Properties

Label 85.2.b.a.69.8
Level $85$
Weight $2$
Character 85.69
Analytic conductor $0.679$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,2,Mod(69,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.69");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.619810816.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 69.8
Root \(1.18254 - 1.18254i\) of defining polynomial
Character \(\chi\) \(=\) 85.69
Dual form 85.2.b.a.69.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.31627i q^{2} -0.203185i q^{3} -3.36509 q^{4} +(-1.55654 + 1.60536i) q^{5} +0.470630 q^{6} +0.683735i q^{7} -3.16190i q^{8} +2.95872 q^{9} +(-3.71844 - 3.60536i) q^{10} +3.68135 q^{11} +0.683735i q^{12} -4.43927i q^{13} -1.58371 q^{14} +(0.326185 + 0.316265i) q^{15} +0.593630 q^{16} -1.00000i q^{17} +6.85317i q^{18} +1.03890 q^{19} +(5.23789 - 5.40218i) q^{20} +0.138925 q^{21} +8.52699i q^{22} +4.52699i q^{23} -0.642450 q^{24} +(-0.154365 - 4.99762i) q^{25} +10.2825 q^{26} -1.21072i q^{27} -2.30083i q^{28} +3.69127 q^{29} +(-0.732555 + 0.755531i) q^{30} -10.8921 q^{31} -4.94880i q^{32} -0.747995i q^{33} +2.31627 q^{34} +(-1.09764 - 1.06426i) q^{35} -9.95633 q^{36} +0.308729i q^{37} +2.40637i q^{38} -0.901992 q^{39} +(5.07599 + 4.92163i) q^{40} -6.15198 q^{41} +0.321786i q^{42} -7.88454i q^{43} -12.3881 q^{44} +(-4.60536 + 4.74981i) q^{45} -10.4857 q^{46} +4.43927i q^{47} -0.120617i q^{48} +6.53251 q^{49} +(11.5758 - 0.357550i) q^{50} -0.203185 q^{51} +14.9385i q^{52} -11.4603i q^{53} +2.80435 q^{54} +(-5.73017 + 5.90990i) q^{55} +2.16190 q^{56} -0.211089i q^{57} +8.54996i q^{58} +2.00000 q^{59} +(-1.09764 - 1.06426i) q^{60} +9.94089 q^{61} -25.2289i q^{62} +2.02298i q^{63} +12.6500 q^{64} +(7.12662 + 6.90990i) q^{65} +1.73255 q^{66} +9.16944i q^{67} +3.36509i q^{68} +0.919815 q^{69} +(2.46511 - 2.54243i) q^{70} -9.37262 q^{71} -9.35517i q^{72} +2.26946i q^{73} -0.715099 q^{74} +(-1.01544 + 0.0313646i) q^{75} -3.49599 q^{76} +2.51707i q^{77} -2.08925i q^{78} -7.42696 q^{79} +(-0.924009 + 0.952991i) q^{80} +8.63015 q^{81} -14.2496i q^{82} +8.92344i q^{83} -0.467493 q^{84} +(1.60536 + 1.55654i) q^{85} +18.2627 q^{86} -0.750010i q^{87} -11.6401i q^{88} -11.5523 q^{89} +(-11.0018 - 10.6672i) q^{90} +3.03528 q^{91} -15.2337i q^{92} +2.21310i q^{93} -10.2825 q^{94} +(-1.61709 + 1.66781i) q^{95} -1.00552 q^{96} -12.5500i q^{97} +15.1310i q^{98} +10.8921 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 2 q^{5} - 8 q^{9} + 6 q^{10} - 4 q^{11} + 12 q^{14} - 8 q^{16} - 8 q^{19} - 2 q^{20} + 24 q^{21} + 12 q^{24} - 12 q^{25} + 8 q^{29} - 16 q^{30} - 24 q^{31} + 4 q^{34} + 44 q^{39} + 22 q^{40}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/85\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.31627i 1.63785i 0.573903 + 0.818924i \(0.305429\pi\)
−0.573903 + 0.818924i \(0.694571\pi\)
\(3\) 0.203185i 0.117309i −0.998278 0.0586544i \(-0.981319\pi\)
0.998278 0.0586544i \(-0.0186810\pi\)
\(4\) −3.36509 −1.68254
\(5\) −1.55654 + 1.60536i −0.696106 + 0.717939i
\(6\) 0.470630 0.192134
\(7\) 0.683735i 0.258427i 0.991617 + 0.129214i \(0.0412453\pi\)
−0.991617 + 0.129214i \(0.958755\pi\)
\(8\) 3.16190i 1.11790i
\(9\) 2.95872 0.986239
\(10\) −3.71844 3.60536i −1.17587 1.14012i
\(11\) 3.68135 1.10997 0.554985 0.831861i \(-0.312724\pi\)
0.554985 + 0.831861i \(0.312724\pi\)
\(12\) 0.683735i 0.197377i
\(13\) 4.43927i 1.23123i −0.788047 0.615615i \(-0.788908\pi\)
0.788047 0.615615i \(-0.211092\pi\)
\(14\) −1.58371 −0.423264
\(15\) 0.326185 + 0.316265i 0.0842206 + 0.0816594i
\(16\) 0.593630 0.148408
\(17\) 1.00000i 0.242536i
\(18\) 6.85317i 1.61531i
\(19\) 1.03890 0.238340 0.119170 0.992874i \(-0.461977\pi\)
0.119170 + 0.992874i \(0.461977\pi\)
\(20\) 5.23789 5.40218i 1.17123 1.20796i
\(21\) 0.138925 0.0303158
\(22\) 8.52699i 1.81796i
\(23\) 4.52699i 0.943942i 0.881614 + 0.471971i \(0.156457\pi\)
−0.881614 + 0.471971i \(0.843543\pi\)
\(24\) −0.642450 −0.131140
\(25\) −0.154365 4.99762i −0.0308729 0.999523i
\(26\) 10.2825 2.01657
\(27\) 1.21072i 0.233003i
\(28\) 2.30083i 0.434815i
\(29\) 3.69127 0.685452 0.342726 0.939435i \(-0.388650\pi\)
0.342726 + 0.939435i \(0.388650\pi\)
\(30\) −0.732555 + 0.755531i −0.133746 + 0.137940i
\(31\) −10.8921 −1.95627 −0.978137 0.207962i \(-0.933317\pi\)
−0.978137 + 0.207962i \(0.933317\pi\)
\(32\) 4.94880i 0.874832i
\(33\) 0.747995i 0.130209i
\(34\) 2.31627 0.397236
\(35\) −1.09764 1.06426i −0.185535 0.179893i
\(36\) −9.95633 −1.65939
\(37\) 0.308729i 0.0507548i 0.999678 + 0.0253774i \(0.00807874\pi\)
−0.999678 + 0.0253774i \(0.991921\pi\)
\(38\) 2.40637i 0.390365i
\(39\) −0.901992 −0.144434
\(40\) 5.07599 + 4.92163i 0.802585 + 0.778177i
\(41\) −6.15198 −0.960778 −0.480389 0.877056i \(-0.659505\pi\)
−0.480389 + 0.877056i \(0.659505\pi\)
\(42\) 0.321786i 0.0496527i
\(43\) 7.88454i 1.20238i −0.799106 0.601190i \(-0.794693\pi\)
0.799106 0.601190i \(-0.205307\pi\)
\(44\) −12.3881 −1.86757
\(45\) −4.60536 + 4.74981i −0.686527 + 0.708059i
\(46\) −10.4857 −1.54603
\(47\) 4.43927i 0.647533i 0.946137 + 0.323767i \(0.104949\pi\)
−0.946137 + 0.323767i \(0.895051\pi\)
\(48\) 0.120617i 0.0174095i
\(49\) 6.53251 0.933215
\(50\) 11.5758 0.357550i 1.63707 0.0505651i
\(51\) −0.203185 −0.0284516
\(52\) 14.9385i 2.07160i
\(53\) 11.4603i 1.57420i −0.616826 0.787100i \(-0.711582\pi\)
0.616826 0.787100i \(-0.288418\pi\)
\(54\) 2.80435 0.381624
\(55\) −5.73017 + 5.90990i −0.772656 + 0.796890i
\(56\) 2.16190 0.288896
\(57\) 0.211089i 0.0279594i
\(58\) 8.54996i 1.12267i
\(59\) 2.00000 0.260378 0.130189 0.991489i \(-0.458442\pi\)
0.130189 + 0.991489i \(0.458442\pi\)
\(60\) −1.09764 1.06426i −0.141705 0.137395i
\(61\) 9.94089 1.27280 0.636400 0.771359i \(-0.280423\pi\)
0.636400 + 0.771359i \(0.280423\pi\)
\(62\) 25.2289i 3.20408i
\(63\) 2.02298i 0.254871i
\(64\) 12.6500 1.58125
\(65\) 7.12662 + 6.90990i 0.883949 + 0.857067i
\(66\) 1.73255 0.213263
\(67\) 9.16944i 1.12023i 0.828417 + 0.560113i \(0.189242\pi\)
−0.828417 + 0.560113i \(0.810758\pi\)
\(68\) 3.36509i 0.408077i
\(69\) 0.919815 0.110733
\(70\) 2.46511 2.54243i 0.294637 0.303878i
\(71\) −9.37262 −1.11233 −0.556163 0.831073i \(-0.687727\pi\)
−0.556163 + 0.831073i \(0.687727\pi\)
\(72\) 9.35517i 1.10252i
\(73\) 2.26946i 0.265620i 0.991141 + 0.132810i \(0.0424001\pi\)
−0.991141 + 0.132810i \(0.957600\pi\)
\(74\) −0.715099 −0.0831286
\(75\) −1.01544 + 0.0313646i −0.117253 + 0.00362167i
\(76\) −3.49599 −0.401018
\(77\) 2.51707i 0.286846i
\(78\) 2.08925i 0.236561i
\(79\) −7.42696 −0.835599 −0.417799 0.908539i \(-0.637198\pi\)
−0.417799 + 0.908539i \(0.637198\pi\)
\(80\) −0.924009 + 0.952991i −0.103307 + 0.106548i
\(81\) 8.63015 0.958905
\(82\) 14.2496i 1.57361i
\(83\) 8.92344i 0.979474i 0.871870 + 0.489737i \(0.162907\pi\)
−0.871870 + 0.489737i \(0.837093\pi\)
\(84\) −0.467493 −0.0510077
\(85\) 1.60536 + 1.55654i 0.174126 + 0.168830i
\(86\) 18.2627 1.96932
\(87\) 0.750010i 0.0804096i
\(88\) 11.6401i 1.24084i
\(89\) −11.5523 −1.22455 −0.612273 0.790646i \(-0.709745\pi\)
−0.612273 + 0.790646i \(0.709745\pi\)
\(90\) −11.0018 10.6672i −1.15969 1.12443i
\(91\) 3.03528 0.318184
\(92\) 15.2337i 1.58822i
\(93\) 2.21310i 0.229488i
\(94\) −10.2825 −1.06056
\(95\) −1.61709 + 1.66781i −0.165910 + 0.171114i
\(96\) −1.00552 −0.102626
\(97\) 12.5500i 1.27426i −0.770758 0.637128i \(-0.780122\pi\)
0.770758 0.637128i \(-0.219878\pi\)
\(98\) 15.1310i 1.52846i
\(99\) 10.8921 1.09469
\(100\) 0.519450 + 16.8174i 0.0519450 + 1.68174i
\(101\) −6.78653 −0.675285 −0.337642 0.941274i \(-0.609629\pi\)
−0.337642 + 0.941274i \(0.609629\pi\)
\(102\) 0.470630i 0.0465993i
\(103\) 8.74799i 0.861966i −0.902360 0.430983i \(-0.858167\pi\)
0.902360 0.430983i \(-0.141833\pi\)
\(104\) −14.0365 −1.37639
\(105\) −0.216242 + 0.223024i −0.0211030 + 0.0217649i
\(106\) 26.5452 2.57830
\(107\) 8.10078i 0.783132i 0.920150 + 0.391566i \(0.128066\pi\)
−0.920150 + 0.391566i \(0.871934\pi\)
\(108\) 4.07418i 0.392038i
\(109\) 3.11308 0.298179 0.149090 0.988824i \(-0.452366\pi\)
0.149090 + 0.988824i \(0.452366\pi\)
\(110\) −13.6889 13.2726i −1.30518 1.26549i
\(111\) 0.0627291 0.00595399
\(112\) 0.405885i 0.0383526i
\(113\) 6.93287i 0.652190i 0.945337 + 0.326095i \(0.105733\pi\)
−0.945337 + 0.326095i \(0.894267\pi\)
\(114\) 0.488938 0.0457932
\(115\) −7.26745 7.04644i −0.677693 0.657084i
\(116\) −12.4214 −1.15330
\(117\) 13.1345i 1.21429i
\(118\) 4.63253i 0.426459i
\(119\) 0.683735 0.0626778
\(120\) 1.00000 1.03136i 0.0912871 0.0941503i
\(121\) 2.55235 0.232031
\(122\) 23.0257i 2.08465i
\(123\) 1.24999i 0.112708i
\(124\) 36.6528 3.29151
\(125\) 8.26325 + 7.53118i 0.739088 + 0.673609i
\(126\) −4.68575 −0.417440
\(127\) 21.1496i 1.87672i 0.345655 + 0.938362i \(0.387657\pi\)
−0.345655 + 0.938362i \(0.612343\pi\)
\(128\) 19.4031i 1.71501i
\(129\) −1.60202 −0.141050
\(130\) −16.0052 + 16.5071i −1.40374 + 1.44777i
\(131\) 8.71186 0.761159 0.380580 0.924748i \(-0.375725\pi\)
0.380580 + 0.924748i \(0.375725\pi\)
\(132\) 2.51707i 0.219083i
\(133\) 0.710332i 0.0615936i
\(134\) −21.2388 −1.83476
\(135\) 1.94364 + 1.88454i 0.167282 + 0.162195i
\(136\) −3.16190 −0.271131
\(137\) 0.243985i 0.0208450i 0.999946 + 0.0104225i \(0.00331765\pi\)
−0.999946 + 0.0104225i \(0.996682\pi\)
\(138\) 2.13054i 0.181363i
\(139\) −12.6884 −1.07622 −0.538108 0.842876i \(-0.680861\pi\)
−0.538108 + 0.842876i \(0.680861\pi\)
\(140\) 3.69365 + 3.58133i 0.312171 + 0.302677i
\(141\) 0.901992 0.0759614
\(142\) 21.7095i 1.82182i
\(143\) 16.3425i 1.36663i
\(144\) 1.75638 0.146365
\(145\) −5.74561 + 5.92582i −0.477147 + 0.492113i
\(146\) −5.25667 −0.435045
\(147\) 1.32731i 0.109474i
\(148\) 1.03890i 0.0853971i
\(149\) −12.0103 −0.983923 −0.491961 0.870617i \(-0.663720\pi\)
−0.491961 + 0.870617i \(0.663720\pi\)
\(150\) −0.0726487 2.35203i −0.00593174 0.192042i
\(151\) 8.95633 0.728856 0.364428 0.931232i \(-0.381265\pi\)
0.364428 + 0.931232i \(0.381265\pi\)
\(152\) 3.28490i 0.266441i
\(153\) 2.95872i 0.239198i
\(154\) −5.83020 −0.469811
\(155\) 16.9539 17.4857i 1.36177 1.40449i
\(156\) 3.03528 0.243017
\(157\) 19.9127i 1.58920i −0.607131 0.794602i \(-0.707680\pi\)
0.607131 0.794602i \(-0.292320\pi\)
\(158\) 17.2028i 1.36858i
\(159\) −2.32857 −0.184667
\(160\) 7.94460 + 7.70300i 0.628076 + 0.608976i
\(161\) −3.09526 −0.243940
\(162\) 19.9897i 1.57054i
\(163\) 22.4011i 1.75459i −0.479951 0.877296i \(-0.659345\pi\)
0.479951 0.877296i \(-0.340655\pi\)
\(164\) 20.7019 1.61655
\(165\) 1.20080 + 1.16428i 0.0934823 + 0.0906394i
\(166\) −20.6690 −1.60423
\(167\) 4.58133i 0.354514i −0.984165 0.177257i \(-0.943278\pi\)
0.984165 0.177257i \(-0.0567223\pi\)
\(168\) 0.439266i 0.0338901i
\(169\) −6.70708 −0.515929
\(170\) −3.60536 + 3.71844i −0.276519 + 0.285191i
\(171\) 3.07381 0.235060
\(172\) 26.5321i 2.02306i
\(173\) 8.09764i 0.615652i 0.951443 + 0.307826i \(0.0996015\pi\)
−0.951443 + 0.307826i \(0.900399\pi\)
\(174\) 1.73722 0.131699
\(175\) 3.41704 0.105544i 0.258304 0.00797841i
\(176\) 2.18536 0.164728
\(177\) 0.406370i 0.0305446i
\(178\) 26.7583i 2.00562i
\(179\) −4.40637 −0.329348 −0.164674 0.986348i \(-0.552657\pi\)
−0.164674 + 0.986348i \(0.552657\pi\)
\(180\) 15.4974 15.9835i 1.15511 1.19134i
\(181\) −5.93727 −0.441314 −0.220657 0.975351i \(-0.570820\pi\)
−0.220657 + 0.975351i \(0.570820\pi\)
\(182\) 7.03051i 0.521136i
\(183\) 2.01984i 0.149311i
\(184\) 14.3139 1.05523
\(185\) −0.495622 0.480550i −0.0364388 0.0353307i
\(186\) −5.12614 −0.375867
\(187\) 3.68135i 0.269207i
\(188\) 14.9385i 1.08950i
\(189\) 0.827812 0.0602144
\(190\) −3.86309 3.74561i −0.280258 0.271735i
\(191\) −9.89759 −0.716165 −0.358082 0.933690i \(-0.616569\pi\)
−0.358082 + 0.933690i \(0.616569\pi\)
\(192\) 2.57029i 0.185494i
\(193\) 8.47578i 0.610100i 0.952336 + 0.305050i \(0.0986732\pi\)
−0.952336 + 0.305050i \(0.901327\pi\)
\(194\) 29.0690 2.08704
\(195\) 1.40399 1.44802i 0.100542 0.103695i
\(196\) −21.9824 −1.57017
\(197\) 13.5381i 0.964553i 0.876019 + 0.482276i \(0.160190\pi\)
−0.876019 + 0.482276i \(0.839810\pi\)
\(198\) 25.2289i 1.79294i
\(199\) 9.15388 0.648901 0.324451 0.945903i \(-0.394821\pi\)
0.324451 + 0.945903i \(0.394821\pi\)
\(200\) −15.8020 + 0.488086i −1.11737 + 0.0345129i
\(201\) 1.86309 0.131412
\(202\) 15.7194i 1.10601i
\(203\) 2.52385i 0.177139i
\(204\) 0.683735 0.0478710
\(205\) 9.57581 9.87615i 0.668803 0.689780i
\(206\) 20.2627 1.41177
\(207\) 13.3941i 0.930952i
\(208\) 2.63528i 0.182724i
\(209\) 3.82456 0.264550
\(210\) −0.516583 0.500873i −0.0356476 0.0345635i
\(211\) 7.72465 0.531787 0.265893 0.964002i \(-0.414333\pi\)
0.265893 + 0.964002i \(0.414333\pi\)
\(212\) 38.5650i 2.64866i
\(213\) 1.90438i 0.130486i
\(214\) −18.7636 −1.28265
\(215\) 12.6575 + 12.2726i 0.863236 + 0.836984i
\(216\) −3.82818 −0.260475
\(217\) 7.44729i 0.505555i
\(218\) 7.21072i 0.488372i
\(219\) 0.461120 0.0311596
\(220\) 19.2825 19.8873i 1.30003 1.34080i
\(221\) −4.43927 −0.298617
\(222\) 0.145297i 0.00975172i
\(223\) 13.7194i 0.918719i 0.888250 + 0.459359i \(0.151921\pi\)
−0.888250 + 0.459359i \(0.848079\pi\)
\(224\) 3.38366 0.226080
\(225\) −0.456721 14.7865i −0.0304481 0.985769i
\(226\) −16.0584 −1.06819
\(227\) 1.80044i 0.119499i −0.998213 0.0597496i \(-0.980970\pi\)
0.998213 0.0597496i \(-0.0190302\pi\)
\(228\) 0.710332i 0.0470429i
\(229\) 3.24838 0.214659 0.107330 0.994223i \(-0.465770\pi\)
0.107330 + 0.994223i \(0.465770\pi\)
\(230\) 16.3214 16.8333i 1.07620 1.10996i
\(231\) 0.511430 0.0336496
\(232\) 11.6714i 0.766267i
\(233\) 5.38254i 0.352622i −0.984335 0.176311i \(-0.943584\pi\)
0.984335 0.176311i \(-0.0564164\pi\)
\(234\) 30.4230 1.98882
\(235\) −7.12662 6.90990i −0.464890 0.450752i
\(236\) −6.73017 −0.438097
\(237\) 1.50905i 0.0980231i
\(238\) 1.58371i 0.102657i
\(239\) 3.62071 0.234204 0.117102 0.993120i \(-0.462639\pi\)
0.117102 + 0.993120i \(0.462639\pi\)
\(240\) 0.193633 + 0.187745i 0.0124990 + 0.0121189i
\(241\) −7.66781 −0.493927 −0.246964 0.969025i \(-0.579433\pi\)
−0.246964 + 0.969025i \(0.579433\pi\)
\(242\) 5.91191i 0.380032i
\(243\) 5.38568i 0.345491i
\(244\) −33.4520 −2.14154
\(245\) −10.1681 + 10.4870i −0.649617 + 0.669992i
\(246\) −2.89531 −0.184598
\(247\) 4.61196i 0.293452i
\(248\) 34.4397i 2.18692i
\(249\) 1.81311 0.114901
\(250\) −17.4442 + 19.1399i −1.10327 + 1.21051i
\(251\) −6.04595 −0.381617 −0.190809 0.981627i \(-0.561111\pi\)
−0.190809 + 0.981627i \(0.561111\pi\)
\(252\) 6.80749i 0.428831i
\(253\) 16.6654i 1.04775i
\(254\) −48.9881 −3.07379
\(255\) 0.316265 0.326185i 0.0198053 0.0204265i
\(256\) −19.6428 −1.22768
\(257\) 6.13054i 0.382412i −0.981550 0.191206i \(-0.938760\pi\)
0.981550 0.191206i \(-0.0612399\pi\)
\(258\) 3.71070i 0.231018i
\(259\) −0.211089 −0.0131164
\(260\) −23.9817 23.2524i −1.48728 1.44205i
\(261\) 10.9214 0.676019
\(262\) 20.1790i 1.24666i
\(263\) 12.3012i 0.758525i 0.925289 + 0.379263i \(0.123822\pi\)
−0.925289 + 0.379263i \(0.876178\pi\)
\(264\) −2.36509 −0.145561
\(265\) 18.3980 + 17.8385i 1.13018 + 1.09581i
\(266\) −1.64532 −0.100881
\(267\) 2.34726i 0.143650i
\(268\) 30.8559i 1.88483i
\(269\) −9.92508 −0.605143 −0.302572 0.953127i \(-0.597845\pi\)
−0.302572 + 0.953127i \(0.597845\pi\)
\(270\) −4.36509 + 4.50199i −0.265651 + 0.273983i
\(271\) 20.3040 1.23338 0.616689 0.787207i \(-0.288474\pi\)
0.616689 + 0.787207i \(0.288474\pi\)
\(272\) 0.593630i 0.0359941i
\(273\) 0.616723i 0.0373258i
\(274\) −0.565133 −0.0341410
\(275\) −0.568271 18.3980i −0.0342680 1.10944i
\(276\) −3.09526 −0.186313
\(277\) 18.1671i 1.09155i 0.837931 + 0.545776i \(0.183765\pi\)
−0.837931 + 0.545776i \(0.816235\pi\)
\(278\) 29.3897i 1.76268i
\(279\) −32.2265 −1.92935
\(280\) −3.36509 + 3.47063i −0.201102 + 0.207410i
\(281\) 10.6983 0.638208 0.319104 0.947720i \(-0.396618\pi\)
0.319104 + 0.947720i \(0.396618\pi\)
\(282\) 2.08925i 0.124413i
\(283\) 10.0773i 0.599034i −0.954091 0.299517i \(-0.903174\pi\)
0.954091 0.299517i \(-0.0968256\pi\)
\(284\) 31.5397 1.87154
\(285\) 0.338874 + 0.328568i 0.0200732 + 0.0194627i
\(286\) 37.8536 2.23833
\(287\) 4.20632i 0.248291i
\(288\) 14.6421i 0.862793i
\(289\) −1.00000 −0.0588235
\(290\) −13.7258 13.3084i −0.806005 0.781494i
\(291\) −2.54996 −0.149481
\(292\) 7.63693i 0.446918i
\(293\) 20.5349i 1.19966i 0.800127 + 0.599831i \(0.204765\pi\)
−0.800127 + 0.599831i \(0.795235\pi\)
\(294\) 3.07439 0.179302
\(295\) −3.11308 + 3.21072i −0.181251 + 0.186935i
\(296\) 0.976172 0.0567388
\(297\) 4.45709i 0.258627i
\(298\) 27.8191i 1.61151i
\(299\) 20.0965 1.16221
\(300\) 3.41704 0.105544i 0.197283 0.00609361i
\(301\) 5.39093 0.310728
\(302\) 20.7452i 1.19375i
\(303\) 1.37892i 0.0792169i
\(304\) 0.616723 0.0353715
\(305\) −15.4734 + 15.9587i −0.886004 + 0.913793i
\(306\) 6.85317 0.391770
\(307\) 13.1177i 0.748669i 0.927294 + 0.374335i \(0.122129\pi\)
−0.927294 + 0.374335i \(0.877871\pi\)
\(308\) 8.47015i 0.482631i
\(309\) −1.77746 −0.101116
\(310\) 40.5015 + 39.2698i 2.30033 + 2.23038i
\(311\) −12.3646 −0.701132 −0.350566 0.936538i \(-0.614011\pi\)
−0.350566 + 0.936538i \(0.614011\pi\)
\(312\) 2.85201i 0.161463i
\(313\) 5.16000i 0.291661i 0.989310 + 0.145830i \(0.0465853\pi\)
−0.989310 + 0.145830i \(0.953415\pi\)
\(314\) 46.1230 2.60287
\(315\) −3.24761 3.14884i −0.182982 0.177417i
\(316\) 24.9924 1.40593
\(317\) 23.7655i 1.33480i −0.744699 0.667400i \(-0.767407\pi\)
0.744699 0.667400i \(-0.232593\pi\)
\(318\) 5.39358i 0.302457i
\(319\) 13.5889 0.760830
\(320\) −19.6902 + 20.3078i −1.10072 + 1.13524i
\(321\) 1.64596 0.0918683
\(322\) 7.16944i 0.399537i
\(323\) 1.03890i 0.0578060i
\(324\) −29.0412 −1.61340
\(325\) −22.1857 + 0.685266i −1.23064 + 0.0380117i
\(326\) 51.8869 2.87375
\(327\) 0.632531i 0.0349790i
\(328\) 19.4520i 1.07405i
\(329\) −3.03528 −0.167340
\(330\) −2.69679 + 2.78137i −0.148453 + 0.153110i
\(331\) 20.8341 1.14514 0.572572 0.819854i \(-0.305946\pi\)
0.572572 + 0.819854i \(0.305946\pi\)
\(332\) 30.0281i 1.64801i
\(333\) 0.913442i 0.0500563i
\(334\) 10.6116 0.580639
\(335\) −14.7203 14.2726i −0.804253 0.779795i
\(336\) 0.0824698 0.00449910
\(337\) 14.3080i 0.779406i 0.920941 + 0.389703i \(0.127422\pi\)
−0.920941 + 0.389703i \(0.872578\pi\)
\(338\) 15.5354i 0.845013i
\(339\) 1.40865 0.0765076
\(340\) −5.40218 5.23789i −0.292974 0.284065i
\(341\) −40.0975 −2.17140
\(342\) 7.11976i 0.384993i
\(343\) 9.25264i 0.499596i
\(344\) −24.9301 −1.34414
\(345\) −1.43173 + 1.47664i −0.0770817 + 0.0794994i
\(346\) −18.7563 −1.00834
\(347\) 21.9988i 1.18096i −0.807054 0.590478i \(-0.798939\pi\)
0.807054 0.590478i \(-0.201061\pi\)
\(348\) 2.52385i 0.135293i
\(349\) 6.06199 0.324491 0.162246 0.986750i \(-0.448126\pi\)
0.162246 + 0.986750i \(0.448126\pi\)
\(350\) 0.244469 + 7.91478i 0.0130674 + 0.423063i
\(351\) −5.37471 −0.286881
\(352\) 18.2183i 0.971036i
\(353\) 20.8785i 1.11125i 0.831432 + 0.555626i \(0.187521\pi\)
−0.831432 + 0.555626i \(0.812479\pi\)
\(354\) 0.941260 0.0500274
\(355\) 14.5889 15.0464i 0.774296 0.798582i
\(356\) 38.8746 2.06035
\(357\) 0.138925i 0.00735267i
\(358\) 10.2063i 0.539421i
\(359\) −18.4842 −0.975557 −0.487779 0.872967i \(-0.662193\pi\)
−0.487779 + 0.872967i \(0.662193\pi\)
\(360\) 15.0184 + 14.5617i 0.791540 + 0.767469i
\(361\) −17.9207 −0.943194
\(362\) 13.7523i 0.722805i
\(363\) 0.518598i 0.0272193i
\(364\) −10.2140 −0.535358
\(365\) −3.64330 3.53251i −0.190699 0.184900i
\(366\) 4.67848 0.244548
\(367\) 23.6044i 1.23214i 0.787691 + 0.616070i \(0.211276\pi\)
−0.787691 + 0.616070i \(0.788724\pi\)
\(368\) 2.68736i 0.140088i
\(369\) −18.2020 −0.947556
\(370\) 1.11308 1.14799i 0.0578663 0.0596813i
\(371\) 7.83583 0.406816
\(372\) 7.44729i 0.386124i
\(373\) 18.0123i 0.932643i −0.884615 0.466321i \(-0.845579\pi\)
0.884615 0.466321i \(-0.154421\pi\)
\(374\) 8.52699 0.440920
\(375\) 1.53022 1.67897i 0.0790203 0.0867015i
\(376\) 14.0365 0.723878
\(377\) 16.3865i 0.843949i
\(378\) 1.91743i 0.0986221i
\(379\) 5.74523 0.295112 0.147556 0.989054i \(-0.452859\pi\)
0.147556 + 0.989054i \(0.452859\pi\)
\(380\) 5.44165 5.61232i 0.279151 0.287906i
\(381\) 4.29728 0.220156
\(382\) 22.9255i 1.17297i
\(383\) 35.3281i 1.80518i −0.430499 0.902591i \(-0.641663\pi\)
0.430499 0.902591i \(-0.358337\pi\)
\(384\) 3.94242 0.201186
\(385\) −4.04080 3.91792i −0.205938 0.199675i
\(386\) −19.6322 −0.999251
\(387\) 23.3281i 1.18583i
\(388\) 42.2317i 2.14399i
\(389\) 18.2627 0.925955 0.462977 0.886370i \(-0.346781\pi\)
0.462977 + 0.886370i \(0.346781\pi\)
\(390\) 3.35400 + 3.25201i 0.169837 + 0.164672i
\(391\) 4.52699 0.228940
\(392\) 20.6551i 1.04324i
\(393\) 1.77012i 0.0892907i
\(394\) −31.3579 −1.57979
\(395\) 11.5604 11.9230i 0.581665 0.599909i
\(396\) −36.6528 −1.84187
\(397\) 4.64092i 0.232921i −0.993195 0.116461i \(-0.962845\pi\)
0.993195 0.116461i \(-0.0371549\pi\)
\(398\) 21.2028i 1.06280i
\(399\) 0.144329 0.00722548
\(400\) −0.0916355 2.96674i −0.00458178 0.148337i
\(401\) −27.4049 −1.36853 −0.684267 0.729232i \(-0.739878\pi\)
−0.684267 + 0.729232i \(0.739878\pi\)
\(402\) 4.31541i 0.215233i
\(403\) 48.3528i 2.40862i
\(404\) 22.8372 1.13620
\(405\) −13.4332 + 13.8545i −0.667500 + 0.688436i
\(406\) −5.84590 −0.290127
\(407\) 1.13654i 0.0563363i
\(408\) 0.642450i 0.0318060i
\(409\) −1.38254 −0.0683623 −0.0341811 0.999416i \(-0.510882\pi\)
−0.0341811 + 0.999416i \(0.510882\pi\)
\(410\) 22.8758 + 22.1801i 1.12975 + 1.09540i
\(411\) 0.0495740 0.00244531
\(412\) 29.4378i 1.45029i
\(413\) 1.36747i 0.0672888i
\(414\) −31.0242 −1.52476
\(415\) −14.3253 13.8897i −0.703203 0.681818i
\(416\) −21.9690 −1.07712
\(417\) 2.57809i 0.126250i
\(418\) 8.85869i 0.433293i
\(419\) 33.2300 1.62339 0.811695 0.584081i \(-0.198545\pi\)
0.811695 + 0.584081i \(0.198545\pi\)
\(420\) 0.727672 0.750495i 0.0355067 0.0366204i
\(421\) 4.61109 0.224731 0.112365 0.993667i \(-0.464157\pi\)
0.112365 + 0.993667i \(0.464157\pi\)
\(422\) 17.8923i 0.870986i
\(423\) 13.1345i 0.638622i
\(424\) −36.2365 −1.75980
\(425\) −4.99762 + 0.154365i −0.242420 + 0.00748779i
\(426\) −4.41104 −0.213715
\(427\) 6.79693i 0.328927i
\(428\) 27.2598i 1.31765i
\(429\) −3.32055 −0.160318
\(430\) −28.4266 + 29.3182i −1.37085 + 1.41385i
\(431\) 7.33812 0.353465 0.176732 0.984259i \(-0.443447\pi\)
0.176732 + 0.984259i \(0.443447\pi\)
\(432\) 0.718721i 0.0345795i
\(433\) 15.3487i 0.737610i 0.929507 + 0.368805i \(0.120233\pi\)
−0.929507 + 0.368805i \(0.879767\pi\)
\(434\) 17.2499 0.828021
\(435\) 1.20404 + 1.16742i 0.0577292 + 0.0559736i
\(436\) −10.4758 −0.501699
\(437\) 4.70309i 0.224979i
\(438\) 1.06808i 0.0510347i
\(439\) 5.60355 0.267443 0.133721 0.991019i \(-0.457307\pi\)
0.133721 + 0.991019i \(0.457307\pi\)
\(440\) 18.6865 + 18.1182i 0.890844 + 0.863753i
\(441\) 19.3278 0.920373
\(442\) 10.2825i 0.489089i
\(443\) 29.6338i 1.40794i 0.710228 + 0.703971i \(0.248592\pi\)
−0.710228 + 0.703971i \(0.751408\pi\)
\(444\) −0.211089 −0.0100178
\(445\) 17.9817 18.5457i 0.852414 0.879150i
\(446\) −31.7778 −1.50472
\(447\) 2.44031i 0.115423i
\(448\) 8.64923i 0.408638i
\(449\) 34.4203 1.62439 0.812197 0.583383i \(-0.198271\pi\)
0.812197 + 0.583383i \(0.198271\pi\)
\(450\) 34.2495 1.05789i 1.61454 0.0498693i
\(451\) −22.6476 −1.06643
\(452\) 23.3297i 1.09734i
\(453\) 1.81979i 0.0855013i
\(454\) 4.17029 0.195721
\(455\) −4.72453 + 4.87272i −0.221490 + 0.228437i
\(456\) −0.667442 −0.0312558
\(457\) 9.32504i 0.436207i 0.975926 + 0.218103i \(0.0699870\pi\)
−0.975926 + 0.218103i \(0.930013\pi\)
\(458\) 7.52412i 0.351579i
\(459\) −1.21072 −0.0565116
\(460\) 24.4556 + 23.7119i 1.14025 + 1.10557i
\(461\) 19.1715 0.892904 0.446452 0.894808i \(-0.352687\pi\)
0.446452 + 0.894808i \(0.352687\pi\)
\(462\) 1.18461i 0.0551129i
\(463\) 19.6385i 0.912680i −0.889805 0.456340i \(-0.849160\pi\)
0.889805 0.456340i \(-0.150840\pi\)
\(464\) 2.19125 0.101726
\(465\) −3.55283 3.44479i −0.164759 0.159748i
\(466\) 12.4674 0.577541
\(467\) 21.1027i 0.976515i −0.872699 0.488258i \(-0.837633\pi\)
0.872699 0.488258i \(-0.162367\pi\)
\(468\) 44.1988i 2.04309i
\(469\) −6.26946 −0.289497
\(470\) 16.0052 16.5071i 0.738263 0.761418i
\(471\) −4.04595 −0.186428
\(472\) 6.32380i 0.291077i
\(473\) 29.0257i 1.33461i
\(474\) −3.49535 −0.160547
\(475\) −0.160370 5.19203i −0.00735826 0.238227i
\(476\) −2.30083 −0.105458
\(477\) 33.9079i 1.55254i
\(478\) 8.38653i 0.383591i
\(479\) 28.6762 1.31025 0.655125 0.755521i \(-0.272616\pi\)
0.655125 + 0.755521i \(0.272616\pi\)
\(480\) 1.56513 1.61422i 0.0714382 0.0736789i
\(481\) 1.37053 0.0624909
\(482\) 17.7607i 0.808977i
\(483\) 0.628909i 0.0286164i
\(484\) −8.58886 −0.390403
\(485\) 20.1472 + 19.5345i 0.914838 + 0.887017i
\(486\) 12.4747 0.565862
\(487\) 39.2139i 1.77695i 0.458925 + 0.888475i \(0.348234\pi\)
−0.458925 + 0.888475i \(0.651766\pi\)
\(488\) 31.4321i 1.42287i
\(489\) −4.55157 −0.205829
\(490\) −24.2907 23.5520i −1.09734 1.06397i
\(491\) −36.3499 −1.64045 −0.820224 0.572042i \(-0.806151\pi\)
−0.820224 + 0.572042i \(0.806151\pi\)
\(492\) 4.20632i 0.189636i
\(493\) 3.69127i 0.166246i
\(494\) 10.6825 0.480629
\(495\) −16.9539 + 17.4857i −0.762023 + 0.785924i
\(496\) −6.46586 −0.290326
\(497\) 6.40839i 0.287455i
\(498\) 4.19964i 0.188190i
\(499\) 8.52061 0.381435 0.190718 0.981645i \(-0.438919\pi\)
0.190718 + 0.981645i \(0.438919\pi\)
\(500\) −27.8065 25.3431i −1.24355 1.13338i
\(501\) −0.930856 −0.0415876
\(502\) 14.0040i 0.625030i
\(503\) 18.6790i 0.832854i −0.909169 0.416427i \(-0.863282\pi\)
0.909169 0.416427i \(-0.136718\pi\)
\(504\) 6.39645 0.284921
\(505\) 10.5635 10.8948i 0.470070 0.484813i
\(506\) −38.6016 −1.71605
\(507\) 1.36278i 0.0605231i
\(508\) 71.1702i 3.15767i
\(509\) −3.53567 −0.156716 −0.0783579 0.996925i \(-0.524968\pi\)
−0.0783579 + 0.996925i \(0.524968\pi\)
\(510\) 0.755531 + 0.732555i 0.0334555 + 0.0324381i
\(511\) −1.55171 −0.0686436
\(512\) 6.69175i 0.295737i
\(513\) 1.25782i 0.0555341i
\(514\) 14.1999 0.626333
\(515\) 14.0437 + 13.6166i 0.618839 + 0.600019i
\(516\) 5.39093 0.237322
\(517\) 16.3425i 0.718742i
\(518\) 0.488938i 0.0214827i
\(519\) 1.64532 0.0722215
\(520\) 21.8484 22.5337i 0.958116 0.988167i
\(521\) −4.64206 −0.203373 −0.101686 0.994817i \(-0.532424\pi\)
−0.101686 + 0.994817i \(0.532424\pi\)
\(522\) 25.2969i 1.10722i
\(523\) 18.3331i 0.801649i −0.916155 0.400824i \(-0.868724\pi\)
0.916155 0.400824i \(-0.131276\pi\)
\(524\) −29.3162 −1.28068
\(525\) −0.0214450 0.694292i −0.000935938 0.0303014i
\(526\) −28.4929 −1.24235
\(527\) 10.8921i 0.474466i
\(528\) 0.444032i 0.0193240i
\(529\) 2.50639 0.108974
\(530\) −41.3187 + 42.6146i −1.79477 + 1.85106i
\(531\) 5.91743 0.256795
\(532\) 2.39033i 0.103634i
\(533\) 27.3103i 1.18294i
\(534\) −5.43688 −0.235277
\(535\) −13.0047 12.6092i −0.562241 0.545143i
\(536\) 28.9928 1.25230
\(537\) 0.895308i 0.0386354i
\(538\) 22.9891i 0.991132i
\(539\) 24.0485 1.03584
\(540\) −6.54053 6.34163i −0.281459 0.272900i
\(541\) 22.4428 0.964891 0.482445 0.875926i \(-0.339749\pi\)
0.482445 + 0.875926i \(0.339749\pi\)
\(542\) 47.0294i 2.02008i
\(543\) 1.20636i 0.0517700i
\(544\) −4.94880 −0.212178
\(545\) −4.84564 + 4.99762i −0.207564 + 0.214074i
\(546\) 1.42849 0.0611339
\(547\) 25.9778i 1.11073i −0.831607 0.555365i \(-0.812578\pi\)
0.831607 0.555365i \(-0.187422\pi\)
\(548\) 0.821029i 0.0350726i
\(549\) 29.4123 1.25529
\(550\) 42.6146 1.31627i 1.81709 0.0561257i
\(551\) 3.83486 0.163371
\(552\) 2.90836i 0.123788i
\(553\) 5.07807i 0.215942i
\(554\) −42.0797 −1.78780
\(555\) −0.0976404 + 0.100703i −0.00414461 + 0.00427460i
\(556\) 42.6976 1.81078
\(557\) 4.86144i 0.205986i −0.994682 0.102993i \(-0.967158\pi\)
0.994682 0.102993i \(-0.0328419\pi\)
\(558\) 74.6452i 3.15998i
\(559\) −35.0015 −1.48041
\(560\) −0.651593 0.631777i −0.0275348 0.0266975i
\(561\) −0.747995 −0.0315804
\(562\) 24.7802i 1.04529i
\(563\) 1.53365i 0.0646357i 0.999478 + 0.0323179i \(0.0102889\pi\)
−0.999478 + 0.0323179i \(0.989711\pi\)
\(564\) −3.03528 −0.127808
\(565\) −11.1298 10.7913i −0.468232 0.453993i
\(566\) 23.3417 0.981127
\(567\) 5.90073i 0.247807i
\(568\) 29.6353i 1.24347i
\(569\) 16.5770 0.694946 0.347473 0.937690i \(-0.387040\pi\)
0.347473 + 0.937690i \(0.387040\pi\)
\(570\) −0.761052 + 0.784922i −0.0318769 + 0.0328768i
\(571\) −14.2904 −0.598036 −0.299018 0.954248i \(-0.596659\pi\)
−0.299018 + 0.954248i \(0.596659\pi\)
\(572\) 54.9939i 2.29941i
\(573\) 2.01104i 0.0840125i
\(574\) 9.74296 0.406663
\(575\) 22.6241 0.698807i 0.943492 0.0291423i
\(576\) 37.4277 1.55949
\(577\) 28.5424i 1.18824i −0.804377 0.594119i \(-0.797501\pi\)
0.804377 0.594119i \(-0.202499\pi\)
\(578\) 2.31627i 0.0963439i
\(579\) 1.72215 0.0715702
\(580\) 19.3345 19.9409i 0.802820 0.828000i
\(581\) −6.10126 −0.253123
\(582\) 5.90639i 0.244828i
\(583\) 42.1895i 1.74731i
\(584\) 7.17581 0.296937
\(585\) 21.0856 + 20.4444i 0.871784 + 0.845273i
\(586\) −47.5643 −1.96486
\(587\) 33.5281i 1.38385i 0.721967 + 0.691927i \(0.243238\pi\)
−0.721967 + 0.691927i \(0.756762\pi\)
\(588\) 4.46650i 0.184195i
\(589\) −11.3158 −0.466259
\(590\) −7.43688 7.21072i −0.306172 0.296861i
\(591\) 2.75075 0.113151
\(592\) 0.183271i 0.00753239i
\(593\) 42.4729i 1.74415i 0.489368 + 0.872077i \(0.337227\pi\)
−0.489368 + 0.872077i \(0.662773\pi\)
\(594\) 10.3238 0.423591
\(595\) −1.06426 + 1.09764i −0.0436304 + 0.0449989i
\(596\) 40.4157 1.65549
\(597\) 1.85993i 0.0761219i
\(598\) 46.5488i 1.90352i
\(599\) 7.00705 0.286300 0.143150 0.989701i \(-0.454277\pi\)
0.143150 + 0.989701i \(0.454277\pi\)
\(600\) 0.0991717 + 3.21072i 0.00404867 + 0.131077i
\(601\) 39.3146 1.60368 0.801839 0.597541i \(-0.203855\pi\)
0.801839 + 0.597541i \(0.203855\pi\)
\(602\) 12.4868i 0.508925i
\(603\) 27.1298i 1.10481i
\(604\) −30.1388 −1.22633
\(605\) −3.97283 + 4.09744i −0.161518 + 0.166584i
\(606\) −3.19394 −0.129745
\(607\) 18.7928i 0.762777i 0.924415 + 0.381389i \(0.124554\pi\)
−0.924415 + 0.381389i \(0.875446\pi\)
\(608\) 5.14131i 0.208508i
\(609\) 0.512808 0.0207800
\(610\) −36.9646 35.8405i −1.49665 1.45114i
\(611\) 19.7071 0.797263
\(612\) 9.95633i 0.402461i
\(613\) 1.83560i 0.0741392i −0.999313 0.0370696i \(-0.988198\pi\)
0.999313 0.0370696i \(-0.0118023\pi\)
\(614\) −30.3842 −1.22621
\(615\) −2.00668 1.94566i −0.0809173 0.0784566i
\(616\) 7.95872 0.320666
\(617\) 29.0011i 1.16754i −0.811918 0.583771i \(-0.801577\pi\)
0.811918 0.583771i \(-0.198423\pi\)
\(618\) 4.11707i 0.165613i
\(619\) −27.7941 −1.11714 −0.558569 0.829458i \(-0.688649\pi\)
−0.558569 + 0.829458i \(0.688649\pi\)
\(620\) −57.0515 + 58.8409i −2.29124 + 2.36311i
\(621\) 5.48092 0.219942
\(622\) 28.6397i 1.14835i
\(623\) 7.89874i 0.316456i
\(624\) −0.535450 −0.0214351
\(625\) −24.9523 + 1.54291i −0.998094 + 0.0617164i
\(626\) −11.9519 −0.477695
\(627\) 0.777092i 0.0310341i
\(628\) 67.0078i 2.67390i
\(629\) 0.308729 0.0123098
\(630\) 7.29356 7.52232i 0.290582 0.299696i
\(631\) −14.1785 −0.564437 −0.282219 0.959350i \(-0.591070\pi\)
−0.282219 + 0.959350i \(0.591070\pi\)
\(632\) 23.4833i 0.934116i
\(633\) 1.56953i 0.0623833i
\(634\) 55.0471 2.18620
\(635\) −33.9527 32.9202i −1.34737 1.30640i
\(636\) 7.83583 0.310711
\(637\) 28.9995i 1.14900i
\(638\) 31.4754i 1.24612i
\(639\) −27.7309 −1.09702
\(640\) −31.1490 30.2018i −1.23127 1.19383i
\(641\) −27.8734 −1.10093 −0.550466 0.834857i \(-0.685550\pi\)
−0.550466 + 0.834857i \(0.685550\pi\)
\(642\) 3.81247i 0.150466i
\(643\) 25.8277i 1.01854i 0.860605 + 0.509272i \(0.170085\pi\)
−0.860605 + 0.509272i \(0.829915\pi\)
\(644\) 10.4158 0.410440
\(645\) 2.49361 2.57182i 0.0981857 0.101265i
\(646\) 2.40637 0.0946774
\(647\) 4.40912i 0.173340i −0.996237 0.0866702i \(-0.972377\pi\)
0.996237 0.0866702i \(-0.0276226\pi\)
\(648\) 27.2877i 1.07196i
\(649\) 7.36270 0.289011
\(650\) −1.58726 51.3881i −0.0622574 2.01561i
\(651\) −1.51318 −0.0593060
\(652\) 75.3817i 2.95217i
\(653\) 30.9245i 1.21017i −0.796161 0.605084i \(-0.793139\pi\)
0.796161 0.605084i \(-0.206861\pi\)
\(654\) 1.46511 0.0572903
\(655\) −13.5604 + 13.9857i −0.529847 + 0.546466i
\(656\) −3.65200 −0.142587
\(657\) 6.71469i 0.261965i
\(658\) 7.03051i 0.274078i
\(659\) −39.7992 −1.55036 −0.775179 0.631742i \(-0.782340\pi\)
−0.775179 + 0.631742i \(0.782340\pi\)
\(660\) −4.04080 3.91792i −0.157288 0.152505i
\(661\) −13.0969 −0.509409 −0.254704 0.967019i \(-0.581978\pi\)
−0.254704 + 0.967019i \(0.581978\pi\)
\(662\) 48.2573i 1.87557i
\(663\) 0.901992i 0.0350305i
\(664\) 28.2150 1.09496
\(665\) −1.14034 1.10566i −0.0442205 0.0428757i
\(666\) −2.11578 −0.0819846
\(667\) 16.7103i 0.647027i
\(668\) 15.4166i 0.596485i
\(669\) 2.78757 0.107774
\(670\) 33.0591 34.0960i 1.27719 1.31724i
\(671\) 36.5959 1.41277
\(672\) 0.687509i 0.0265212i
\(673\) 22.2830i 0.858946i −0.903080 0.429473i \(-0.858699\pi\)
0.903080 0.429473i \(-0.141301\pi\)
\(674\) −33.1411 −1.27655
\(675\) −6.05072 + 0.186893i −0.232892 + 0.00719350i
\(676\) 22.5699 0.868073
\(677\) 10.5576i 0.405762i −0.979203 0.202881i \(-0.934970\pi\)
0.979203 0.202881i \(-0.0650305\pi\)
\(678\) 3.26282i 0.125308i
\(679\) 8.58084 0.329303
\(680\) 4.92163 5.07599i 0.188736 0.194655i
\(681\) −0.365822 −0.0140183
\(682\) 92.8766i 3.55643i
\(683\) 1.80882i 0.0692128i −0.999401 0.0346064i \(-0.988982\pi\)
0.999401 0.0346064i \(-0.0110178\pi\)
\(684\) −10.3436 −0.395499
\(685\) −0.391683 0.379772i −0.0149655 0.0145103i
\(686\) −21.4316 −0.818261
\(687\) 0.660022i 0.0251814i
\(688\) 4.68050i 0.178442i
\(689\) −50.8755 −1.93820
\(690\) −3.42028 3.31627i −0.130208 0.126248i
\(691\) 3.84649 0.146327 0.0731636 0.997320i \(-0.476690\pi\)
0.0731636 + 0.997320i \(0.476690\pi\)
\(692\) 27.2493i 1.03586i
\(693\) 7.44729i 0.282899i
\(694\) 50.9550 1.93423
\(695\) 19.7500 20.3695i 0.749161 0.772658i
\(696\) −2.37146 −0.0898899
\(697\) 6.15198i 0.233023i
\(698\) 14.0412i 0.531467i
\(699\) −1.09365 −0.0413657
\(700\) −11.4986 + 0.355166i −0.434608 + 0.0134240i
\(701\) 43.9484 1.65991 0.829955 0.557830i \(-0.188366\pi\)
0.829955 + 0.557830i \(0.188366\pi\)
\(702\) 12.4493i 0.469867i
\(703\) 0.320739i 0.0120969i
\(704\) 46.5690 1.75514
\(705\) −1.40399 + 1.44802i −0.0528772 + 0.0545357i
\(706\) −48.3602 −1.82006
\(707\) 4.64018i 0.174512i
\(708\) 1.36747i 0.0513926i
\(709\) −45.9706 −1.72646 −0.863232 0.504808i \(-0.831563\pi\)
−0.863232 + 0.504808i \(0.831563\pi\)
\(710\) 34.8515 + 33.7917i 1.30796 + 1.26818i
\(711\) −21.9743 −0.824100
\(712\) 36.5274i 1.36892i
\(713\) 49.3083i 1.84661i
\(714\) 0.321786 0.0120425
\(715\) 26.2356 + 25.4378i 0.981156 + 0.951318i
\(716\) 14.8278 0.554141
\(717\) 0.735674i 0.0274742i
\(718\) 42.8142i 1.59781i
\(719\) −6.24809 −0.233014 −0.116507 0.993190i \(-0.537170\pi\)
−0.116507 + 0.993190i \(0.537170\pi\)
\(720\) −2.73388 + 2.81963i −0.101886 + 0.105081i
\(721\) 5.98131 0.222755
\(722\) 41.5091i 1.54481i
\(723\) 1.55798i 0.0579420i
\(724\) 19.9794 0.742529
\(725\) −0.569802 18.4476i −0.0211619 0.685125i
\(726\) 1.20121 0.0445811
\(727\) 49.9606i 1.85294i 0.376372 + 0.926469i \(0.377171\pi\)
−0.376372 + 0.926469i \(0.622829\pi\)
\(728\) 9.59725i 0.355698i
\(729\) 24.7962 0.918376
\(730\) 8.18222 8.43886i 0.302838 0.312336i
\(731\) −7.88454 −0.291620
\(732\) 6.79693i 0.251222i
\(733\) 37.4111i 1.38181i 0.722945 + 0.690906i \(0.242788\pi\)
−0.722945 + 0.690906i \(0.757212\pi\)
\(734\) −54.6741 −2.01806
\(735\) 2.13081 + 2.06601i 0.0785960 + 0.0762058i
\(736\) 22.4031 0.825790
\(737\) 33.7559i 1.24342i
\(738\) 42.1606i 1.55195i
\(739\) −38.9348 −1.43224 −0.716120 0.697978i \(-0.754084\pi\)
−0.716120 + 0.697978i \(0.754084\pi\)
\(740\) 1.66781 + 1.61709i 0.0613099 + 0.0594454i
\(741\) −0.937080 −0.0344245
\(742\) 18.1499i 0.666303i
\(743\) 13.0253i 0.477850i −0.971038 0.238925i \(-0.923205\pi\)
0.971038 0.238925i \(-0.0767951\pi\)
\(744\) 6.99762 0.256545
\(745\) 18.6945 19.2809i 0.684914 0.706396i
\(746\) 41.7213 1.52753
\(747\) 26.4019i 0.965996i
\(748\) 12.3881i 0.452952i
\(749\) −5.53878 −0.202383
\(750\) 3.88893 + 3.54440i 0.142004 + 0.129423i
\(751\) −42.3558 −1.54559 −0.772793 0.634659i \(-0.781141\pi\)
−0.772793 + 0.634659i \(0.781141\pi\)
\(752\) 2.63528i 0.0960989i
\(753\) 1.22845i 0.0447671i
\(754\) 37.9556 1.38226
\(755\) −13.9409 + 14.3781i −0.507361 + 0.523274i
\(756\) −2.78566 −0.101313
\(757\) 4.20834i 0.152955i 0.997071 + 0.0764773i \(0.0243673\pi\)
−0.997071 + 0.0764773i \(0.975633\pi\)
\(758\) 13.3075i 0.483349i
\(759\) 3.38616 0.122910
\(760\) 5.27345 + 5.11308i 0.191288 + 0.185471i
\(761\) 31.8563 1.15479 0.577395 0.816465i \(-0.304069\pi\)
0.577395 + 0.816465i \(0.304069\pi\)
\(762\) 9.95364i 0.360582i
\(763\) 2.12852i 0.0770576i
\(764\) 33.3062 1.20498
\(765\) 4.74981 + 4.60536i 0.171730 + 0.166507i
\(766\) 81.8293 2.95661
\(767\) 8.87853i 0.320585i
\(768\) 3.99113i 0.144017i
\(769\) 7.43010 0.267936 0.133968 0.990986i \(-0.457228\pi\)
0.133968 + 0.990986i \(0.457228\pi\)
\(770\) 9.07493 9.35957i 0.327038 0.337295i
\(771\) −1.24563 −0.0448604
\(772\) 28.5217i 1.02652i
\(773\) 7.33384i 0.263780i −0.991264 0.131890i \(-0.957895\pi\)
0.991264 0.131890i \(-0.0421045\pi\)
\(774\) 54.0341 1.94221
\(775\) 1.68135 + 54.4344i 0.0603959 + 1.95534i
\(776\) −39.6817 −1.42449
\(777\) 0.0428901i 0.00153867i
\(778\) 42.3012i 1.51657i
\(779\) −6.39130 −0.228992
\(780\) −4.72453 + 4.87272i −0.169165 + 0.174471i
\(781\) −34.5039 −1.23465
\(782\) 10.4857i 0.374968i
\(783\) 4.46910i 0.159713i
\(784\) 3.87789 0.138496
\(785\) 31.9670 + 30.9949i 1.14095 + 1.10625i
\(786\) 4.10007 0.146244
\(787\) 35.7257i 1.27348i −0.771077 0.636742i \(-0.780282\pi\)
0.771077 0.636742i \(-0.219718\pi\)
\(788\) 45.5570i 1.62290i
\(789\) 2.49942 0.0889817
\(790\) 27.6167 + 26.7769i 0.982559 + 0.952679i
\(791\) −4.74024 −0.168544
\(792\) 34.4397i 1.22376i
\(793\) 44.1303i 1.56711i
\(794\) 10.7496 0.381489
\(795\) 3.62451 3.73819i 0.128548 0.132580i
\(796\) −30.8036 −1.09180
\(797\) 28.2025i 0.998985i 0.866318 + 0.499492i \(0.166480\pi\)
−0.866318 + 0.499492i \(0.833520\pi\)
\(798\) 0.334304i 0.0118342i
\(799\) 4.43927 0.157050
\(800\) −24.7322 + 0.763919i −0.874415 + 0.0270086i
\(801\) −34.1801 −1.20769
\(802\) 63.4769i 2.24145i
\(803\) 8.35468i 0.294830i
\(804\) −6.26946 −0.221107
\(805\) 4.81789 4.96900i 0.169808 0.175134i
\(806\) −111.998 −3.94496
\(807\) 2.01663i 0.0709886i
\(808\) 21.4583i 0.754901i
\(809\) 41.9318 1.47424 0.737121 0.675761i \(-0.236185\pi\)
0.737121 + 0.675761i \(0.236185\pi\)
\(810\) −32.0907 31.1148i −1.12755 1.09326i
\(811\) 4.46604 0.156824 0.0784119 0.996921i \(-0.475015\pi\)
0.0784119 + 0.996921i \(0.475015\pi\)
\(812\) 8.49297i 0.298045i
\(813\) 4.12546i 0.144686i
\(814\) −2.63253 −0.0922702
\(815\) 35.9619 + 34.8682i 1.25969 + 1.22138i
\(816\) −0.120617 −0.00422243
\(817\) 8.19125i 0.286576i
\(818\) 3.20233i 0.111967i
\(819\) 8.98053 0.313805
\(820\) −32.2234 + 33.2341i −1.12529 + 1.16058i
\(821\) 19.6083 0.684334 0.342167 0.939639i \(-0.388839\pi\)
0.342167 + 0.939639i \(0.388839\pi\)
\(822\) 0.114827i 0.00400504i
\(823\) 46.9128i 1.63528i −0.575732 0.817638i \(-0.695283\pi\)
0.575732 0.817638i \(-0.304717\pi\)
\(824\) −27.6603 −0.963592
\(825\) −3.73819 + 0.115464i −0.130147 + 0.00401994i
\(826\) −3.16742 −0.110209
\(827\) 14.0134i 0.487295i 0.969864 + 0.243648i \(0.0783440\pi\)
−0.969864 + 0.243648i \(0.921656\pi\)
\(828\) 45.0722i 1.56637i
\(829\) 40.5206 1.40734 0.703669 0.710528i \(-0.251544\pi\)
0.703669 + 0.710528i \(0.251544\pi\)
\(830\) 32.1722 33.1813i 1.11671 1.15174i
\(831\) 3.69127 0.128049
\(832\) 56.1566i 1.94688i
\(833\) 6.53251i 0.226338i
\(834\) −5.97154 −0.206778
\(835\) 7.35468 + 7.13102i 0.254519 + 0.246779i
\(836\) −12.8700 −0.445117
\(837\) 13.1873i 0.455818i
\(838\) 76.9694i 2.65887i
\(839\) −8.68840 −0.299957 −0.149978 0.988689i \(-0.547920\pi\)
−0.149978 + 0.988689i \(0.547920\pi\)
\(840\) 0.705180 + 0.683735i 0.0243310 + 0.0235911i
\(841\) −15.3745 −0.530156
\(842\) 10.6805i 0.368074i
\(843\) 2.17374i 0.0748675i
\(844\) −25.9941 −0.894754
\(845\) 10.4398 10.7673i 0.359141 0.370406i
\(846\) −30.4230 −1.04597
\(847\) 1.74513i 0.0599633i
\(848\) 6.80321i 0.233623i
\(849\) −2.04756 −0.0702720
\(850\) −0.357550 11.5758i −0.0122638 0.397047i
\(851\) −1.39761 −0.0479096
\(852\) 6.40839i 0.219548i
\(853\) 23.1523i 0.792721i 0.918095 + 0.396361i \(0.129727\pi\)
−0.918095 + 0.396361i \(0.870273\pi\)
\(854\) −15.7435 −0.538731
\(855\) −4.78451 + 4.93458i −0.163627 + 0.168759i
\(856\) 25.6139 0.875464
\(857\) 43.6043i 1.48950i 0.667346 + 0.744748i \(0.267430\pi\)
−0.667346 + 0.744748i \(0.732570\pi\)
\(858\) 7.69127i 0.262576i
\(859\) 14.2532 0.486314 0.243157 0.969987i \(-0.421817\pi\)
0.243157 + 0.969987i \(0.421817\pi\)
\(860\) −42.5936 41.2983i −1.45243 1.40826i
\(861\) −0.854661 −0.0291268
\(862\) 16.9970i 0.578921i
\(863\) 24.1162i 0.820926i 0.911877 + 0.410463i \(0.134633\pi\)
−0.911877 + 0.410463i \(0.865367\pi\)
\(864\) −5.99161 −0.203839
\(865\) −12.9996 12.6043i −0.442001 0.428559i
\(866\) −35.5516 −1.20809
\(867\) 0.203185i 0.00690052i
\(868\) 25.0608i 0.850617i
\(869\) −27.3413 −0.927489
\(870\) −2.70406 + 2.78887i −0.0916761 + 0.0945515i
\(871\) 40.7056 1.37926
\(872\) 9.84325i 0.333335i
\(873\) 37.1318i 1.25672i
\(874\) −10.8936 −0.368482
\(875\) −5.14933 + 5.64987i −0.174079 + 0.191000i
\(876\) −1.55171 −0.0524274
\(877\) 1.56540i 0.0528599i −0.999651 0.0264299i \(-0.991586\pi\)
0.999651 0.0264299i \(-0.00841389\pi\)
\(878\) 12.9793i 0.438030i
\(879\) 4.17238 0.140731
\(880\) −3.40160 + 3.50829i −0.114668 + 0.118265i
\(881\) −39.0973 −1.31722 −0.658610 0.752484i \(-0.728855\pi\)
−0.658610 + 0.752484i \(0.728855\pi\)
\(882\) 44.7684i 1.50743i
\(883\) 30.9249i 1.04071i 0.853951 + 0.520354i \(0.174200\pi\)
−0.853951 + 0.520354i \(0.825800\pi\)
\(884\) 14.9385 0.502436
\(885\) 0.652370 + 0.632531i 0.0219292 + 0.0212623i
\(886\) −68.6397 −2.30599
\(887\) 45.1839i 1.51713i −0.651599 0.758564i \(-0.725901\pi\)
0.651599 0.758564i \(-0.274099\pi\)
\(888\) 0.198343i 0.00665597i
\(889\) −14.4607 −0.484997
\(890\) 42.9567 + 41.6504i 1.43991 + 1.39612i
\(891\) 31.7706 1.06436
\(892\) 46.1670i 1.54578i
\(893\) 4.61196i 0.154333i
\(894\) −5.65241 −0.189045
\(895\) 6.85869 7.07381i 0.229261 0.236451i
\(896\) −13.2666 −0.443206
\(897\) 4.08330i 0.136338i
\(898\) 79.7265i 2.66051i
\(899\) −40.2056 −1.34093
\(900\) 1.53691 + 49.7579i 0.0512302 + 1.65860i
\(901\) −11.4603 −0.381799
\(902\) 52.4579i 1.74666i
\(903\) 1.09536i 0.0364511i
\(904\) 21.9211 0.729083
\(905\) 9.24160 9.53146i 0.307201 0.316836i
\(906\) 4.21512 0.140038
\(907\) 33.9862i 1.12849i −0.825606 0.564246i \(-0.809167\pi\)
0.825606 0.564246i \(-0.190833\pi\)
\(908\) 6.05862i 0.201062i
\(909\) −20.0794 −0.665992
\(910\) −11.2865 10.9433i −0.374144 0.362766i
\(911\) 22.1997 0.735509 0.367754 0.929923i \(-0.380127\pi\)
0.367754 + 0.929923i \(0.380127\pi\)
\(912\) 0.125309i 0.00414939i
\(913\) 32.8503i 1.08719i
\(914\) −21.5993 −0.714440
\(915\) 3.24257 + 3.14396i 0.107196 + 0.103936i
\(916\) −10.9311 −0.361173
\(917\) 5.95660i 0.196704i
\(918\) 2.80435i 0.0925574i
\(919\) 8.84668 0.291825 0.145913 0.989297i \(-0.453388\pi\)
0.145913 + 0.989297i \(0.453388\pi\)
\(920\) −22.2801 + 22.9789i −0.734554 + 0.757593i
\(921\) 2.66533 0.0878256
\(922\) 44.4062i 1.46244i
\(923\) 41.6076i 1.36953i
\(924\) −1.72101 −0.0566169
\(925\) 1.54291 0.0476569i 0.0507306 0.00156695i
\(926\) 45.4881 1.49483
\(927\) 25.8828i 0.850104i
\(928\) 18.2673i 0.599655i
\(929\) −13.9941 −0.459131 −0.229566 0.973293i \(-0.573731\pi\)
−0.229566 + 0.973293i \(0.573731\pi\)
\(930\) 7.97904 8.22930i 0.261643 0.269849i
\(931\) 6.78663 0.222423
\(932\) 18.1127i 0.593302i
\(933\) 2.51230i 0.0822490i
\(934\) 48.8794 1.59938
\(935\) 5.90990 + 5.73017i 0.193274 + 0.187397i
\(936\) −41.5301 −1.35745
\(937\) 5.19129i 0.169592i 0.996398 + 0.0847960i \(0.0270239\pi\)
−0.996398 + 0.0847960i \(0.972976\pi\)
\(938\) 14.5217i 0.474151i
\(939\) 1.04843 0.0342144
\(940\) 23.9817 + 23.2524i 0.782197 + 0.758409i
\(941\) −26.2746 −0.856527 −0.428264 0.903654i \(-0.640875\pi\)
−0.428264 + 0.903654i \(0.640875\pi\)
\(942\) 9.37150i 0.305340i
\(943\) 27.8499i 0.906919i
\(944\) 1.18726 0.0386420
\(945\) −1.28852 + 1.32894i −0.0419156 + 0.0432303i
\(946\) 67.2313 2.18588
\(947\) 13.9416i 0.453040i −0.974007 0.226520i \(-0.927265\pi\)
0.974007 0.226520i \(-0.0727348\pi\)
\(948\) 5.07807i 0.164928i
\(949\) 10.0747 0.327040
\(950\) 12.0261 0.371458i 0.390179 0.0120517i
\(951\) −4.82878 −0.156584
\(952\) 2.16190i 0.0700676i
\(953\) 19.3298i 0.626154i 0.949728 + 0.313077i \(0.101360\pi\)
−0.949728 + 0.313077i \(0.898640\pi\)
\(954\) 78.5397 2.54282
\(955\) 15.4060 15.8892i 0.498527 0.514163i
\(956\) −12.1840 −0.394059
\(957\) 2.76105i 0.0892521i
\(958\) 66.4217i 2.14599i
\(959\) −0.166821 −0.00538692
\(960\) 4.12624 + 4.00075i 0.133174 + 0.129124i
\(961\) 87.6372 2.82701
\(962\) 3.17451i 0.102350i
\(963\) 23.9679i 0.772355i
\(964\) 25.8028 0.831053
\(965\) −13.6067 13.1929i −0.438015 0.424694i
\(966\) −1.45672 −0.0468692
\(967\) 27.0663i 0.870393i −0.900335 0.435197i \(-0.856679\pi\)
0.900335 0.435197i \(-0.143321\pi\)
\(968\) 8.07027i 0.259388i
\(969\) −0.211089 −0.00678115
\(970\) −45.2471 + 46.6663i −1.45280 + 1.49836i
\(971\) 9.36344 0.300487 0.150244 0.988649i \(-0.451994\pi\)
0.150244 + 0.988649i \(0.451994\pi\)
\(972\) 18.1233i 0.581304i
\(973\) 8.67550i 0.278124i
\(974\) −90.8297 −2.91037
\(975\) 0.139236 + 4.50781i 0.00445911 + 0.144365i
\(976\) 5.90121 0.188893
\(977\) 14.1127i 0.451506i −0.974185 0.225753i \(-0.927516\pi\)
0.974185 0.225753i \(-0.0724842\pi\)
\(978\) 10.5426i 0.337116i
\(979\) −42.5282 −1.35921
\(980\) 34.2166 35.2898i 1.09301 1.12729i
\(981\) 9.21072 0.294076
\(982\) 84.1961i 2.68680i
\(983\) 48.9970i 1.56276i −0.624054 0.781381i \(-0.714515\pi\)
0.624054 0.781381i \(-0.285485\pi\)
\(984\) 3.95234 0.125996
\(985\) −21.7336 21.0727i −0.692490 0.671431i
\(986\) 8.54996 0.272286
\(987\) 0.616723i 0.0196305i
\(988\) 15.5196i 0.493745i
\(989\) 35.6932 1.13498
\(990\) −40.5015 39.2698i −1.28722 1.24808i
\(991\) −20.7542 −0.659279 −0.329639 0.944107i \(-0.606927\pi\)
−0.329639 + 0.944107i \(0.606927\pi\)
\(992\) 53.9026i 1.71141i
\(993\) 4.23317i 0.134336i
\(994\) 14.8435 0.470808
\(995\) −14.2484 + 14.6953i −0.451704 + 0.465872i
\(996\) −6.10126 −0.193326
\(997\) 9.54268i 0.302220i 0.988517 + 0.151110i \(0.0482847\pi\)
−0.988517 + 0.151110i \(0.951715\pi\)
\(998\) 19.7360i 0.624732i
\(999\) 0.373785 0.0118260
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.b.a.69.8 yes 8
3.2 odd 2 765.2.b.c.154.1 8
4.3 odd 2 1360.2.e.d.1089.5 8
5.2 odd 4 425.2.a.g.1.1 4
5.3 odd 4 425.2.a.h.1.4 4
5.4 even 2 inner 85.2.b.a.69.1 8
15.2 even 4 3825.2.a.bj.1.4 4
15.8 even 4 3825.2.a.bh.1.1 4
15.14 odd 2 765.2.b.c.154.8 8
17.16 even 2 1445.2.b.e.579.8 8
20.3 even 4 6800.2.a.bt.1.3 4
20.7 even 4 6800.2.a.bw.1.2 4
20.19 odd 2 1360.2.e.d.1089.4 8
85.33 odd 4 7225.2.a.w.1.4 4
85.67 odd 4 7225.2.a.v.1.1 4
85.84 even 2 1445.2.b.e.579.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.b.a.69.1 8 5.4 even 2 inner
85.2.b.a.69.8 yes 8 1.1 even 1 trivial
425.2.a.g.1.1 4 5.2 odd 4
425.2.a.h.1.4 4 5.3 odd 4
765.2.b.c.154.1 8 3.2 odd 2
765.2.b.c.154.8 8 15.14 odd 2
1360.2.e.d.1089.4 8 20.19 odd 2
1360.2.e.d.1089.5 8 4.3 odd 2
1445.2.b.e.579.1 8 85.84 even 2
1445.2.b.e.579.8 8 17.16 even 2
3825.2.a.bh.1.1 4 15.8 even 4
3825.2.a.bj.1.4 4 15.2 even 4
6800.2.a.bt.1.3 4 20.3 even 4
6800.2.a.bw.1.2 4 20.7 even 4
7225.2.a.v.1.1 4 85.67 odd 4
7225.2.a.w.1.4 4 85.33 odd 4