 + 0.493586i −0.909434 0.415848i \(-0.863485\pi\)
0.415848 + 0.909434i \(0.363485\pi\)
\(942\) 11.3229 11.3229i 0.368919 0.368919i
\(943\) 10.2293i 0.333111i
\(944\) 9.17481i 0.298615i
\(945\) −3.15082 + 3.15082i −0.102496 + 0.102496i
\(946\) −0.792246 + 0.792246i −0.0257581 + 0.0257581i
\(947\) 33.0770 + 33.0770i 1.07486 + 1.07486i 0.996961 + 0.0778975i \(0.0248207\pi\)
0.0778975 + 0.996961i \(0.475179\pi\)
\(948\) −4.21742 −0.136975
\(949\) 43.6111 + 43.6111i 1.41568 + 1.41568i
\(950\) 2.29692i 0.0745220i
\(951\) −68.1036 −2.20841
\(952\) −37.9723 + 18.6726i −1.23069 + 0.605181i
\(953\) 8.60527 0.278752 0.139376 0.990240i \(-0.455490\pi\)
0.139376 + 0.990240i \(0.455490\pi\)
\(954\) 12.0548i 0.390290i
\(955\) 3.36274 + 3.36274i 0.108816 + 0.108816i
\(956\) 3.60892 0.116721
\(957\) −10.0728 10.0728i −0.325606 0.325606i
\(958\) −5.34959 + 5.34959i −0.172837 + 0.172837i
\(959\) −44.0439 + 44.0439i −1.42225 + 1.42225i
\(960\) 2.37679i 0.0767106i
\(961\) 22.0022i 0.709749i
\(962\) 15.9301 15.9301i 0.513607 0.513607i
\(963\) 10.9816 10.9816i 0.353878 0.353878i
\(964\) 33.2685 + 33.2685i 1.07151 + 1.07151i
\(965\) −13.9400 −0.448744
\(966\) −22.5859 22.5859i −0.726689 0.726689i
\(967\) 29.7257i 0.955913i −0.878383 0.477957i \(-0.841378\pi\)
0.878383 0.477957i \(-0.158622\pi\)
\(968\) −19.8086 −0.636671
\(969\) 14.5402 + 29.5687i 0.467097 + 0.949883i
\(970\) −7.09457 −0.227793
\(971\) 5.92180i 0.190040i 0.995475 + 0.0950198i \(0.0302915\pi\)
−0.995475 + 0.0950198i \(0.969709\pi\)
\(972\) −22.6167 22.6167i −0.725430 0.725430i
\(973\) −22.9679 −0.736318
\(974\) −16.9820 16.9820i −0.544139 0.544139i
\(975\) −10.3595 + 10.3595i −0.331770 + 0.331770i
\(976\) 6.72783 6.72783i 0.215353 0.215353i
\(977\) 51.4273i 1.64530i −0.568545 0.822652i \(-0.692493\pi\)
0.568545 0.822652i \(-0.307507\pi\)
\(978\) 12.8533i 0.411004i
\(979\) −3.15829 + 3.15829i −0.100939 + 0.100939i
\(980\) 12.3083 12.3083i 0.393174 0.393174i
\(981\) −5.55207 5.55207i −0.177264 0.177264i
\(982\) −8.71114 −0.277984
\(983\) 9.68389 + 9.68389i 0.308868 + 0.308868i 0.844470 0.535602i \(-0.179915\pi\)
−0.535602 + 0.844470i \(0.679915\pi\)
\(984\) 12.3785i 0.394611i
\(985\) 15.1100 0.481446
\(986\) 4.49693 + 9.14489i 0.143211 + 0.291233i
\(987\) 20.2085 0.643243
\(988\) 32.4580i 1.03263i
\(989\) −3.29927 3.29927i −0.104911 0.104911i
\(990\) 2.87139 0.0912587
\(991\) −37.8301 37.8301i −1.20171 1.20171i −0.973645 0.228067i \(-0.926759\pi\)
−0.228067 0.973645i \(-0.573241\pi\)
\(992\) 12.2706 12.2706i 0.389592 0.389592i
\(993\) −12.1570 + 12.1570i −0.385790 + 0.385790i
\(994\) 39.3796i 1.24904i
\(995\) 2.04982i 0.0649835i
\(996\) −9.39970 + 9.39970i −0.297841 + 0.297841i
\(997\) −16.3707 + 16.3707i −0.518465 + 0.518465i −0.917107 0.398642i \(-0.869482\pi\)
0.398642 + 0.917107i \(0.369482\pi\)
\(998\) −8.90601 8.90601i −0.281915 0.281915i
\(999\) −5.57341 −0.176335
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.e.a.81.4 yes 12
3.2 odd 2 765.2.k.b.676.3 12
4.3 odd 2 1360.2.bt.d.81.5 12
5.2 odd 4 425.2.j.c.149.3 12
5.3 odd 4 425.2.j.b.149.4 12
5.4 even 2 425.2.e.f.251.3 12
17.2 even 8 1445.2.a.n.1.3 6
17.4 even 4 inner 85.2.e.a.21.3 12
17.8 even 8 1445.2.d.g.866.8 12
17.9 even 8 1445.2.d.g.866.7 12
17.15 even 8 1445.2.a.o.1.3 6
51.38 odd 4 765.2.k.b.361.4 12
68.55 odd 4 1360.2.bt.d.1041.5 12
85.4 even 4 425.2.e.f.276.4 12
85.19 even 8 7225.2.a.bb.1.4 6
85.38 odd 4 425.2.j.c.174.3 12
85.49 even 8 7225.2.a.z.1.4 6
85.72 odd 4 425.2.j.b.174.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.3 12 17.4 even 4 inner
85.2.e.a.81.4 yes 12 1.1 even 1 trivial
425.2.e.f.251.3 12 5.4 even 2
425.2.e.f.276.4 12 85.4 even 4
425.2.j.b.149.4 12 5.3 odd 4
425.2.j.b.174.4 12 85.72 odd 4
425.2.j.c.149.3 12 5.2 odd 4
425.2.j.c.174.3 12 85.38 odd 4
765.2.k.b.361.4 12 51.38 odd 4
765.2.k.b.676.3 12 3.2 odd 2
1360.2.bt.d.81.5 12 4.3 odd 2
1360.2.bt.d.1041.5 12 68.55 odd 4
1445.2.a.n.1.3 6 17.2 even 8
1445.2.a.o.1.3 6 17.15 even 8
1445.2.d.g.866.7 12 17.9 even 8
1445.2.d.g.866.8 12 17.8 even 8
7225.2.a.z.1.4 6 85.49 even 8
7225.2.a.bb.1.4 6 85.19 even 8