Properties

Label 85.2.d.a.16.6
Level $85$
Weight $2$
Character 85.16
Analytic conductor $0.679$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,2,Mod(16,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 16.6
Root \(0.403032 + 0.403032i\) of defining polynomial
Character \(\chi\) \(=\) 85.16
Dual form 85.2.d.a.16.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.48119 q^{2} +1.67513i q^{3} +0.193937 q^{4} -1.00000i q^{5} +2.48119i q^{6} -1.28726i q^{7} -2.67513 q^{8} +0.193937 q^{9} -1.48119i q^{10} -0.481194i q^{11} +0.324869i q^{12} -2.15633 q^{13} -1.90668i q^{14} +1.67513 q^{15} -4.35026 q^{16} +(-1.86907 - 3.67513i) q^{17} +0.287258 q^{18} +3.35026 q^{19} -0.193937i q^{20} +2.15633 q^{21} -0.712742i q^{22} +8.24965i q^{23} -4.48119i q^{24} -1.00000 q^{25} -3.19394 q^{26} +5.35026i q^{27} -0.249646i q^{28} +0.649738i q^{29} +2.48119 q^{30} +1.83146i q^{31} -1.09332 q^{32} +0.806063 q^{33} +(-2.76845 - 5.44358i) q^{34} -1.28726 q^{35} +0.0376114 q^{36} +4.31265i q^{37} +4.96239 q^{38} -3.61213i q^{39} +2.67513i q^{40} -11.2750i q^{41} +3.19394 q^{42} +8.15633 q^{43} -0.0933212i q^{44} -0.193937i q^{45} +12.2193i q^{46} -6.54420 q^{47} -7.28726i q^{48} +5.34297 q^{49} -1.48119 q^{50} +(6.15633 - 3.13093i) q^{51} -0.418190 q^{52} -8.57452 q^{53} +7.92478i q^{54} -0.481194 q^{55} +3.44358i q^{56} +5.61213i q^{57} +0.962389i q^{58} +4.96239 q^{59} +0.324869 q^{60} +2.83638i q^{61} +2.71274i q^{62} -0.249646i q^{63} +7.08110 q^{64} +2.15633i q^{65} +1.19394 q^{66} +4.93207 q^{67} +(-0.362481 - 0.712742i) q^{68} -13.8192 q^{69} -1.90668 q^{70} -14.5320i q^{71} -0.518806 q^{72} -13.3503i q^{73} +6.38787i q^{74} -1.67513i q^{75} +0.649738 q^{76} -0.619421 q^{77} -5.35026i q^{78} +9.05571i q^{79} +4.35026i q^{80} -8.38058 q^{81} -16.7005i q^{82} -13.4314 q^{83} +0.418190 q^{84} +(-3.67513 + 1.86907i) q^{85} +12.0811 q^{86} -1.08840 q^{87} +1.28726i q^{88} -16.7816 q^{89} -0.287258i q^{90} +2.77575i q^{91} +1.59991i q^{92} -3.06793 q^{93} -9.69323 q^{94} -3.35026i q^{95} -1.83146i q^{96} -3.66291i q^{97} +7.91397 q^{98} -0.0933212i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 2 q^{4} - 6 q^{8} + 2 q^{9} + 8 q^{13} - 6 q^{16} - 2 q^{17} - 10 q^{18} - 8 q^{21} - 6 q^{25} - 20 q^{26} + 4 q^{30} + 6 q^{32} + 4 q^{33} + 6 q^{34} + 4 q^{35} + 22 q^{36} + 8 q^{38} + 20 q^{42}+ \cdots + 86 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/85\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.48119 1.04736 0.523681 0.851914i \(-0.324558\pi\)
0.523681 + 0.851914i \(0.324558\pi\)
\(3\) 1.67513i 0.967137i 0.875306 + 0.483569i \(0.160660\pi\)
−0.875306 + 0.483569i \(0.839340\pi\)
\(4\) 0.193937 0.0969683
\(5\) 1.00000i 0.447214i
\(6\) 2.48119i 1.01294i
\(7\) 1.28726i 0.486538i −0.969959 0.243269i \(-0.921780\pi\)
0.969959 0.243269i \(-0.0782197\pi\)
\(8\) −2.67513 −0.945802
\(9\) 0.193937 0.0646455
\(10\) 1.48119i 0.468395i
\(11\) 0.481194i 0.145086i −0.997365 0.0725428i \(-0.976889\pi\)
0.997365 0.0725428i \(-0.0231114\pi\)
\(12\) 0.324869i 0.0937816i
\(13\) −2.15633 −0.598057 −0.299028 0.954244i \(-0.596663\pi\)
−0.299028 + 0.954244i \(0.596663\pi\)
\(14\) 1.90668i 0.509581i
\(15\) 1.67513 0.432517
\(16\) −4.35026 −1.08757
\(17\) −1.86907 3.67513i −0.453315 0.891350i
\(18\) 0.287258 0.0677073
\(19\) 3.35026 0.768603 0.384301 0.923208i \(-0.374442\pi\)
0.384301 + 0.923208i \(0.374442\pi\)
\(20\) 0.193937i 0.0433655i
\(21\) 2.15633 0.470549
\(22\) 0.712742i 0.151957i
\(23\) 8.24965i 1.72017i 0.510151 + 0.860085i \(0.329590\pi\)
−0.510151 + 0.860085i \(0.670410\pi\)
\(24\) 4.48119i 0.914720i
\(25\) −1.00000 −0.200000
\(26\) −3.19394 −0.626382
\(27\) 5.35026i 1.02966i
\(28\) 0.249646i 0.0471787i
\(29\) 0.649738i 0.120653i 0.998179 + 0.0603267i \(0.0192142\pi\)
−0.998179 + 0.0603267i \(0.980786\pi\)
\(30\) 2.48119 0.453002
\(31\) 1.83146i 0.328939i 0.986382 + 0.164470i \(0.0525912\pi\)
−0.986382 + 0.164470i \(0.947409\pi\)
\(32\) −1.09332 −0.193274
\(33\) 0.806063 0.140318
\(34\) −2.76845 5.44358i −0.474786 0.933567i
\(35\) −1.28726 −0.217586
\(36\) 0.0376114 0.00626857
\(37\) 4.31265i 0.708995i 0.935057 + 0.354498i \(0.115348\pi\)
−0.935057 + 0.354498i \(0.884652\pi\)
\(38\) 4.96239 0.805006
\(39\) 3.61213i 0.578403i
\(40\) 2.67513i 0.422975i
\(41\) 11.2750i 1.76087i −0.474171 0.880433i \(-0.657252\pi\)
0.474171 0.880433i \(-0.342748\pi\)
\(42\) 3.19394 0.492835
\(43\) 8.15633 1.24383 0.621914 0.783086i \(-0.286355\pi\)
0.621914 + 0.783086i \(0.286355\pi\)
\(44\) 0.0933212i 0.0140687i
\(45\) 0.193937i 0.0289104i
\(46\) 12.2193i 1.80164i
\(47\) −6.54420 −0.954569 −0.477285 0.878749i \(-0.658379\pi\)
−0.477285 + 0.878749i \(0.658379\pi\)
\(48\) 7.28726i 1.05183i
\(49\) 5.34297 0.763281
\(50\) −1.48119 −0.209473
\(51\) 6.15633 3.13093i 0.862058 0.438418i
\(52\) −0.418190 −0.0579926
\(53\) −8.57452 −1.17780 −0.588900 0.808206i \(-0.700439\pi\)
−0.588900 + 0.808206i \(0.700439\pi\)
\(54\) 7.92478i 1.07843i
\(55\) −0.481194 −0.0648842
\(56\) 3.44358i 0.460168i
\(57\) 5.61213i 0.743344i
\(58\) 0.962389i 0.126368i
\(59\) 4.96239 0.646048 0.323024 0.946391i \(-0.395301\pi\)
0.323024 + 0.946391i \(0.395301\pi\)
\(60\) 0.324869 0.0419404
\(61\) 2.83638i 0.363161i 0.983376 + 0.181581i \(0.0581213\pi\)
−0.983376 + 0.181581i \(0.941879\pi\)
\(62\) 2.71274i 0.344519i
\(63\) 0.249646i 0.0314525i
\(64\) 7.08110 0.885138
\(65\) 2.15633i 0.267459i
\(66\) 1.19394 0.146963
\(67\) 4.93207 0.602548 0.301274 0.953538i \(-0.402588\pi\)
0.301274 + 0.953538i \(0.402588\pi\)
\(68\) −0.362481 0.712742i −0.0439572 0.0864327i
\(69\) −13.8192 −1.66364
\(70\) −1.90668 −0.227892
\(71\) 14.5320i 1.72463i −0.506373 0.862314i \(-0.669014\pi\)
0.506373 0.862314i \(-0.330986\pi\)
\(72\) −0.518806 −0.0611418
\(73\) 13.3503i 1.56253i −0.624200 0.781265i \(-0.714575\pi\)
0.624200 0.781265i \(-0.285425\pi\)
\(74\) 6.38787i 0.742575i
\(75\) 1.67513i 0.193427i
\(76\) 0.649738 0.0745301
\(77\) −0.619421 −0.0705896
\(78\) 5.35026i 0.605798i
\(79\) 9.05571i 1.01885i 0.860516 + 0.509423i \(0.170141\pi\)
−0.860516 + 0.509423i \(0.829859\pi\)
\(80\) 4.35026i 0.486374i
\(81\) −8.38058 −0.931175
\(82\) 16.7005i 1.84426i
\(83\) −13.4314 −1.47428 −0.737142 0.675738i \(-0.763825\pi\)
−0.737142 + 0.675738i \(0.763825\pi\)
\(84\) 0.418190 0.0456283
\(85\) −3.67513 + 1.86907i −0.398624 + 0.202729i
\(86\) 12.0811 1.30274
\(87\) −1.08840 −0.116688
\(88\) 1.28726i 0.137222i
\(89\) −16.7816 −1.77885 −0.889424 0.457082i \(-0.848894\pi\)
−0.889424 + 0.457082i \(0.848894\pi\)
\(90\) 0.287258i 0.0302796i
\(91\) 2.77575i 0.290977i
\(92\) 1.59991i 0.166802i
\(93\) −3.06793 −0.318129
\(94\) −9.69323 −0.999780
\(95\) 3.35026i 0.343730i
\(96\) 1.83146i 0.186922i
\(97\) 3.66291i 0.371912i −0.982558 0.185956i \(-0.940462\pi\)
0.982558 0.185956i \(-0.0595383\pi\)
\(98\) 7.91397 0.799432
\(99\) 0.0933212i 0.00937913i
\(100\) −0.193937 −0.0193937
\(101\) 6.85685 0.682282 0.341141 0.940012i \(-0.389187\pi\)
0.341141 + 0.940012i \(0.389187\pi\)
\(102\) 9.11871 4.63752i 0.902887 0.459183i
\(103\) 7.04349 0.694016 0.347008 0.937862i \(-0.387198\pi\)
0.347008 + 0.937862i \(0.387198\pi\)
\(104\) 5.76845 0.565643
\(105\) 2.15633i 0.210436i
\(106\) −12.7005 −1.23358
\(107\) 5.86177i 0.566679i −0.959020 0.283340i \(-0.908558\pi\)
0.959020 0.283340i \(-0.0914423\pi\)
\(108\) 1.03761i 0.0998442i
\(109\) 12.7005i 1.21649i 0.793750 + 0.608245i \(0.208126\pi\)
−0.793750 + 0.608245i \(0.791874\pi\)
\(110\) −0.712742 −0.0679573
\(111\) −7.22425 −0.685696
\(112\) 5.59991i 0.529142i
\(113\) 4.88717i 0.459746i 0.973221 + 0.229873i \(0.0738311\pi\)
−0.973221 + 0.229873i \(0.926169\pi\)
\(114\) 8.31265i 0.778551i
\(115\) 8.24965 0.769283
\(116\) 0.126008i 0.0116995i
\(117\) −0.418190 −0.0386617
\(118\) 7.35026 0.676646
\(119\) −4.73084 + 2.40597i −0.433675 + 0.220555i
\(120\) −4.48119 −0.409075
\(121\) 10.7685 0.978950
\(122\) 4.20123i 0.380362i
\(123\) 18.8872 1.70300
\(124\) 0.355186i 0.0318967i
\(125\) 1.00000i 0.0894427i
\(126\) 0.369775i 0.0329422i
\(127\) 1.76845 0.156925 0.0784624 0.996917i \(-0.474999\pi\)
0.0784624 + 0.996917i \(0.474999\pi\)
\(128\) 12.6751 1.12033
\(129\) 13.6629i 1.20295i
\(130\) 3.19394i 0.280127i
\(131\) 11.1065i 0.970379i 0.874409 + 0.485189i \(0.161249\pi\)
−0.874409 + 0.485189i \(0.838751\pi\)
\(132\) 0.156325 0.0136064
\(133\) 4.31265i 0.373954i
\(134\) 7.30536 0.631087
\(135\) 5.35026 0.460477
\(136\) 5.00000 + 9.83146i 0.428746 + 0.843040i
\(137\) 11.7685 1.00545 0.502723 0.864447i \(-0.332331\pi\)
0.502723 + 0.864447i \(0.332331\pi\)
\(138\) −20.4690 −1.74243
\(139\) 11.7054i 0.992843i −0.868082 0.496422i \(-0.834647\pi\)
0.868082 0.496422i \(-0.165353\pi\)
\(140\) −0.249646 −0.0210990
\(141\) 10.9624i 0.923200i
\(142\) 21.5247i 1.80631i
\(143\) 1.03761i 0.0867694i
\(144\) −0.843675 −0.0703062
\(145\) 0.649738 0.0539578
\(146\) 19.7743i 1.63654i
\(147\) 8.95017i 0.738198i
\(148\) 0.836381i 0.0687501i
\(149\) 17.1998 1.40906 0.704532 0.709672i \(-0.251157\pi\)
0.704532 + 0.709672i \(0.251157\pi\)
\(150\) 2.48119i 0.202589i
\(151\) −13.5877 −1.10575 −0.552875 0.833264i \(-0.686469\pi\)
−0.552875 + 0.833264i \(0.686469\pi\)
\(152\) −8.96239 −0.726946
\(153\) −0.362481 0.712742i −0.0293048 0.0576218i
\(154\) −0.917483 −0.0739329
\(155\) 1.83146 0.147106
\(156\) 0.700523i 0.0560868i
\(157\) −8.57452 −0.684321 −0.342160 0.939642i \(-0.611159\pi\)
−0.342160 + 0.939642i \(0.611159\pi\)
\(158\) 13.4133i 1.06710i
\(159\) 14.3634i 1.13909i
\(160\) 1.09332i 0.0864346i
\(161\) 10.6194 0.836928
\(162\) −12.4133 −0.975278
\(163\) 14.3757i 1.12599i 0.826461 + 0.562994i \(0.190351\pi\)
−0.826461 + 0.562994i \(0.809649\pi\)
\(164\) 2.18664i 0.170748i
\(165\) 0.806063i 0.0627520i
\(166\) −19.8945 −1.54411
\(167\) 7.54912i 0.584169i 0.956393 + 0.292084i \(0.0943488\pi\)
−0.956393 + 0.292084i \(0.905651\pi\)
\(168\) −5.76845 −0.445046
\(169\) −8.35026 −0.642328
\(170\) −5.44358 + 2.76845i −0.417504 + 0.212331i
\(171\) 0.649738 0.0496867
\(172\) 1.58181 0.120612
\(173\) 11.8496i 0.900905i −0.892800 0.450452i \(-0.851263\pi\)
0.892800 0.450452i \(-0.148737\pi\)
\(174\) −1.61213 −0.122215
\(175\) 1.28726i 0.0973075i
\(176\) 2.09332i 0.157790i
\(177\) 8.31265i 0.624817i
\(178\) −24.8568 −1.86310
\(179\) −3.22425 −0.240992 −0.120496 0.992714i \(-0.538449\pi\)
−0.120496 + 0.992714i \(0.538449\pi\)
\(180\) 0.0376114i 0.00280339i
\(181\) 6.88717i 0.511919i 0.966688 + 0.255960i \(0.0823914\pi\)
−0.966688 + 0.255960i \(0.917609\pi\)
\(182\) 4.11142i 0.304759i
\(183\) −4.75131 −0.351227
\(184\) 22.0689i 1.62694i
\(185\) 4.31265 0.317072
\(186\) −4.54420 −0.333197
\(187\) −1.76845 + 0.899385i −0.129322 + 0.0657695i
\(188\) −1.26916 −0.0925630
\(189\) 6.88717 0.500968
\(190\) 4.96239i 0.360010i
\(191\) 7.19982 0.520960 0.260480 0.965479i \(-0.416119\pi\)
0.260480 + 0.965479i \(0.416119\pi\)
\(192\) 11.8618i 0.856050i
\(193\) 20.1114i 1.44765i −0.689983 0.723826i \(-0.742382\pi\)
0.689983 0.723826i \(-0.257618\pi\)
\(194\) 5.42548i 0.389527i
\(195\) −3.61213 −0.258670
\(196\) 1.03620 0.0740141
\(197\) 3.16362i 0.225399i 0.993629 + 0.112699i \(0.0359497\pi\)
−0.993629 + 0.112699i \(0.964050\pi\)
\(198\) 0.138227i 0.00982335i
\(199\) 21.4944i 1.52370i −0.647756 0.761848i \(-0.724292\pi\)
0.647756 0.761848i \(-0.275708\pi\)
\(200\) 2.67513 0.189160
\(201\) 8.26187i 0.582747i
\(202\) 10.1563 0.714597
\(203\) 0.836381 0.0587024
\(204\) 1.19394 0.607202i 0.0835923 0.0425127i
\(205\) −11.2750 −0.787483
\(206\) 10.4328 0.726886
\(207\) 1.59991i 0.111201i
\(208\) 9.38058 0.650426
\(209\) 1.61213i 0.111513i
\(210\) 3.19394i 0.220403i
\(211\) 20.8691i 1.43669i 0.695689 + 0.718343i \(0.255099\pi\)
−0.695689 + 0.718343i \(0.744901\pi\)
\(212\) −1.66291 −0.114209
\(213\) 24.3430 1.66795
\(214\) 8.68243i 0.593518i
\(215\) 8.15633i 0.556257i
\(216\) 14.3127i 0.973853i
\(217\) 2.35756 0.160041
\(218\) 18.8119i 1.27411i
\(219\) 22.3634 1.51118
\(220\) −0.0933212 −0.00629171
\(221\) 4.03032 + 7.92478i 0.271108 + 0.533078i
\(222\) −10.7005 −0.718172
\(223\) −24.3430 −1.63013 −0.815063 0.579373i \(-0.803298\pi\)
−0.815063 + 0.579373i \(0.803298\pi\)
\(224\) 1.40739i 0.0940349i
\(225\) −0.193937 −0.0129291
\(226\) 7.23884i 0.481521i
\(227\) 11.2120i 0.744169i 0.928199 + 0.372084i \(0.121357\pi\)
−0.928199 + 0.372084i \(0.878643\pi\)
\(228\) 1.08840i 0.0720808i
\(229\) 12.1563 0.803313 0.401656 0.915790i \(-0.368435\pi\)
0.401656 + 0.915790i \(0.368435\pi\)
\(230\) 12.2193 0.805719
\(231\) 1.03761i 0.0682698i
\(232\) 1.73813i 0.114114i
\(233\) 11.9756i 0.784545i 0.919849 + 0.392273i \(0.128311\pi\)
−0.919849 + 0.392273i \(0.871689\pi\)
\(234\) −0.619421 −0.0404928
\(235\) 6.54420i 0.426896i
\(236\) 0.962389 0.0626462
\(237\) −15.1695 −0.985365
\(238\) −7.00729 + 3.56371i −0.454215 + 0.231001i
\(239\) −8.83638 −0.571578 −0.285789 0.958293i \(-0.592256\pi\)
−0.285789 + 0.958293i \(0.592256\pi\)
\(240\) −7.28726 −0.470390
\(241\) 0.261865i 0.0168682i −0.999964 0.00843411i \(-0.997315\pi\)
0.999964 0.00843411i \(-0.00268469\pi\)
\(242\) 15.9502 1.02532
\(243\) 2.01222i 0.129084i
\(244\) 0.550078i 0.0352151i
\(245\) 5.34297i 0.341350i
\(246\) 27.9756 1.78366
\(247\) −7.22425 −0.459668
\(248\) 4.89938i 0.311111i
\(249\) 22.4993i 1.42583i
\(250\) 1.48119i 0.0936790i
\(251\) −23.6629 −1.49359 −0.746795 0.665054i \(-0.768408\pi\)
−0.746795 + 0.665054i \(0.768408\pi\)
\(252\) 0.0484156i 0.00304989i
\(253\) 3.96968 0.249572
\(254\) 2.61942 0.164357
\(255\) −3.13093 6.15633i −0.196067 0.385524i
\(256\) 4.61213 0.288258
\(257\) 19.2447 1.20045 0.600226 0.799830i \(-0.295077\pi\)
0.600226 + 0.799830i \(0.295077\pi\)
\(258\) 20.2374i 1.25993i
\(259\) 5.55149 0.344953
\(260\) 0.418190i 0.0259351i
\(261\) 0.126008i 0.00779970i
\(262\) 16.4509i 1.01634i
\(263\) −17.2447 −1.06336 −0.531678 0.846947i \(-0.678438\pi\)
−0.531678 + 0.846947i \(0.678438\pi\)
\(264\) −2.15633 −0.132713
\(265\) 8.57452i 0.526728i
\(266\) 6.38787i 0.391666i
\(267\) 28.1114i 1.72039i
\(268\) 0.956509 0.0584281
\(269\) 26.6253i 1.62337i 0.584093 + 0.811687i \(0.301450\pi\)
−0.584093 + 0.811687i \(0.698550\pi\)
\(270\) 7.92478 0.482287
\(271\) −6.70052 −0.407028 −0.203514 0.979072i \(-0.565236\pi\)
−0.203514 + 0.979072i \(0.565236\pi\)
\(272\) 8.13093 + 15.9878i 0.493010 + 0.969402i
\(273\) −4.64974 −0.281415
\(274\) 17.4314 1.05307
\(275\) 0.481194i 0.0290171i
\(276\) −2.68006 −0.161320
\(277\) 16.7005i 1.00344i −0.865031 0.501719i \(-0.832701\pi\)
0.865031 0.501719i \(-0.167299\pi\)
\(278\) 17.3380i 1.03987i
\(279\) 0.355186i 0.0212644i
\(280\) 3.44358 0.205793
\(281\) −28.4241 −1.69564 −0.847819 0.530286i \(-0.822085\pi\)
−0.847819 + 0.530286i \(0.822085\pi\)
\(282\) 16.2374i 0.966925i
\(283\) 10.0630i 0.598183i 0.954224 + 0.299092i \(0.0966837\pi\)
−0.954224 + 0.299092i \(0.903316\pi\)
\(284\) 2.81828i 0.167234i
\(285\) 5.61213 0.332434
\(286\) 1.53690i 0.0908790i
\(287\) −14.5139 −0.856727
\(288\) −0.212035 −0.0124943
\(289\) −10.0132 + 13.7381i −0.589010 + 0.808126i
\(290\) 0.962389 0.0565134
\(291\) 6.13586 0.359690
\(292\) 2.58910i 0.151516i
\(293\) 14.3127 0.836154 0.418077 0.908412i \(-0.362704\pi\)
0.418077 + 0.908412i \(0.362704\pi\)
\(294\) 13.2569i 0.773160i
\(295\) 4.96239i 0.288921i
\(296\) 11.5369i 0.670569i
\(297\) 2.57452 0.149389
\(298\) 25.4763 1.47580
\(299\) 17.7889i 1.02876i
\(300\) 0.324869i 0.0187563i
\(301\) 10.4993i 0.605169i
\(302\) −20.1260 −1.15812
\(303\) 11.4861i 0.659860i
\(304\) −14.5745 −0.835906
\(305\) 2.83638 0.162411
\(306\) −0.536904 1.05571i −0.0306928 0.0603509i
\(307\) 29.2809 1.67115 0.835575 0.549376i \(-0.185135\pi\)
0.835575 + 0.549376i \(0.185135\pi\)
\(308\) −0.120128 −0.00684495
\(309\) 11.7988i 0.671209i
\(310\) 2.71274 0.154073
\(311\) 4.54183i 0.257543i 0.991674 + 0.128772i \(0.0411035\pi\)
−0.991674 + 0.128772i \(0.958897\pi\)
\(312\) 9.66291i 0.547055i
\(313\) 0.826531i 0.0467183i −0.999727 0.0233592i \(-0.992564\pi\)
0.999727 0.0233592i \(-0.00743613\pi\)
\(314\) −12.7005 −0.716732
\(315\) −0.249646 −0.0140660
\(316\) 1.75623i 0.0987958i
\(317\) 32.2374i 1.81063i −0.424736 0.905317i \(-0.639633\pi\)
0.424736 0.905317i \(-0.360367\pi\)
\(318\) 21.2750i 1.19304i
\(319\) 0.312650 0.0175051
\(320\) 7.08110i 0.395846i
\(321\) 9.81924 0.548056
\(322\) 15.7294 0.876567
\(323\) −6.26187 12.3127i −0.348419 0.685094i
\(324\) −1.62530 −0.0902945
\(325\) 2.15633 0.119611
\(326\) 21.2931i 1.17932i
\(327\) −21.2750 −1.17651
\(328\) 30.1622i 1.66543i
\(329\) 8.42407i 0.464434i
\(330\) 1.19394i 0.0657240i
\(331\) −6.82653 −0.375220 −0.187610 0.982244i \(-0.560074\pi\)
−0.187610 + 0.982244i \(0.560074\pi\)
\(332\) −2.60483 −0.142959
\(333\) 0.836381i 0.0458334i
\(334\) 11.1817i 0.611836i
\(335\) 4.93207i 0.269468i
\(336\) −9.38058 −0.511753
\(337\) 18.0508i 0.983289i 0.870796 + 0.491644i \(0.163604\pi\)
−0.870796 + 0.491644i \(0.836396\pi\)
\(338\) −12.3684 −0.672750
\(339\) −8.18664 −0.444637
\(340\) −0.712742 + 0.362481i −0.0386539 + 0.0196583i
\(341\) 0.881286 0.0477243
\(342\) 0.962389 0.0520400
\(343\) 15.8886i 0.857903i
\(344\) −21.8192 −1.17641
\(345\) 13.8192i 0.744003i
\(346\) 17.5515i 0.943574i
\(347\) 18.3512i 0.985145i −0.870271 0.492572i \(-0.836057\pi\)
0.870271 0.492572i \(-0.163943\pi\)
\(348\) −0.211080 −0.0113151
\(349\) −13.6023 −0.728113 −0.364057 0.931377i \(-0.618609\pi\)
−0.364057 + 0.931377i \(0.618609\pi\)
\(350\) 1.90668i 0.101916i
\(351\) 11.5369i 0.615794i
\(352\) 0.526100i 0.0280412i
\(353\) 27.4010 1.45841 0.729205 0.684295i \(-0.239890\pi\)
0.729205 + 0.684295i \(0.239890\pi\)
\(354\) 12.3127i 0.654410i
\(355\) −14.5320 −0.771277
\(356\) −3.25457 −0.172492
\(357\) −4.03032 7.92478i −0.213307 0.419424i
\(358\) −4.77575 −0.252406
\(359\) −9.08840 −0.479667 −0.239834 0.970814i \(-0.577093\pi\)
−0.239834 + 0.970814i \(0.577093\pi\)
\(360\) 0.518806i 0.0273435i
\(361\) −7.77575 −0.409250
\(362\) 10.2012i 0.536165i
\(363\) 18.0386i 0.946779i
\(364\) 0.538319i 0.0282156i
\(365\) −13.3503 −0.698785
\(366\) −7.03761 −0.367862
\(367\) 12.7635i 0.666251i −0.942883 0.333125i \(-0.891897\pi\)
0.942883 0.333125i \(-0.108103\pi\)
\(368\) 35.8881i 1.87080i
\(369\) 2.18664i 0.113832i
\(370\) 6.38787 0.332090
\(371\) 11.0376i 0.573044i
\(372\) −0.594984 −0.0308485
\(373\) 10.0957 0.522735 0.261368 0.965239i \(-0.415827\pi\)
0.261368 + 0.965239i \(0.415827\pi\)
\(374\) −2.61942 + 1.33216i −0.135447 + 0.0688845i
\(375\) −1.67513 −0.0865034
\(376\) 17.5066 0.902833
\(377\) 1.40105i 0.0721576i
\(378\) 10.2012 0.524695
\(379\) 9.18172i 0.471633i 0.971798 + 0.235817i \(0.0757765\pi\)
−0.971798 + 0.235817i \(0.924224\pi\)
\(380\) 0.649738i 0.0333309i
\(381\) 2.96239i 0.151768i
\(382\) 10.6643 0.545634
\(383\) −1.83383 −0.0937041 −0.0468521 0.998902i \(-0.514919\pi\)
−0.0468521 + 0.998902i \(0.514919\pi\)
\(384\) 21.2325i 1.08352i
\(385\) 0.619421i 0.0315686i
\(386\) 29.7889i 1.51622i
\(387\) 1.58181 0.0804079
\(388\) 0.710373i 0.0360637i
\(389\) 11.6570 0.591035 0.295518 0.955337i \(-0.404508\pi\)
0.295518 + 0.955337i \(0.404508\pi\)
\(390\) −5.35026 −0.270921
\(391\) 30.3185 15.4191i 1.53327 0.779780i
\(392\) −14.2931 −0.721912
\(393\) −18.6048 −0.938490
\(394\) 4.68594i 0.236074i
\(395\) 9.05571 0.455642
\(396\) 0.0180984i 0.000909478i
\(397\) 9.37470i 0.470503i −0.971935 0.235251i \(-0.924409\pi\)
0.971935 0.235251i \(-0.0755913\pi\)
\(398\) 31.8373i 1.59586i
\(399\) 7.22425 0.361665
\(400\) 4.35026 0.217513
\(401\) 7.93937i 0.396473i 0.980154 + 0.198237i \(0.0635214\pi\)
−0.980154 + 0.198237i \(0.936479\pi\)
\(402\) 12.2374i 0.610347i
\(403\) 3.94921i 0.196724i
\(404\) 1.32979 0.0661597
\(405\) 8.38058i 0.416434i
\(406\) 1.23884 0.0614827
\(407\) 2.07522 0.102865
\(408\) −16.4690 + 8.37565i −0.815336 + 0.414657i
\(409\) 9.07381 0.448671 0.224335 0.974512i \(-0.427979\pi\)
0.224335 + 0.974512i \(0.427979\pi\)
\(410\) −16.7005 −0.824780
\(411\) 19.7137i 0.972405i
\(412\) 1.36599 0.0672975
\(413\) 6.38787i 0.314327i
\(414\) 2.36977i 0.116468i
\(415\) 13.4314i 0.659320i
\(416\) 2.35756 0.115589
\(417\) 19.6082 0.960216
\(418\) 2.38787i 0.116795i
\(419\) 8.99508i 0.439438i −0.975563 0.219719i \(-0.929486\pi\)
0.975563 0.219719i \(-0.0705141\pi\)
\(420\) 0.418190i 0.0204056i
\(421\) 16.9076 0.824028 0.412014 0.911178i \(-0.364826\pi\)
0.412014 + 0.911178i \(0.364826\pi\)
\(422\) 30.9111i 1.50473i
\(423\) −1.26916 −0.0617086
\(424\) 22.9380 1.11397
\(425\) 1.86907 + 3.67513i 0.0906631 + 0.178270i
\(426\) 36.0567 1.74695
\(427\) 3.65115 0.176692
\(428\) 1.13681i 0.0549499i
\(429\) −1.73813 −0.0839179
\(430\) 12.0811i 0.582602i
\(431\) 14.6678i 0.706525i 0.935524 + 0.353262i \(0.114928\pi\)
−0.935524 + 0.353262i \(0.885072\pi\)
\(432\) 23.2750i 1.11982i
\(433\) −6.68006 −0.321023 −0.160511 0.987034i \(-0.551314\pi\)
−0.160511 + 0.987034i \(0.551314\pi\)
\(434\) 3.49200 0.167621
\(435\) 1.08840i 0.0521846i
\(436\) 2.46310i 0.117961i
\(437\) 27.6385i 1.32213i
\(438\) 33.1246 1.58275
\(439\) 9.56959i 0.456732i 0.973575 + 0.228366i \(0.0733382\pi\)
−0.973575 + 0.228366i \(0.926662\pi\)
\(440\) 1.28726 0.0613676
\(441\) 1.03620 0.0493427
\(442\) 5.96968 + 11.7381i 0.283949 + 0.558326i
\(443\) −14.7915 −0.702764 −0.351382 0.936232i \(-0.614288\pi\)
−0.351382 + 0.936232i \(0.614288\pi\)
\(444\) −1.40105 −0.0664907
\(445\) 16.7816i 0.795525i
\(446\) −36.0567 −1.70733
\(447\) 28.8119i 1.36276i
\(448\) 9.11520i 0.430653i
\(449\) 10.9018i 0.514486i 0.966347 + 0.257243i \(0.0828140\pi\)
−0.966347 + 0.257243i \(0.917186\pi\)
\(450\) −0.287258 −0.0135415
\(451\) −5.42548 −0.255476
\(452\) 0.947800i 0.0445808i
\(453\) 22.7612i 1.06941i
\(454\) 16.6072i 0.779415i
\(455\) 2.77575 0.130129
\(456\) 15.0132i 0.703056i
\(457\) 7.61801 0.356355 0.178178 0.983998i \(-0.442980\pi\)
0.178178 + 0.983998i \(0.442980\pi\)
\(458\) 18.0059 0.841360
\(459\) 19.6629 10.0000i 0.917786 0.466760i
\(460\) 1.59991 0.0745961
\(461\) 4.57452 0.213056 0.106528 0.994310i \(-0.466027\pi\)
0.106528 + 0.994310i \(0.466027\pi\)
\(462\) 1.53690i 0.0715032i
\(463\) 2.56864 0.119375 0.0596873 0.998217i \(-0.480990\pi\)
0.0596873 + 0.998217i \(0.480990\pi\)
\(464\) 2.82653i 0.131218i
\(465\) 3.06793i 0.142272i
\(466\) 17.7381i 0.821703i
\(467\) 1.55737 0.0720666 0.0360333 0.999351i \(-0.488528\pi\)
0.0360333 + 0.999351i \(0.488528\pi\)
\(468\) −0.0811024 −0.00374896
\(469\) 6.34885i 0.293163i
\(470\) 9.69323i 0.447115i
\(471\) 14.3634i 0.661832i
\(472\) −13.2750 −0.611033
\(473\) 3.92478i 0.180461i
\(474\) −22.4690 −1.03203
\(475\) −3.35026 −0.153721
\(476\) −0.917483 + 0.466606i −0.0420528 + 0.0213868i
\(477\) −1.66291 −0.0761395
\(478\) −13.0884 −0.598649
\(479\) 20.4060i 0.932373i −0.884687 0.466186i \(-0.845628\pi\)
0.884687 0.466186i \(-0.154372\pi\)
\(480\) −1.83146 −0.0835941
\(481\) 9.29948i 0.424020i
\(482\) 0.387873i 0.0176671i
\(483\) 17.7889i 0.809424i
\(484\) 2.08840 0.0949271
\(485\) −3.66291 −0.166324
\(486\) 2.98049i 0.135198i
\(487\) 0.162664i 0.00737103i 0.999993 + 0.00368551i \(0.00117314\pi\)
−0.999993 + 0.00368551i \(0.998827\pi\)
\(488\) 7.58769i 0.343479i
\(489\) −24.0811 −1.08899
\(490\) 7.91397i 0.357517i
\(491\) 12.8364 0.579298 0.289649 0.957133i \(-0.406461\pi\)
0.289649 + 0.957133i \(0.406461\pi\)
\(492\) 3.66291 0.165137
\(493\) 2.38787 1.21440i 0.107544 0.0546940i
\(494\) −10.7005 −0.481439
\(495\) −0.0933212 −0.00419447
\(496\) 7.96731i 0.357743i
\(497\) −18.7064 −0.839097
\(498\) 33.3258i 1.49337i
\(499\) 17.7416i 0.794225i −0.917770 0.397113i \(-0.870012\pi\)
0.917770 0.397113i \(-0.129988\pi\)
\(500\) 0.193937i 0.00867311i
\(501\) −12.6458 −0.564971
\(502\) −35.0494 −1.56433
\(503\) 11.2120i 0.499920i −0.968256 0.249960i \(-0.919583\pi\)
0.968256 0.249960i \(-0.0804175\pi\)
\(504\) 0.667837i 0.0297478i
\(505\) 6.85685i 0.305126i
\(506\) 5.87987 0.261392
\(507\) 13.9878i 0.621219i
\(508\) 0.342968 0.0152167
\(509\) −6.37328 −0.282491 −0.141245 0.989975i \(-0.545111\pi\)
−0.141245 + 0.989975i \(0.545111\pi\)
\(510\) −4.63752 9.11871i −0.205353 0.403783i
\(511\) −17.1852 −0.760230
\(512\) −18.5188 −0.818423
\(513\) 17.9248i 0.791398i
\(514\) 28.5052 1.25731
\(515\) 7.04349i 0.310373i
\(516\) 2.64974i 0.116648i
\(517\) 3.14903i 0.138494i
\(518\) 8.22284 0.361291
\(519\) 19.8496 0.871299
\(520\) 5.76845i 0.252963i
\(521\) 0.986826i 0.0432336i −0.999766 0.0216168i \(-0.993119\pi\)
0.999766 0.0216168i \(-0.00688138\pi\)
\(522\) 0.186642i 0.00816911i
\(523\) 8.99271 0.393224 0.196612 0.980481i \(-0.437006\pi\)
0.196612 + 0.980481i \(0.437006\pi\)
\(524\) 2.15396i 0.0940960i
\(525\) −2.15633 −0.0941097
\(526\) −25.5428 −1.11372
\(527\) 6.73084 3.42311i 0.293200 0.149113i
\(528\) −3.50659 −0.152605
\(529\) −45.0567 −1.95899
\(530\) 12.7005i 0.551675i
\(531\) 0.962389 0.0417641
\(532\) 0.836381i 0.0362617i
\(533\) 24.3127i 1.05310i
\(534\) 41.6385i 1.80187i
\(535\) −5.86177 −0.253427
\(536\) −13.1939 −0.569891
\(537\) 5.40105i 0.233072i
\(538\) 39.4372i 1.70026i
\(539\) 2.57101i 0.110741i
\(540\) 1.03761 0.0446517
\(541\) 37.3766i 1.60695i −0.595341 0.803473i \(-0.702983\pi\)
0.595341 0.803473i \(-0.297017\pi\)
\(542\) −9.92478 −0.426306
\(543\) −11.5369 −0.495096
\(544\) 2.04349 + 4.01810i 0.0876140 + 0.172275i
\(545\) 12.7005 0.544031
\(546\) −6.88717 −0.294743
\(547\) 22.1744i 0.948110i −0.880495 0.474055i \(-0.842790\pi\)
0.880495 0.474055i \(-0.157210\pi\)
\(548\) 2.28233 0.0974964
\(549\) 0.550078i 0.0234768i
\(550\) 0.712742i 0.0303914i
\(551\) 2.17679i 0.0927345i
\(552\) 36.9683 1.57347
\(553\) 11.6570 0.495707
\(554\) 24.7367i 1.05096i
\(555\) 7.22425i 0.306652i
\(556\) 2.27011i 0.0962743i
\(557\) 1.16950 0.0495533 0.0247766 0.999693i \(-0.492113\pi\)
0.0247766 + 0.999693i \(0.492113\pi\)
\(558\) 0.526100i 0.0222716i
\(559\) −17.5877 −0.743880
\(560\) 5.59991 0.236639
\(561\) −1.50659 2.96239i −0.0636081 0.125072i
\(562\) −42.1016 −1.77595
\(563\) −11.1333 −0.469213 −0.234606 0.972090i \(-0.575380\pi\)
−0.234606 + 0.972090i \(0.575380\pi\)
\(564\) 2.12601i 0.0895211i
\(565\) 4.88717 0.205605
\(566\) 14.9053i 0.626515i
\(567\) 10.7880i 0.453052i
\(568\) 38.8749i 1.63116i
\(569\) 16.7005 0.700122 0.350061 0.936727i \(-0.386161\pi\)
0.350061 + 0.936727i \(0.386161\pi\)
\(570\) 8.31265 0.348179
\(571\) 37.2833i 1.56026i 0.625619 + 0.780129i \(0.284846\pi\)
−0.625619 + 0.780129i \(0.715154\pi\)
\(572\) 0.201231i 0.00841388i
\(573\) 12.0606i 0.503840i
\(574\) −21.4979 −0.897304
\(575\) 8.24965i 0.344034i
\(576\) 1.37328 0.0572202
\(577\) −1.63259 −0.0679658 −0.0339829 0.999422i \(-0.510819\pi\)
−0.0339829 + 0.999422i \(0.510819\pi\)
\(578\) −14.8315 + 20.3488i −0.616907 + 0.846400i
\(579\) 33.6893 1.40008
\(580\) 0.126008 0.00523220
\(581\) 17.2896i 0.717295i
\(582\) 9.08840 0.376726
\(583\) 4.12601i 0.170882i
\(584\) 35.7137i 1.47784i
\(585\) 0.418190i 0.0172900i
\(586\) 21.1998 0.875756
\(587\) 23.0435 0.951107 0.475553 0.879687i \(-0.342248\pi\)
0.475553 + 0.879687i \(0.342248\pi\)
\(588\) 1.73577i 0.0715818i
\(589\) 6.13586i 0.252824i
\(590\) 7.35026i 0.302605i
\(591\) −5.29948 −0.217991
\(592\) 18.7612i 0.771079i
\(593\) 44.2130 1.81561 0.907805 0.419393i \(-0.137757\pi\)
0.907805 + 0.419393i \(0.137757\pi\)
\(594\) 3.81336 0.156464
\(595\) 2.40597 + 4.73084i 0.0986352 + 0.193946i
\(596\) 3.33567 0.136635
\(597\) 36.0059 1.47362
\(598\) 26.3488i 1.07748i
\(599\) 15.4518 0.631345 0.315672 0.948868i \(-0.397770\pi\)
0.315672 + 0.948868i \(0.397770\pi\)
\(600\) 4.48119i 0.182944i
\(601\) 43.0640i 1.75662i −0.478096 0.878308i \(-0.658673\pi\)
0.478096 0.878308i \(-0.341327\pi\)
\(602\) 15.5515i 0.633832i
\(603\) 0.956509 0.0389521
\(604\) −2.63515 −0.107223
\(605\) 10.7685i 0.437800i
\(606\) 17.0132i 0.691113i
\(607\) 41.5002i 1.68444i 0.539132 + 0.842222i \(0.318753\pi\)
−0.539132 + 0.842222i \(0.681247\pi\)
\(608\) −3.66291 −0.148551
\(609\) 1.40105i 0.0567733i
\(610\) 4.20123 0.170103
\(611\) 14.1114 0.570887
\(612\) −0.0702982 0.138227i −0.00284164 0.00558749i
\(613\) −27.7137 −1.11935 −0.559673 0.828714i \(-0.689073\pi\)
−0.559673 + 0.828714i \(0.689073\pi\)
\(614\) 43.3707 1.75030
\(615\) 18.8872i 0.761604i
\(616\) 1.65703 0.0667637
\(617\) 29.6629i 1.19418i −0.802173 0.597092i \(-0.796323\pi\)
0.802173 0.597092i \(-0.203677\pi\)
\(618\) 17.4763i 0.702999i
\(619\) 26.4422i 1.06280i 0.847121 + 0.531400i \(0.178334\pi\)
−0.847121 + 0.531400i \(0.821666\pi\)
\(620\) 0.355186 0.0142646
\(621\) −44.1378 −1.77119
\(622\) 6.72733i 0.269741i
\(623\) 21.6023i 0.865477i
\(624\) 15.7137i 0.629051i
\(625\) 1.00000 0.0400000
\(626\) 1.22425i 0.0489310i
\(627\) 2.70052 0.107849
\(628\) −1.66291 −0.0663574
\(629\) 15.8496 8.06063i 0.631963 0.321399i
\(630\) −0.369775 −0.0147322
\(631\) 37.7499 1.50280 0.751400 0.659847i \(-0.229379\pi\)
0.751400 + 0.659847i \(0.229379\pi\)
\(632\) 24.2252i 0.963627i
\(633\) −34.9584 −1.38947
\(634\) 47.7499i 1.89639i
\(635\) 1.76845i 0.0701789i
\(636\) 2.78560i 0.110456i
\(637\) −11.5212 −0.456486
\(638\) 0.463096 0.0183341
\(639\) 2.81828i 0.111490i
\(640\) 12.6751i 0.501029i
\(641\) 46.3488i 1.83067i 0.402694 + 0.915335i \(0.368074\pi\)
−0.402694 + 0.915335i \(0.631926\pi\)
\(642\) 14.5442 0.574014
\(643\) 34.9502i 1.37830i −0.724619 0.689150i \(-0.757984\pi\)
0.724619 0.689150i \(-0.242016\pi\)
\(644\) 2.05949 0.0811554
\(645\) 13.6629 0.537977
\(646\) −9.27504 18.2374i −0.364922 0.717542i
\(647\) 36.5296 1.43613 0.718064 0.695978i \(-0.245029\pi\)
0.718064 + 0.695978i \(0.245029\pi\)
\(648\) 22.4191 0.880707
\(649\) 2.38787i 0.0937322i
\(650\) 3.19394 0.125276
\(651\) 3.94921i 0.154782i
\(652\) 2.78797i 0.109185i
\(653\) 0.926192i 0.0362447i −0.999836 0.0181223i \(-0.994231\pi\)
0.999836 0.0181223i \(-0.00576884\pi\)
\(654\) −31.5125 −1.23223
\(655\) 11.1065 0.433967
\(656\) 49.0494i 1.91506i
\(657\) 2.58910i 0.101011i
\(658\) 12.4777i 0.486431i
\(659\) −24.0118 −0.935365 −0.467683 0.883896i \(-0.654911\pi\)
−0.467683 + 0.883896i \(0.654911\pi\)
\(660\) 0.156325i 0.00608495i
\(661\) −20.9478 −0.814775 −0.407387 0.913255i \(-0.633560\pi\)
−0.407387 + 0.913255i \(0.633560\pi\)
\(662\) −10.1114 −0.392991
\(663\) −13.2750 + 6.75131i −0.515560 + 0.262199i
\(664\) 35.9307 1.39438
\(665\) −4.31265 −0.167237
\(666\) 1.23884i 0.0480042i
\(667\) −5.36011 −0.207544
\(668\) 1.46405i 0.0566458i
\(669\) 40.7777i 1.57656i
\(670\) 7.30536i 0.282231i
\(671\) 1.36485 0.0526895
\(672\) −2.35756 −0.0909447
\(673\) 0.513881i 0.0198087i 0.999951 + 0.00990433i \(0.00315270\pi\)
−0.999951 + 0.00990433i \(0.996847\pi\)
\(674\) 26.7367i 1.02986i
\(675\) 5.35026i 0.205932i
\(676\) −1.61942 −0.0622854
\(677\) 3.67276i 0.141156i −0.997506 0.0705778i \(-0.977516\pi\)
0.997506 0.0705778i \(-0.0224843\pi\)
\(678\) −12.1260 −0.465697
\(679\) −4.71511 −0.180949
\(680\) 9.83146 5.00000i 0.377019 0.191741i
\(681\) −18.7816 −0.719713
\(682\) 1.30536 0.0499847
\(683\) 10.5115i 0.402212i 0.979570 + 0.201106i \(0.0644535\pi\)
−0.979570 + 0.201106i \(0.935546\pi\)
\(684\) 0.126008 0.00481804
\(685\) 11.7685i 0.449649i
\(686\) 23.5341i 0.898535i
\(687\) 20.3634i 0.776914i
\(688\) −35.4821 −1.35274
\(689\) 18.4894 0.704392
\(690\) 20.4690i 0.779241i
\(691\) 25.5940i 0.973643i 0.873502 + 0.486821i \(0.161844\pi\)
−0.873502 + 0.486821i \(0.838156\pi\)
\(692\) 2.29806i 0.0873592i
\(693\) −0.120128 −0.00456330
\(694\) 27.1817i 1.03180i
\(695\) −11.7054 −0.444013
\(696\) 2.91160 0.110364
\(697\) −41.4372 + 21.0738i −1.56955 + 0.798227i
\(698\) −20.1476 −0.762599
\(699\) −20.0606 −0.758763
\(700\) 0.249646i 0.00943574i
\(701\) 30.8324 1.16452 0.582262 0.813001i \(-0.302168\pi\)
0.582262 + 0.813001i \(0.302168\pi\)
\(702\) 17.0884i 0.644960i
\(703\) 14.4485i 0.544936i
\(704\) 3.40739i 0.128421i
\(705\) −10.9624 −0.412867
\(706\) 40.5863 1.52748
\(707\) 8.82653i 0.331956i
\(708\) 1.61213i 0.0605874i
\(709\) 28.1866i 1.05857i 0.848444 + 0.529286i \(0.177540\pi\)
−0.848444 + 0.529286i \(0.822460\pi\)
\(710\) −21.5247 −0.807807
\(711\) 1.75623i 0.0658639i
\(712\) 44.8930 1.68244
\(713\) −15.1089 −0.565831
\(714\) −5.96968 11.7381i −0.223410 0.439289i
\(715\) 1.03761 0.0388045
\(716\) −0.625301 −0.0233686
\(717\) 14.8021i 0.552794i
\(718\) −13.4617 −0.502385
\(719\) 17.7200i 0.660846i 0.943833 + 0.330423i \(0.107191\pi\)
−0.943833 + 0.330423i \(0.892809\pi\)
\(720\) 0.843675i 0.0314419i
\(721\) 9.06679i 0.337665i
\(722\) −11.5174 −0.428633
\(723\) 0.438658 0.0163139
\(724\) 1.33567i 0.0496399i
\(725\) 0.649738i 0.0241307i
\(726\) 26.7186i 0.991621i
\(727\) −9.68338 −0.359137 −0.179568 0.983746i \(-0.557470\pi\)
−0.179568 + 0.983746i \(0.557470\pi\)
\(728\) 7.42548i 0.275207i
\(729\) −28.5125 −1.05602
\(730\) −19.7743 −0.731881
\(731\) −15.2447 29.9756i −0.563846 1.10869i
\(732\) −0.921452 −0.0340579
\(733\) 32.7123 1.20826 0.604128 0.796887i \(-0.293522\pi\)
0.604128 + 0.796887i \(0.293522\pi\)
\(734\) 18.9053i 0.697806i
\(735\) 8.95017 0.330132
\(736\) 9.01951i 0.332464i
\(737\) 2.37328i 0.0874211i
\(738\) 3.23884i 0.119223i
\(739\) 1.42548 0.0524373 0.0262186 0.999656i \(-0.491653\pi\)
0.0262186 + 0.999656i \(0.491653\pi\)
\(740\) 0.836381 0.0307460
\(741\) 12.1016i 0.444562i
\(742\) 16.3488i 0.600185i
\(743\) 16.8143i 0.616857i 0.951247 + 0.308429i \(0.0998031\pi\)
−0.951247 + 0.308429i \(0.900197\pi\)
\(744\) 8.20711 0.300887
\(745\) 17.1998i 0.630153i
\(746\) 14.9537 0.547493
\(747\) −2.60483 −0.0953058
\(748\) −0.342968 + 0.174424i −0.0125401 + 0.00637756i
\(749\) −7.54561 −0.275711
\(750\) −2.48119 −0.0906004
\(751\) 44.0835i 1.60863i −0.594204 0.804314i \(-0.702533\pi\)
0.594204 0.804314i \(-0.297467\pi\)
\(752\) 28.4690 1.03816
\(753\) 39.6385i 1.44451i
\(754\) 2.07522i 0.0755752i
\(755\) 13.5877i 0.494507i
\(756\) 1.33567 0.0485780
\(757\) −39.8094 −1.44690 −0.723448 0.690378i \(-0.757444\pi\)
−0.723448 + 0.690378i \(0.757444\pi\)
\(758\) 13.5999i 0.493971i
\(759\) 6.64974i 0.241370i
\(760\) 8.96239i 0.325100i
\(761\) 2.81591 0.102077 0.0510384 0.998697i \(-0.483747\pi\)
0.0510384 + 0.998697i \(0.483747\pi\)
\(762\) 4.38787i 0.158956i
\(763\) 16.3488 0.591868
\(764\) 1.39631 0.0505166
\(765\) −0.712742 + 0.362481i −0.0257693 + 0.0131055i
\(766\) −2.71625 −0.0981422
\(767\) −10.7005 −0.386374
\(768\) 7.72592i 0.278785i
\(769\) 36.0665 1.30059 0.650296 0.759681i \(-0.274645\pi\)
0.650296 + 0.759681i \(0.274645\pi\)
\(770\) 0.917483i 0.0330638i
\(771\) 32.2374i 1.16100i
\(772\) 3.90034i 0.140376i
\(773\) 11.6180 0.417871 0.208935 0.977929i \(-0.433000\pi\)
0.208935 + 0.977929i \(0.433000\pi\)
\(774\) 2.34297 0.0842162
\(775\) 1.83146i 0.0657878i
\(776\) 9.79877i 0.351755i
\(777\) 9.29948i 0.333617i
\(778\) 17.2663 0.619028
\(779\) 37.7743i 1.35341i
\(780\) −0.700523 −0.0250828
\(781\) −6.99271 −0.250219
\(782\) 44.9076 22.8388i 1.60589 0.816712i
\(783\) −3.47627 −0.124232
\(784\) −23.2433 −0.830118
\(785\) 8.57452i 0.306038i
\(786\) −27.5574 −0.982939
\(787\) 28.4626i 1.01458i 0.861774 + 0.507292i \(0.169353\pi\)
−0.861774 + 0.507292i \(0.830647\pi\)
\(788\) 0.613541i 0.0218565i
\(789\) 28.8872i 1.02841i
\(790\) 13.4133 0.477223
\(791\) 6.29104 0.223684
\(792\) 0.249646i 0.00887080i
\(793\) 6.11616i 0.217191i
\(794\) 13.8858i 0.492787i
\(795\) −14.3634 −0.509419
\(796\) 4.16854i 0.147750i
\(797\) −50.5355 −1.79006 −0.895029 0.446007i \(-0.852846\pi\)
−0.895029 + 0.446007i \(0.852846\pi\)
\(798\) 10.7005 0.378794
\(799\) 12.2315 + 24.0508i 0.432721 + 0.850856i
\(800\) 1.09332 0.0386547
\(801\) −3.25457 −0.114995
\(802\) 11.7597i 0.415251i
\(803\) −6.42407 −0.226701
\(804\) 1.60228i 0.0565080i
\(805\) 10.6194i 0.374285i
\(806\) 5.84955i 0.206042i
\(807\) −44.6009 −1.57002
\(808\) −18.3430 −0.645303
\(809\) 2.50914i 0.0882167i 0.999027 + 0.0441084i \(0.0140447\pi\)
−0.999027 + 0.0441084i \(0.985955\pi\)
\(810\) 12.4133i 0.436158i
\(811\) 18.0933i 0.635342i −0.948201 0.317671i \(-0.897099\pi\)
0.948201 0.317671i \(-0.102901\pi\)
\(812\) 0.162205 0.00569227
\(813\) 11.2243i 0.393652i
\(814\) 3.07381 0.107737
\(815\) 14.3757 0.503557
\(816\) −26.7816 + 13.6204i −0.937544 + 0.476809i
\(817\) 27.3258 0.956010
\(818\) 13.4401 0.469921
\(819\) 0.538319i 0.0188104i
\(820\) −2.18664 −0.0763609
\(821\) 7.02776i 0.245271i 0.992452 + 0.122635i \(0.0391345\pi\)
−0.992452 + 0.122635i \(0.960865\pi\)
\(822\) 29.1998i 1.01846i
\(823\) 28.5379i 0.994767i −0.867531 0.497384i \(-0.834294\pi\)
0.867531 0.497384i \(-0.165706\pi\)
\(824\) −18.8423 −0.656401
\(825\) −0.806063 −0.0280635
\(826\) 9.46168i 0.329214i
\(827\) 26.3004i 0.914556i 0.889324 + 0.457278i \(0.151175\pi\)
−0.889324 + 0.457278i \(0.848825\pi\)
\(828\) 0.310281i 0.0107830i
\(829\) −27.2506 −0.946453 −0.473226 0.880941i \(-0.656911\pi\)
−0.473226 + 0.880941i \(0.656911\pi\)
\(830\) 19.8945i 0.690547i
\(831\) 27.9756 0.970462
\(832\) −15.2692 −0.529363
\(833\) −9.98637 19.6361i −0.346007 0.680351i
\(834\) 29.0435 1.00569
\(835\) 7.54912 0.261248
\(836\) 0.312650i 0.0108132i
\(837\) −9.79877 −0.338695
\(838\) 13.3235i 0.460251i
\(839\) 38.6580i 1.33462i 0.744779 + 0.667311i \(0.232555\pi\)
−0.744779 + 0.667311i \(0.767445\pi\)
\(840\) 5.76845i 0.199031i
\(841\) 28.5778 0.985443
\(842\) 25.0435 0.863056
\(843\) 47.6140i 1.63991i
\(844\) 4.04728i 0.139313i
\(845\) 8.35026i 0.287258i
\(846\) −1.87987 −0.0646313
\(847\) 13.8618i 0.476296i
\(848\) 37.3014 1.28093
\(849\) −16.8568 −0.578526
\(850\) 2.76845 + 5.44358i 0.0949571 + 0.186713i
\(851\) −35.5778 −1.21959
\(852\) 4.72099 0.161739
\(853\) 5.46168i 0.187004i −0.995619 0.0935022i \(-0.970194\pi\)
0.995619 0.0935022i \(-0.0298062\pi\)
\(854\) 5.40807 0.185060
\(855\) 0.649738i 0.0222206i
\(856\) 15.6810i 0.535966i
\(857\) 8.30280i 0.283618i 0.989894 + 0.141809i \(0.0452919\pi\)
−0.989894 + 0.141809i \(0.954708\pi\)
\(858\) −2.57452 −0.0878925
\(859\) 10.7612 0.367166 0.183583 0.983004i \(-0.441230\pi\)
0.183583 + 0.983004i \(0.441230\pi\)
\(860\) 1.58181i 0.0539393i
\(861\) 24.3127i 0.828573i
\(862\) 21.7259i 0.739988i
\(863\) 43.7342 1.48873 0.744364 0.667774i \(-0.232753\pi\)
0.744364 + 0.667774i \(0.232753\pi\)
\(864\) 5.84955i 0.199006i
\(865\) −11.8496 −0.402897
\(866\) −9.89446 −0.336227
\(867\) −23.0132 16.7734i −0.781568 0.569654i
\(868\) 0.457216 0.0155189
\(869\) 4.35756 0.147820
\(870\) 1.61213i 0.0546562i
\(871\) −10.6351 −0.360358
\(872\) 33.9756i 1.15056i
\(873\) 0.710373i 0.0240425i
\(874\) 40.9380i 1.38475i
\(875\) 1.28726 0.0435173
\(876\) 4.33709 0.146537
\(877\) 43.5633i 1.47103i 0.677510 + 0.735513i \(0.263059\pi\)
−0.677510 + 0.735513i \(0.736941\pi\)
\(878\) 14.1744i 0.478364i
\(879\) 23.9756i 0.808676i
\(880\) 2.09332 0.0705658
\(881\) 43.4372i 1.46344i −0.681606 0.731719i \(-0.738718\pi\)
0.681606 0.731719i \(-0.261282\pi\)
\(882\) 1.53481 0.0516797
\(883\) −6.56864 −0.221052 −0.110526 0.993873i \(-0.535254\pi\)
−0.110526 + 0.993873i \(0.535254\pi\)
\(884\) 0.781626 + 1.53690i 0.0262889 + 0.0516917i
\(885\) 8.31265 0.279427
\(886\) −21.9090 −0.736049
\(887\) 21.4396i 0.719872i 0.932977 + 0.359936i \(0.117201\pi\)
−0.932977 + 0.359936i \(0.882799\pi\)
\(888\) 19.3258 0.648532
\(889\) 2.27645i 0.0763498i
\(890\) 24.8568i 0.833203i
\(891\) 4.03269i 0.135100i
\(892\) −4.72099 −0.158070
\(893\) −21.9248 −0.733685
\(894\) 42.6761i 1.42730i
\(895\) 3.22425i 0.107775i
\(896\) 16.3162i 0.545085i
\(897\) 29.7988 0.994952
\(898\) 16.1476i 0.538853i
\(899\) −1.18997 −0.0396876
\(900\) −0.0376114 −0.00125371
\(901\) 16.0263 + 31.5125i 0.533915 + 1.04983i
\(902\) −8.03620 −0.267576
\(903\) 17.5877 0.585282
\(904\) 13.0738i 0.434828i
\(905\) 6.88717 0.228937
\(906\) 33.7137i 1.12006i
\(907\) 21.2628i 0.706020i −0.935619 0.353010i \(-0.885158\pi\)
0.935619 0.353010i \(-0.114842\pi\)
\(908\) 2.17442i 0.0721608i
\(909\) 1.32979 0.0441065
\(910\) 4.11142 0.136292
\(911\) 48.6678i 1.61244i −0.591618 0.806219i \(-0.701510\pi\)
0.591618 0.806219i \(-0.298490\pi\)
\(912\) 24.4142i 0.808436i
\(913\) 6.46310i 0.213897i
\(914\) 11.2837 0.373233
\(915\) 4.75131i 0.157073i
\(916\) 2.35756 0.0778958
\(917\) 14.2969 0.472126
\(918\) 29.1246 14.8119i 0.961255 0.488867i
\(919\) 4.55993 0.150418 0.0752091 0.997168i \(-0.476038\pi\)
0.0752091 + 0.997168i \(0.476038\pi\)
\(920\) −22.0689 −0.727590
\(921\) 49.0494i 1.61623i
\(922\) 6.77575 0.223147
\(923\) 31.3357i 1.03143i
\(924\) 0.201231i 0.00662001i
\(925\) 4.31265i 0.141799i
\(926\) 3.80465 0.125029
\(927\) 1.36599 0.0448650
\(928\) 0.710373i 0.0233191i
\(929\) 23.3963i 0.767608i −0.923415 0.383804i \(-0.874614\pi\)
0.923415 0.383804i \(-0.125386\pi\)
\(930\) 4.54420i 0.149010i
\(931\) 17.9003 0.586660
\(932\) 2.32250i 0.0760760i
\(933\) −7.60816 −0.249080
\(934\) 2.30677 0.0754798
\(935\) 0.899385 + 1.76845i 0.0294130 + 0.0578346i
\(936\) 1.11871 0.0365663
\(937\) −30.3898 −0.992791 −0.496395 0.868097i \(-0.665343\pi\)
−0.496395 + 0.868097i \(0.665343\pi\)
\(938\) 9.40388i 0.307047i
\(939\) 1.38455 0.0451830
\(940\) 1.26916i 0.0413954i
\(941\) 25.9610i 0.846304i 0.906059 + 0.423152i \(0.139076\pi\)
−0.906059 + 0.423152i \(0.860924\pi\)
\(942\) 21.2750i 0.693178i
\(943\) 93.0151 3.02899
\(944\) −21.5877 −0.702619
\(945\) 6.88717i 0.224040i
\(946\) 5.81336i 0.189009i
\(947\) 16.8289i 0.546866i −0.961891 0.273433i \(-0.911841\pi\)
0.961891 0.273433i \(-0.0881592\pi\)
\(948\) −2.94192 −0.0955491
\(949\) 28.7875i 0.934482i
\(950\) −4.96239 −0.161001
\(951\) 54.0019 1.75113
\(952\) 12.6556 6.43629i 0.410171 0.208601i
\(953\) −12.7553 −0.413184 −0.206592 0.978427i \(-0.566237\pi\)
−0.206592 + 0.978427i \(0.566237\pi\)
\(954\) −2.46310 −0.0797457
\(955\) 7.19982i 0.232981i
\(956\) −1.71370 −0.0554249
\(957\) 0.523730i 0.0169298i
\(958\) 30.2252i 0.976532i
\(959\) 15.1490i 0.489188i
\(960\) 11.8618 0.382837
\(961\) 27.6458 0.891799
\(962\) 13.7743i 0.444102i
\(963\) 1.13681i 0.0366333i
\(964\) 0.0507852i 0.00163568i
\(965\) −20.1114 −0.647410
\(966\) 26.3488i 0.847760i
\(967\) 42.5560 1.36851 0.684254 0.729244i \(-0.260128\pi\)
0.684254 + 0.729244i \(0.260128\pi\)
\(968\) −28.8070 −0.925893
\(969\) 20.6253 10.4894i 0.662580 0.336969i
\(970\) −5.42548 −0.174202
\(971\) −18.4485 −0.592041 −0.296020 0.955182i \(-0.595660\pi\)
−0.296020 + 0.955182i \(0.595660\pi\)
\(972\) 0.390243i 0.0125170i
\(973\) −15.0679 −0.483056
\(974\) 0.240938i 0.00772014i
\(975\) 3.61213i 0.115681i
\(976\) 12.3390i 0.394962i
\(977\) 24.8383 0.794647 0.397324 0.917679i \(-0.369939\pi\)
0.397324 + 0.917679i \(0.369939\pi\)
\(978\) −35.6688 −1.14056
\(979\) 8.07522i 0.258085i
\(980\) 1.03620i 0.0331001i
\(981\) 2.46310i 0.0786406i
\(982\) 19.0132 0.606735
\(983\) 4.32487i 0.137942i 0.997619 + 0.0689710i \(0.0219716\pi\)
−0.997619 + 0.0689710i \(0.978028\pi\)
\(984\) −50.5256 −1.61070
\(985\) 3.16362 0.100801
\(986\) 3.53690 1.79877i 0.112638 0.0572845i
\(987\) −14.1114 −0.449171
\(988\) −1.40105 −0.0445732
\(989\) 67.2868i 2.13960i
\(990\) −0.138227 −0.00439314
\(991\) 31.8432i 1.01153i −0.862670 0.505767i \(-0.831210\pi\)
0.862670 0.505767i \(-0.168790\pi\)
\(992\) 2.00237i 0.0635753i
\(993\) 11.4353i 0.362889i
\(994\) −27.7078 −0.878839
\(995\) −21.4944 −0.681417
\(996\) 4.36344i 0.138261i
\(997\) 29.0278i 0.919318i 0.888095 + 0.459659i \(0.152028\pi\)
−0.888095 + 0.459659i \(0.847972\pi\)
\(998\) 26.2788i 0.831842i
\(999\) −23.0738 −0.730023
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.d.a.16.6 yes 6
3.2 odd 2 765.2.g.b.271.2 6
4.3 odd 2 1360.2.c.f.1121.2 6
5.2 odd 4 425.2.c.a.424.5 6
5.3 odd 4 425.2.c.b.424.2 6
5.4 even 2 425.2.d.c.101.1 6
17.4 even 4 1445.2.a.j.1.1 3
17.13 even 4 1445.2.a.k.1.1 3
17.16 even 2 inner 85.2.d.a.16.5 6
51.50 odd 2 765.2.g.b.271.1 6
68.67 odd 2 1360.2.c.f.1121.5 6
85.4 even 4 7225.2.a.q.1.3 3
85.33 odd 4 425.2.c.a.424.2 6
85.64 even 4 7225.2.a.r.1.3 3
85.67 odd 4 425.2.c.b.424.5 6
85.84 even 2 425.2.d.c.101.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.d.a.16.5 6 17.16 even 2 inner
85.2.d.a.16.6 yes 6 1.1 even 1 trivial
425.2.c.a.424.2 6 85.33 odd 4
425.2.c.a.424.5 6 5.2 odd 4
425.2.c.b.424.2 6 5.3 odd 4
425.2.c.b.424.5 6 85.67 odd 4
425.2.d.c.101.1 6 5.4 even 2
425.2.d.c.101.2 6 85.84 even 2
765.2.g.b.271.1 6 51.50 odd 2
765.2.g.b.271.2 6 3.2 odd 2
1360.2.c.f.1121.2 6 4.3 odd 2
1360.2.c.f.1121.5 6 68.67 odd 2
1445.2.a.j.1.1 3 17.4 even 4
1445.2.a.k.1.1 3 17.13 even 4
7225.2.a.q.1.3 3 85.4 even 4
7225.2.a.r.1.3 3 85.64 even 4