Properties

Label 85.2.b.a.69.7
Level $85$
Weight $2$
Character 85.69
Analytic conductor $0.679$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,2,Mod(69,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.69");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.619810816.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 69.7
Root \(0.561103 + 0.561103i\) of defining polynomial
Character \(\chi\) \(=\) 85.69
Dual form 85.2.b.a.69.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.03032i q^{2} +2.37033i q^{3} -2.12221 q^{4} +(1.70032 - 1.45220i) q^{5} -4.81252 q^{6} -5.03032i q^{7} -0.248119i q^{8} -2.61845 q^{9} +(2.94844 + 3.45220i) q^{10} -1.90812 q^{11} -5.03032i q^{12} +1.04155i q^{13} +10.2132 q^{14} +(3.44220 + 4.03032i) q^{15} -3.74065 q^{16} +1.00000i q^{17} -5.31629i q^{18} -3.31999 q^{19} +(-3.60844 + 3.08188i) q^{20} +11.9235 q^{21} -3.87409i q^{22} +0.125912i q^{23} +0.588123 q^{24} +(0.782203 - 4.93844i) q^{25} -2.11468 q^{26} +0.904410i q^{27} +10.6754i q^{28} +5.56441 q^{29} +(-8.18285 + 6.98877i) q^{30} -4.99629 q^{31} -8.09097i q^{32} -4.52285i q^{33} -2.03032 q^{34} +(-7.30506 - 8.55318i) q^{35} +5.55688 q^{36} +1.56441i q^{37} -6.74065i q^{38} -2.46881 q^{39} +(-0.360320 - 0.421883i) q^{40} +4.72064 q^{41} +24.2085i q^{42} +4.46221i q^{43} +4.04941 q^{44} +(-4.45220 + 3.80252i) q^{45} -0.255643 q^{46} -1.04155i q^{47} -8.86656i q^{48} -18.3041 q^{49} +(10.0266 + 1.58812i) q^{50} -2.37033 q^{51} -2.21039i q^{52} +6.48883i q^{53} -1.83624 q^{54} +(-3.24441 + 2.77097i) q^{55} -1.24812 q^{56} -7.86946i q^{57} +11.2975i q^{58} +2.00000 q^{59} +(-7.30506 - 8.55318i) q^{60} +7.14882 q^{61} -10.1441i q^{62} +13.1716i q^{63} +8.94596 q^{64} +(1.51255 + 1.77097i) q^{65} +9.18285 q^{66} -3.28596i q^{67} -2.12221i q^{68} -0.298453 q^{69} +(17.3657 - 14.8316i) q^{70} -5.65629 q^{71} +0.649686i q^{72} -12.5295i q^{73} -3.17625 q^{74} +(11.7057 + 1.85408i) q^{75} +7.04571 q^{76} +9.59843i q^{77} -5.01249i q^{78} +13.3694 q^{79} +(-6.36032 + 5.43219i) q^{80} -9.99908 q^{81} +9.58442i q^{82} -1.14222i q^{83} -25.3041 q^{84} +(1.45220 + 1.70032i) q^{85} -9.05972 q^{86} +13.1895i q^{87} +0.473440i q^{88} -1.64090 q^{89} +(-7.72034 - 9.03941i) q^{90} +5.23934 q^{91} -0.267212i q^{92} -11.8428i q^{93} +2.11468 q^{94} +(-5.64506 + 4.82131i) q^{95} +19.1782 q^{96} -7.29753i q^{97} -37.1633i q^{98} +4.99629 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 2 q^{5} - 8 q^{9} + 6 q^{10} - 4 q^{11} + 12 q^{14} - 8 q^{16} - 8 q^{19} - 2 q^{20} + 24 q^{21} + 12 q^{24} - 12 q^{25} + 8 q^{29} - 16 q^{30} - 24 q^{31} + 4 q^{34} + 44 q^{39} + 22 q^{40}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/85\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.03032i 1.43565i 0.696221 + 0.717827i \(0.254863\pi\)
−0.696221 + 0.717827i \(0.745137\pi\)
\(3\) 2.37033i 1.36851i 0.729244 + 0.684254i \(0.239872\pi\)
−0.729244 + 0.684254i \(0.760128\pi\)
\(4\) −2.12221 −1.06110
\(5\) 1.70032 1.45220i 0.760408 0.649446i
\(6\) −4.81252 −1.96470
\(7\) 5.03032i 1.90128i −0.310291 0.950641i \(-0.600427\pi\)
0.310291 0.950641i \(-0.399573\pi\)
\(8\) 0.248119i 0.0877234i
\(9\) −2.61845 −0.872815
\(10\) 2.94844 + 3.45220i 0.932380 + 1.09168i
\(11\) −1.90812 −0.575318 −0.287659 0.957733i \(-0.592877\pi\)
−0.287659 + 0.957733i \(0.592877\pi\)
\(12\) 5.03032i 1.45213i
\(13\) 1.04155i 0.288874i 0.989514 + 0.144437i \(0.0461371\pi\)
−0.989514 + 0.144437i \(0.953863\pi\)
\(14\) 10.2132 2.72959
\(15\) 3.44220 + 4.03032i 0.888772 + 1.04062i
\(16\) −3.74065 −0.935163
\(17\) 1.00000i 0.242536i
\(18\) 5.31629i 1.25306i
\(19\) −3.31999 −0.761658 −0.380829 0.924645i \(-0.624361\pi\)
−0.380829 + 0.924645i \(0.624361\pi\)
\(20\) −3.60844 + 3.08188i −0.806871 + 0.689129i
\(21\) 11.9235 2.60192
\(22\) 3.87409i 0.825958i
\(23\) 0.125912i 0.0262545i 0.999914 + 0.0131273i \(0.00417866\pi\)
−0.999914 + 0.0131273i \(0.995821\pi\)
\(24\) 0.588123 0.120050
\(25\) 0.782203 4.93844i 0.156441 0.987687i
\(26\) −2.11468 −0.414724
\(27\) 0.904410i 0.174054i
\(28\) 10.6754i 2.01746i
\(29\) 5.56441 1.03328 0.516642 0.856201i \(-0.327182\pi\)
0.516642 + 0.856201i \(0.327182\pi\)
\(30\) −8.18285 + 6.98877i −1.49398 + 1.27597i
\(31\) −4.99629 −0.897361 −0.448680 0.893692i \(-0.648106\pi\)
−0.448680 + 0.893692i \(0.648106\pi\)
\(32\) 8.09097i 1.43029i
\(33\) 4.52285i 0.787328i
\(34\) −2.03032 −0.348197
\(35\) −7.30506 8.55318i −1.23478 1.44575i
\(36\) 5.55688 0.926147
\(37\) 1.56441i 0.257187i 0.991697 + 0.128593i \(0.0410462\pi\)
−0.991697 + 0.128593i \(0.958954\pi\)
\(38\) 6.74065i 1.09348i
\(39\) −2.46881 −0.395327
\(40\) −0.360320 0.421883i −0.0569716 0.0667055i
\(41\) 4.72064 0.737240 0.368620 0.929580i \(-0.379830\pi\)
0.368620 + 0.929580i \(0.379830\pi\)
\(42\) 24.2085i 3.73546i
\(43\) 4.46221i 0.680481i 0.940338 + 0.340240i \(0.110508\pi\)
−0.940338 + 0.340240i \(0.889492\pi\)
\(44\) 4.04941 0.610472
\(45\) −4.45220 + 3.80252i −0.663695 + 0.566846i
\(46\) −0.255643 −0.0376924
\(47\) 1.04155i 0.151926i −0.997111 0.0759629i \(-0.975797\pi\)
0.997111 0.0759629i \(-0.0242031\pi\)
\(48\) 8.86656i 1.27978i
\(49\) −18.3041 −2.61488
\(50\) 10.0266 + 1.58812i 1.41798 + 0.224595i
\(51\) −2.37033 −0.331912
\(52\) 2.21039i 0.306525i
\(53\) 6.48883i 0.891309i 0.895205 + 0.445654i \(0.147029\pi\)
−0.895205 + 0.445654i \(0.852971\pi\)
\(54\) −1.83624 −0.249881
\(55\) −3.24441 + 2.77097i −0.437477 + 0.373638i
\(56\) −1.24812 −0.166787
\(57\) 7.86946i 1.04234i
\(58\) 11.2975i 1.48344i
\(59\) 2.00000 0.260378 0.130189 0.991489i \(-0.458442\pi\)
0.130189 + 0.991489i \(0.458442\pi\)
\(60\) −7.30506 8.55318i −0.943079 1.10421i
\(61\) 7.14882 0.915313 0.457657 0.889129i \(-0.348689\pi\)
0.457657 + 0.889129i \(0.348689\pi\)
\(62\) 10.1441i 1.28830i
\(63\) 13.1716i 1.65947i
\(64\) 8.94596 1.11825
\(65\) 1.51255 + 1.77097i 0.187608 + 0.219662i
\(66\) 9.18285 1.13033
\(67\) 3.28596i 0.401444i −0.979648 0.200722i \(-0.935671\pi\)
0.979648 0.200722i \(-0.0643289\pi\)
\(68\) 2.12221i 0.257355i
\(69\) −0.298453 −0.0359296
\(70\) 17.3657 14.8316i 2.07560 1.77272i
\(71\) −5.65629 −0.671278 −0.335639 0.941991i \(-0.608952\pi\)
−0.335639 + 0.941991i \(0.608952\pi\)
\(72\) 0.649686i 0.0765663i
\(73\) 12.5295i 1.46646i −0.679980 0.733231i \(-0.738011\pi\)
0.679980 0.733231i \(-0.261989\pi\)
\(74\) −3.17625 −0.369231
\(75\) 11.7057 + 1.85408i 1.35166 + 0.214090i
\(76\) 7.04571 0.808198
\(77\) 9.59843i 1.09384i
\(78\) 5.01249i 0.567553i
\(79\) 13.3694 1.50418 0.752088 0.659063i \(-0.229047\pi\)
0.752088 + 0.659063i \(0.229047\pi\)
\(80\) −6.36032 + 5.43219i −0.711105 + 0.607338i
\(81\) −9.99908 −1.11101
\(82\) 9.58442i 1.05842i
\(83\) 1.14222i 0.125375i −0.998033 0.0626874i \(-0.980033\pi\)
0.998033 0.0626874i \(-0.0199671\pi\)
\(84\) −25.3041 −2.76091
\(85\) 1.45220 + 1.70032i 0.157514 + 0.184426i
\(86\) −9.05972 −0.976935
\(87\) 13.1895i 1.41406i
\(88\) 0.473440i 0.0504689i
\(89\) −1.64090 −0.173935 −0.0869677 0.996211i \(-0.527718\pi\)
−0.0869677 + 0.996211i \(0.527718\pi\)
\(90\) −7.72034 9.03941i −0.813795 0.952837i
\(91\) 5.23934 0.549232
\(92\) 0.267212i 0.0278588i
\(93\) 11.8428i 1.22805i
\(94\) 2.11468 0.218113
\(95\) −5.64506 + 4.82131i −0.579171 + 0.494656i
\(96\) 19.1782 1.95737
\(97\) 7.29753i 0.740952i −0.928842 0.370476i \(-0.879195\pi\)
0.928842 0.370476i \(-0.120805\pi\)
\(98\) 37.1633i 3.75406i
\(99\) 4.99629 0.502146
\(100\) −1.66000 + 10.4804i −0.166000 + 1.04804i
\(101\) −4.93103 −0.490655 −0.245328 0.969440i \(-0.578896\pi\)
−0.245328 + 0.969440i \(0.578896\pi\)
\(102\) 4.81252i 0.476511i
\(103\) 3.47715i 0.342613i 0.985218 + 0.171307i \(0.0547989\pi\)
−0.985218 + 0.171307i \(0.945201\pi\)
\(104\) 0.258429 0.0253410
\(105\) 20.2738 17.3154i 1.97852 1.68981i
\(106\) −13.1744 −1.27961
\(107\) 15.8116i 1.52857i 0.644881 + 0.764283i \(0.276907\pi\)
−0.644881 + 0.764283i \(0.723093\pi\)
\(108\) 1.91934i 0.184689i
\(109\) −3.40065 −0.325723 −0.162861 0.986649i \(-0.552072\pi\)
−0.162861 + 0.986649i \(0.552072\pi\)
\(110\) −5.62597 6.58720i −0.536415 0.628065i
\(111\) −3.70815 −0.351962
\(112\) 18.8167i 1.77801i
\(113\) 16.9426i 1.59383i 0.604095 + 0.796913i \(0.293535\pi\)
−0.604095 + 0.796913i \(0.706465\pi\)
\(114\) 15.9775 1.49643
\(115\) 0.182850 + 0.214092i 0.0170509 + 0.0199642i
\(116\) −11.8088 −1.09642
\(117\) 2.72724i 0.252134i
\(118\) 4.06064i 0.373813i
\(119\) 5.03032 0.461129
\(120\) 1.00000 0.854075i 0.0912871 0.0779661i
\(121\) −7.35910 −0.669009
\(122\) 14.5144i 1.31407i
\(123\) 11.1895i 1.00892i
\(124\) 10.6032 0.952193
\(125\) −5.84162 9.53286i −0.522491 0.852645i
\(126\) −26.7426 −2.38242
\(127\) 0.340924i 0.0302521i −0.999886 0.0151260i \(-0.995185\pi\)
0.999886 0.0151260i \(-0.00481495\pi\)
\(128\) 1.98125i 0.175119i
\(129\) −10.5769 −0.931244
\(130\) −3.59565 + 3.07095i −0.315359 + 0.269340i
\(131\) −14.5457 −1.27086 −0.635430 0.772159i \(-0.719177\pi\)
−0.635430 + 0.772159i \(0.719177\pi\)
\(132\) 9.59843i 0.835436i
\(133\) 16.7006i 1.44813i
\(134\) 6.67157 0.576335
\(135\) 1.31339 + 1.53779i 0.113038 + 0.132352i
\(136\) 0.248119 0.0212760
\(137\) 15.5686i 1.33011i 0.746793 + 0.665056i \(0.231592\pi\)
−0.746793 + 0.665056i \(0.768408\pi\)
\(138\) 0.605956i 0.0515824i
\(139\) 18.9314 1.60574 0.802869 0.596156i \(-0.203306\pi\)
0.802869 + 0.596156i \(0.203306\pi\)
\(140\) 15.5028 + 18.1516i 1.31023 + 1.53409i
\(141\) 2.46881 0.207912
\(142\) 11.4841i 0.963723i
\(143\) 1.98740i 0.166195i
\(144\) 9.79469 0.816224
\(145\) 9.46129 8.08066i 0.785717 0.671062i
\(146\) 25.4388 2.10533
\(147\) 43.3868i 3.57848i
\(148\) 3.31999i 0.272902i
\(149\) 12.8087 1.04933 0.524665 0.851309i \(-0.324191\pi\)
0.524665 + 0.851309i \(0.324191\pi\)
\(150\) −3.76437 + 23.7663i −0.307360 + 1.94051i
\(151\) −6.55688 −0.533591 −0.266796 0.963753i \(-0.585965\pi\)
−0.266796 + 0.963753i \(0.585965\pi\)
\(152\) 0.823754i 0.0668152i
\(153\) 2.61845i 0.211689i
\(154\) −19.4879 −1.57038
\(155\) −8.49532 + 7.25564i −0.682360 + 0.582787i
\(156\) 5.23934 0.419483
\(157\) 11.1138i 0.886975i −0.896281 0.443487i \(-0.853741\pi\)
0.896281 0.443487i \(-0.146259\pi\)
\(158\) 27.1442i 2.15948i
\(159\) −15.3806 −1.21976
\(160\) −11.7497 13.7573i −0.928898 1.08761i
\(161\) 0.633380 0.0499173
\(162\) 20.3014i 1.59502i
\(163\) 16.6936i 1.30754i −0.756693 0.653770i \(-0.773186\pi\)
0.756693 0.653770i \(-0.226814\pi\)
\(164\) −10.0182 −0.782288
\(165\) −6.56811 7.69032i −0.511327 0.598690i
\(166\) 2.31907 0.179995
\(167\) 17.1516i 1.32723i −0.748074 0.663616i \(-0.769021\pi\)
0.748074 0.663616i \(-0.230979\pi\)
\(168\) 2.95845i 0.228249i
\(169\) 11.9152 0.916552
\(170\) −3.45220 + 2.94844i −0.264772 + 0.226135i
\(171\) 8.69322 0.664787
\(172\) 9.46973i 0.722060i
\(173\) 14.3051i 1.08759i −0.839217 0.543797i \(-0.816986\pi\)
0.839217 0.543797i \(-0.183014\pi\)
\(174\) −26.7788 −2.03010
\(175\) −24.8419 3.93473i −1.87787 0.297438i
\(176\) 7.13759 0.538016
\(177\) 4.74065i 0.356329i
\(178\) 3.33156i 0.249711i
\(179\) −8.74065 −0.653307 −0.326653 0.945144i \(-0.605921\pi\)
−0.326653 + 0.945144i \(0.605921\pi\)
\(180\) 9.44850 8.06973i 0.704250 0.601482i
\(181\) −9.70815 −0.721601 −0.360801 0.932643i \(-0.617497\pi\)
−0.360801 + 0.932643i \(0.617497\pi\)
\(182\) 10.6375i 0.788507i
\(183\) 16.9450i 1.25261i
\(184\) 0.0312413 0.00230314
\(185\) 2.27184 + 2.66000i 0.167029 + 0.195567i
\(186\) 24.0448 1.76305
\(187\) 1.90812i 0.139535i
\(188\) 2.21039i 0.161209i
\(189\) 4.54947 0.330925
\(190\) −9.78881 11.4613i −0.710155 0.831489i
\(191\) 16.1819 1.17088 0.585442 0.810714i \(-0.300921\pi\)
0.585442 + 0.810714i \(0.300921\pi\)
\(192\) 21.2048i 1.53033i
\(193\) 9.21688i 0.663445i 0.943377 + 0.331723i \(0.107630\pi\)
−0.943377 + 0.331723i \(0.892370\pi\)
\(194\) 14.8163 1.06375
\(195\) −4.19779 + 3.58522i −0.300610 + 0.256743i
\(196\) 38.8452 2.77465
\(197\) 0.151156i 0.0107694i 0.999986 + 0.00538472i \(0.00171402\pi\)
−0.999986 + 0.00538472i \(0.998286\pi\)
\(198\) 10.1441i 0.720909i
\(199\) −15.3395 −1.08739 −0.543695 0.839283i \(-0.682975\pi\)
−0.543695 + 0.839283i \(0.682975\pi\)
\(200\) −1.22532 0.194079i −0.0866433 0.0137235i
\(201\) 7.78881 0.549380
\(202\) 10.0116i 0.704412i
\(203\) 27.9908i 1.96457i
\(204\) 5.03032 0.352193
\(205\) 8.02662 6.85534i 0.560603 0.478797i
\(206\) −7.05972 −0.491874
\(207\) 0.329695i 0.0229154i
\(208\) 3.89608i 0.270144i
\(209\) 6.33493 0.438196
\(210\) 35.1558 + 41.1624i 2.42598 + 2.84047i
\(211\) 25.4226 1.75017 0.875083 0.483972i \(-0.160806\pi\)
0.875083 + 0.483972i \(0.160806\pi\)
\(212\) 13.7706i 0.945771i
\(213\) 13.4073i 0.918650i
\(214\) −32.1026 −2.19449
\(215\) 6.48004 + 7.58720i 0.441935 + 0.517443i
\(216\) 0.224401 0.0152686
\(217\) 25.1330i 1.70614i
\(218\) 6.90441i 0.467626i
\(219\) 29.6989 2.00687
\(220\) 6.88532 5.88058i 0.464208 0.396469i
\(221\) −1.04155 −0.0700623
\(222\) 7.52874i 0.505296i
\(223\) 12.0116i 0.804354i 0.915562 + 0.402177i \(0.131746\pi\)
−0.915562 + 0.402177i \(0.868254\pi\)
\(224\) −40.7002 −2.71939
\(225\) −2.04815 + 12.9310i −0.136544 + 0.862068i
\(226\) −34.3989 −2.28818
\(227\) 6.92965i 0.459937i −0.973198 0.229969i \(-0.926138\pi\)
0.973198 0.229969i \(-0.0738624\pi\)
\(228\) 16.7006i 1.10603i
\(229\) 15.0822 0.996659 0.498329 0.866988i \(-0.333947\pi\)
0.498329 + 0.866988i \(0.333947\pi\)
\(230\) −0.434675 + 0.371245i −0.0286616 + 0.0244792i
\(231\) −22.7514 −1.49693
\(232\) 1.38064i 0.0906432i
\(233\) 9.12881i 0.598048i 0.954246 + 0.299024i \(0.0966611\pi\)
−0.954246 + 0.299024i \(0.903339\pi\)
\(234\) 5.53718 0.361977
\(235\) −1.51255 1.77097i −0.0986676 0.115526i
\(236\) −4.24441 −0.276288
\(237\) 31.6899i 2.05848i
\(238\) 10.2132i 0.662022i
\(239\) 1.08573 0.0702303 0.0351151 0.999383i \(-0.488820\pi\)
0.0351151 + 0.999383i \(0.488820\pi\)
\(240\) −12.8761 15.0760i −0.831147 0.973154i
\(241\) −1.17869 −0.0759262 −0.0379631 0.999279i \(-0.512087\pi\)
−0.0379631 + 0.999279i \(0.512087\pi\)
\(242\) 14.9413i 0.960465i
\(243\) 20.9879i 1.34637i
\(244\) −15.1713 −0.971242
\(245\) −31.1230 + 26.5814i −1.98837 + 1.69822i
\(246\) −22.7182 −1.44846
\(247\) 3.45794i 0.220023i
\(248\) 1.23968i 0.0787195i
\(249\) 2.70743 0.171577
\(250\) 19.3548 11.8604i 1.22410 0.750116i
\(251\) 24.3432 1.53653 0.768266 0.640131i \(-0.221120\pi\)
0.768266 + 0.640131i \(0.221120\pi\)
\(252\) 27.9529i 1.76087i
\(253\) 0.240255i 0.0151047i
\(254\) 0.692184 0.0434315
\(255\) −4.03032 + 3.44220i −0.252389 + 0.215559i
\(256\) 13.8694 0.866834
\(257\) 4.60596i 0.287312i 0.989628 + 0.143656i \(0.0458858\pi\)
−0.989628 + 0.143656i \(0.954114\pi\)
\(258\) 21.4745i 1.33694i
\(259\) 7.86946 0.488985
\(260\) −3.20993 3.75837i −0.199072 0.233084i
\(261\) −14.5701 −0.901866
\(262\) 29.5324i 1.82452i
\(263\) 11.6058i 0.715647i 0.933789 + 0.357823i \(0.116481\pi\)
−0.933789 + 0.357823i \(0.883519\pi\)
\(264\) −1.12221 −0.0690671
\(265\) 9.42311 + 11.0331i 0.578857 + 0.677758i
\(266\) −33.9076 −2.07901
\(267\) 3.88948i 0.238032i
\(268\) 6.97350i 0.425974i
\(269\) −27.6284 −1.68453 −0.842267 0.539061i \(-0.818779\pi\)
−0.842267 + 0.539061i \(0.818779\pi\)
\(270\) −3.12221 + 2.66660i −0.190011 + 0.162284i
\(271\) −1.44128 −0.0875515 −0.0437757 0.999041i \(-0.513939\pi\)
−0.0437757 + 0.999041i \(0.513939\pi\)
\(272\) 3.74065i 0.226810i
\(273\) 12.4189i 0.751628i
\(274\) −31.6092 −1.90958
\(275\) −1.49253 + 9.42311i −0.0900031 + 0.568235i
\(276\) 0.633380 0.0381250
\(277\) 2.34753i 0.141049i −0.997510 0.0705246i \(-0.977533\pi\)
0.997510 0.0705246i \(-0.0224673\pi\)
\(278\) 38.4368i 2.30528i
\(279\) 13.0825 0.783230
\(280\) −2.12221 + 1.81252i −0.126826 + 0.108319i
\(281\) −13.4588 −0.802887 −0.401444 0.915884i \(-0.631491\pi\)
−0.401444 + 0.915884i \(0.631491\pi\)
\(282\) 5.01249i 0.298489i
\(283\) 22.1973i 1.31949i −0.751488 0.659747i \(-0.770664\pi\)
0.751488 0.659747i \(-0.229336\pi\)
\(284\) 12.0038 0.712296
\(285\) −11.4281 13.3806i −0.676941 0.792600i
\(286\) 4.03506 0.238598
\(287\) 23.7463i 1.40170i
\(288\) 21.1857i 1.24838i
\(289\) −1.00000 −0.0588235
\(290\) 16.4063 + 19.2095i 0.963413 + 1.12802i
\(291\) 17.2975 1.01400
\(292\) 26.5901i 1.55607i
\(293\) 5.63430i 0.329159i −0.986364 0.164580i \(-0.947373\pi\)
0.986364 0.164580i \(-0.0526268\pi\)
\(294\) 88.0891 5.13746
\(295\) 3.40065 2.90441i 0.197993 0.169101i
\(296\) 0.388159 0.0225613
\(297\) 1.72572i 0.100136i
\(298\) 26.0058i 1.50648i
\(299\) −0.131144 −0.00758426
\(300\) −24.8419 3.93473i −1.43425 0.227172i
\(301\) 22.4464 1.29379
\(302\) 13.3126i 0.766053i
\(303\) 11.6881i 0.671466i
\(304\) 12.4189 0.712275
\(305\) 12.1553 10.3816i 0.696011 0.594446i
\(306\) 5.31629 0.303912
\(307\) 29.3623i 1.67580i 0.545826 + 0.837899i \(0.316216\pi\)
−0.545826 + 0.837899i \(0.683784\pi\)
\(308\) 20.3699i 1.16068i
\(309\) −8.24197 −0.468869
\(310\) −14.7313 17.2482i −0.836681 0.979634i
\(311\) 12.4351 0.705131 0.352566 0.935787i \(-0.385309\pi\)
0.352566 + 0.935787i \(0.385309\pi\)
\(312\) 0.612560i 0.0346794i
\(313\) 15.3708i 0.868808i −0.900718 0.434404i \(-0.856959\pi\)
0.900718 0.434404i \(-0.143041\pi\)
\(314\) 22.5645 1.27339
\(315\) 19.1279 + 22.3960i 1.07773 + 1.26187i
\(316\) −28.3726 −1.59609
\(317\) 23.4837i 1.31898i 0.751714 + 0.659489i \(0.229227\pi\)
−0.751714 + 0.659489i \(0.770773\pi\)
\(318\) 31.2276i 1.75116i
\(319\) −10.6175 −0.594467
\(320\) 15.2110 12.9914i 0.850322 0.726239i
\(321\) −37.4787 −2.09185
\(322\) 1.28596i 0.0716640i
\(323\) 3.31999i 0.184729i
\(324\) 21.2201 1.17890
\(325\) 5.14363 + 0.814704i 0.285317 + 0.0451916i
\(326\) 33.8933 1.87718
\(327\) 8.06064i 0.445755i
\(328\) 1.17128i 0.0646732i
\(329\) −5.23934 −0.288854
\(330\) 15.6138 13.3354i 0.859513 0.734088i
\(331\) −35.6839 −1.96136 −0.980681 0.195614i \(-0.937330\pi\)
−0.980681 + 0.195614i \(0.937330\pi\)
\(332\) 2.42403i 0.133036i
\(333\) 4.09631i 0.224476i
\(334\) 34.8233 1.90545
\(335\) −4.77189 5.58720i −0.260716 0.305262i
\(336\) −44.6017 −2.43322
\(337\) 27.9833i 1.52435i −0.647371 0.762175i \(-0.724132\pi\)
0.647371 0.762175i \(-0.275868\pi\)
\(338\) 24.1916i 1.31585i
\(339\) −40.1595 −2.18116
\(340\) −3.08188 3.60844i −0.167138 0.195695i
\(341\) 9.53350 0.516268
\(342\) 17.6500i 0.954404i
\(343\) 56.8635i 3.07034i
\(344\) 1.10716 0.0596941
\(345\) −0.507467 + 0.433415i −0.0273211 + 0.0233343i
\(346\) 29.0439 1.56141
\(347\) 13.9904i 0.751045i 0.926813 + 0.375522i \(0.122537\pi\)
−0.926813 + 0.375522i \(0.877463\pi\)
\(348\) 27.9908i 1.50046i
\(349\) 17.8396 0.954932 0.477466 0.878650i \(-0.341555\pi\)
0.477466 + 0.878650i \(0.341555\pi\)
\(350\) 7.98877 50.4371i 0.427018 2.69598i
\(351\) −0.941988 −0.0502796
\(352\) 15.4385i 0.822874i
\(353\) 14.0831i 0.749568i −0.927112 0.374784i \(-0.877717\pi\)
0.927112 0.374784i \(-0.122283\pi\)
\(354\) −9.62505 −0.511566
\(355\) −9.61753 + 8.21409i −0.510445 + 0.435959i
\(356\) 3.48234 0.184563
\(357\) 11.9235i 0.631059i
\(358\) 17.7463i 0.937923i
\(359\) −14.1007 −0.744205 −0.372102 0.928192i \(-0.621363\pi\)
−0.372102 + 0.928192i \(0.621363\pi\)
\(360\) 0.943478 + 1.10468i 0.0497256 + 0.0582216i
\(361\) −7.97765 −0.419877
\(362\) 19.7107i 1.03597i
\(363\) 17.4435i 0.915544i
\(364\) −11.1190 −0.582792
\(365\) −18.1953 21.3041i −0.952388 1.11511i
\(366\) −34.4039 −1.79832
\(367\) 18.0080i 0.940009i −0.882664 0.470004i \(-0.844252\pi\)
0.882664 0.470004i \(-0.155748\pi\)
\(368\) 0.470994i 0.0245523i
\(369\) −12.3607 −0.643474
\(370\) −5.40065 + 4.61256i −0.280766 + 0.239796i
\(371\) 32.6409 1.69463
\(372\) 25.1330i 1.30308i
\(373\) 10.9036i 0.564567i 0.959331 + 0.282284i \(0.0910919\pi\)
−0.959331 + 0.282284i \(0.908908\pi\)
\(374\) 3.87409 0.200324
\(375\) 22.5960 13.8466i 1.16685 0.715033i
\(376\) −0.258429 −0.0133274
\(377\) 5.79561i 0.298489i
\(378\) 9.23689i 0.475094i
\(379\) 22.8199 1.17218 0.586091 0.810245i \(-0.300666\pi\)
0.586091 + 0.810245i \(0.300666\pi\)
\(380\) 11.9800 10.2318i 0.614560 0.524881i
\(381\) 0.808100 0.0414002
\(382\) 32.8545i 1.68098i
\(383\) 0.315946i 0.0161441i 0.999967 + 0.00807204i \(0.00256944\pi\)
−0.999967 + 0.00807204i \(0.997431\pi\)
\(384\) −4.69620 −0.239652
\(385\) 13.9389 + 16.3204i 0.710392 + 0.831767i
\(386\) −18.7132 −0.952478
\(387\) 11.6841i 0.593934i
\(388\) 15.4869i 0.786227i
\(389\) −9.05972 −0.459346 −0.229673 0.973268i \(-0.573766\pi\)
−0.229673 + 0.973268i \(0.573766\pi\)
\(390\) −7.27916 8.52285i −0.368595 0.431572i
\(391\) −0.125912 −0.00636766
\(392\) 4.54161i 0.229386i
\(393\) 34.4779i 1.73918i
\(394\) −0.306896 −0.0154612
\(395\) 22.7323 19.4151i 1.14379 0.976880i
\(396\) −10.6032 −0.532829
\(397\) 9.25690i 0.464591i 0.972645 + 0.232295i \(0.0746236\pi\)
−0.972645 + 0.232295i \(0.925376\pi\)
\(398\) 31.1442i 1.56112i
\(399\) −39.5859 −1.98178
\(400\) −2.92595 + 18.4730i −0.146297 + 0.923649i
\(401\) −13.0783 −0.653100 −0.326550 0.945180i \(-0.605886\pi\)
−0.326550 + 0.945180i \(0.605886\pi\)
\(402\) 15.8138i 0.788720i
\(403\) 5.20389i 0.259224i
\(404\) 10.4647 0.520636
\(405\) −17.0017 + 14.5207i −0.844820 + 0.721540i
\(406\) 56.8302 2.82044
\(407\) 2.98507i 0.147964i
\(408\) 0.588123i 0.0291164i
\(409\) −5.12881 −0.253603 −0.126802 0.991928i \(-0.540471\pi\)
−0.126802 + 0.991928i \(0.540471\pi\)
\(410\) 13.9185 + 16.2966i 0.687388 + 0.804832i
\(411\) −36.9026 −1.82027
\(412\) 7.37922i 0.363548i
\(413\) 10.0606i 0.495052i
\(414\) 0.669386 0.0328985
\(415\) −1.65874 1.94214i −0.0814241 0.0953360i
\(416\) 8.42715 0.413175
\(417\) 44.8735i 2.19747i
\(418\) 12.8619i 0.629098i
\(419\) −31.5464 −1.54114 −0.770572 0.637353i \(-0.780030\pi\)
−0.770572 + 0.637353i \(0.780030\pi\)
\(420\) −43.0252 + 36.7468i −2.09942 + 1.79306i
\(421\) 5.26595 0.256647 0.128323 0.991732i \(-0.459040\pi\)
0.128323 + 0.991732i \(0.459040\pi\)
\(422\) 51.6161i 2.51263i
\(423\) 2.72724i 0.132603i
\(424\) 1.61000 0.0781886
\(425\) 4.93844 + 0.782203i 0.239549 + 0.0379424i
\(426\) 27.2210 1.31886
\(427\) 35.9609i 1.74027i
\(428\) 33.5555i 1.62197i
\(429\) 4.71078 0.227439
\(430\) −15.4045 + 13.1566i −0.742869 + 0.634466i
\(431\) 35.6270 1.71609 0.858047 0.513572i \(-0.171678\pi\)
0.858047 + 0.513572i \(0.171678\pi\)
\(432\) 3.38308i 0.162769i
\(433\) 20.2868i 0.974919i 0.873145 + 0.487460i \(0.162076\pi\)
−0.873145 + 0.487460i \(0.837924\pi\)
\(434\) −51.0280 −2.44942
\(435\) 19.1538 + 22.4263i 0.918354 + 1.07526i
\(436\) 7.21688 0.345626
\(437\) 0.418028i 0.0199970i
\(438\) 60.2983i 2.88117i
\(439\) 8.73187 0.416749 0.208375 0.978049i \(-0.433183\pi\)
0.208375 + 0.978049i \(0.433183\pi\)
\(440\) 0.687532 + 0.805001i 0.0327768 + 0.0383769i
\(441\) 47.9284 2.28230
\(442\) 2.11468i 0.100585i
\(443\) 4.44159i 0.211026i −0.994418 0.105513i \(-0.966351\pi\)
0.994418 0.105513i \(-0.0336485\pi\)
\(444\) 7.86946 0.373468
\(445\) −2.79007 + 2.38293i −0.132262 + 0.112962i
\(446\) −24.3874 −1.15477
\(447\) 30.3608i 1.43602i
\(448\) 45.0011i 2.12610i
\(449\) 7.37262 0.347935 0.173968 0.984751i \(-0.444341\pi\)
0.173968 + 0.984751i \(0.444341\pi\)
\(450\) −26.2541 4.15841i −1.23763 0.196029i
\(451\) −9.00752 −0.424148
\(452\) 35.9557i 1.69121i
\(453\) 15.5419i 0.730224i
\(454\) 14.0694 0.660311
\(455\) 8.90857 7.60859i 0.417640 0.356696i
\(456\) −1.95256 −0.0914372
\(457\) 13.9940i 0.654612i 0.944918 + 0.327306i \(0.106141\pi\)
−0.944918 + 0.327306i \(0.893859\pi\)
\(458\) 30.6217i 1.43086i
\(459\) −0.904410 −0.0422142
\(460\) −0.388047 0.454347i −0.0180928 0.0211840i
\(461\) 30.9983 1.44373 0.721867 0.692032i \(-0.243284\pi\)
0.721867 + 0.692032i \(0.243284\pi\)
\(462\) 46.1927i 2.14908i
\(463\) 14.3185i 0.665436i 0.943026 + 0.332718i \(0.107966\pi\)
−0.943026 + 0.332718i \(0.892034\pi\)
\(464\) −20.8145 −0.966289
\(465\) −17.1982 20.1367i −0.797549 0.933816i
\(466\) −18.5344 −0.858591
\(467\) 16.4305i 0.760313i −0.924922 0.380157i \(-0.875870\pi\)
0.924922 0.380157i \(-0.124130\pi\)
\(468\) 5.78777i 0.267540i
\(469\) −16.5295 −0.763259
\(470\) 3.59565 3.07095i 0.165855 0.141653i
\(471\) 26.3432 1.21383
\(472\) 0.496238i 0.0228412i
\(473\) 8.51441i 0.391493i
\(474\) −64.3406 −2.95526
\(475\) −2.59691 + 16.3956i −0.119154 + 0.752280i
\(476\) −10.6754 −0.489305
\(477\) 16.9906i 0.777948i
\(478\) 2.20439i 0.100826i
\(479\) 10.9889 0.502095 0.251047 0.967975i \(-0.419225\pi\)
0.251047 + 0.967975i \(0.419225\pi\)
\(480\) 32.6092 27.8507i 1.48840 1.27121i
\(481\) −1.62941 −0.0742946
\(482\) 2.39312i 0.109004i
\(483\) 1.50132i 0.0683122i
\(484\) 15.6175 0.709888
\(485\) −10.5975 12.4082i −0.481208 0.563426i
\(486\) 42.6121 1.93292
\(487\) 8.78775i 0.398211i −0.979978 0.199105i \(-0.936196\pi\)
0.979978 0.199105i \(-0.0638036\pi\)
\(488\) 1.77376i 0.0802943i
\(489\) 39.5692 1.78938
\(490\) −53.9687 63.1896i −2.43806 2.85462i
\(491\) 15.7845 0.712346 0.356173 0.934420i \(-0.384081\pi\)
0.356173 + 0.934420i \(0.384081\pi\)
\(492\) 23.7463i 1.07057i
\(493\) 5.56441i 0.250608i
\(494\) 7.02073 0.315878
\(495\) 8.49532 7.25564i 0.381836 0.326117i
\(496\) 18.6894 0.839179
\(497\) 28.4530i 1.27629i
\(498\) 5.49696i 0.246325i
\(499\) 8.26885 0.370165 0.185082 0.982723i \(-0.440745\pi\)
0.185082 + 0.982723i \(0.440745\pi\)
\(500\) 12.3971 + 20.2307i 0.554417 + 0.904744i
\(501\) 40.6549 1.81633
\(502\) 49.4246i 2.20593i
\(503\) 3.15345i 0.140605i 0.997526 + 0.0703026i \(0.0223965\pi\)
−0.997526 + 0.0703026i \(0.977603\pi\)
\(504\) 3.26813 0.145574
\(505\) −8.38434 + 7.16086i −0.373098 + 0.318654i
\(506\) 0.487795 0.0216852
\(507\) 28.2428i 1.25431i
\(508\) 0.723510i 0.0321006i
\(509\) −22.8444 −1.01256 −0.506280 0.862369i \(-0.668980\pi\)
−0.506280 + 0.862369i \(0.668980\pi\)
\(510\) −6.98877 8.18285i −0.309468 0.362343i
\(511\) −63.0272 −2.78816
\(512\) 32.1217i 1.41959i
\(513\) 3.00263i 0.132569i
\(514\) −9.35157 −0.412480
\(515\) 5.04953 + 5.91227i 0.222509 + 0.260526i
\(516\) 22.4464 0.988146
\(517\) 1.98740i 0.0874057i
\(518\) 15.9775i 0.702013i
\(519\) 33.9076 1.48838
\(520\) 0.439412 0.375291i 0.0192695 0.0164576i
\(521\) −35.6931 −1.56374 −0.781872 0.623439i \(-0.785735\pi\)
−0.781872 + 0.623439i \(0.785735\pi\)
\(522\) 29.5820i 1.29477i
\(523\) 16.0974i 0.703891i 0.936021 + 0.351945i \(0.114480\pi\)
−0.936021 + 0.351945i \(0.885520\pi\)
\(524\) 30.8689 1.34851
\(525\) 9.32660 58.8835i 0.407046 2.56989i
\(526\) −23.5636 −1.02742
\(527\) 4.99629i 0.217642i
\(528\) 16.9184i 0.736280i
\(529\) 22.9841 0.999311
\(530\) −22.4008 + 19.1319i −0.973027 + 0.831038i
\(531\) −5.23689 −0.227262
\(532\) 35.4422i 1.53661i
\(533\) 4.91679i 0.212970i
\(534\) 7.89689 0.341732
\(535\) 22.9617 + 26.8849i 0.992720 + 1.16233i
\(536\) −0.815311 −0.0352161
\(537\) 20.7182i 0.894056i
\(538\) 56.0945i 2.41841i
\(539\) 34.9264 1.50439
\(540\) −2.78728 3.26351i −0.119945 0.140439i
\(541\) −43.3563 −1.86403 −0.932017 0.362414i \(-0.881953\pi\)
−0.932017 + 0.362414i \(0.881953\pi\)
\(542\) 2.92626i 0.125694i
\(543\) 23.0115i 0.987517i
\(544\) 8.09097 0.346897
\(545\) −5.78220 + 4.93844i −0.247682 + 0.211539i
\(546\) −25.2144 −1.07908
\(547\) 23.3908i 1.00012i −0.865991 0.500060i \(-0.833311\pi\)
0.865991 0.500060i \(-0.166689\pi\)
\(548\) 33.0397i 1.41139i
\(549\) −18.7188 −0.798899
\(550\) −19.1319 3.03032i −0.815789 0.129213i
\(551\) −18.4738 −0.787010
\(552\) 0.0740520i 0.00315186i
\(553\) 67.2524i 2.85986i
\(554\) 4.76624 0.202498
\(555\) −6.30506 + 5.38499i −0.267635 + 0.228580i
\(556\) −40.1763 −1.70385
\(557\) 14.6974i 0.622748i −0.950287 0.311374i \(-0.899211\pi\)
0.950287 0.311374i \(-0.100789\pi\)
\(558\) 26.5617i 1.12445i
\(559\) −4.64762 −0.196573
\(560\) 27.3257 + 31.9945i 1.15472 + 1.35201i
\(561\) 4.52285 0.190955
\(562\) 27.3258i 1.15267i
\(563\) 3.13206i 0.132001i −0.997820 0.0660004i \(-0.978976\pi\)
0.997820 0.0660004i \(-0.0210239\pi\)
\(564\) −5.23934 −0.220616
\(565\) 24.6041 + 28.8079i 1.03510 + 1.21196i
\(566\) 45.0677 1.89434
\(567\) 50.2986i 2.11234i
\(568\) 1.40343i 0.0588868i
\(569\) −1.47115 −0.0616737 −0.0308369 0.999524i \(-0.509817\pi\)
−0.0308369 + 0.999524i \(0.509817\pi\)
\(570\) 27.1670 23.2027i 1.13790 0.971853i
\(571\) 8.35447 0.349624 0.174812 0.984602i \(-0.444068\pi\)
0.174812 + 0.984602i \(0.444068\pi\)
\(572\) 4.21767i 0.176350i
\(573\) 38.3565i 1.60236i
\(574\) 48.2127 2.01236
\(575\) 0.621810 + 0.0984890i 0.0259313 + 0.00410727i
\(576\) −23.4245 −0.976021
\(577\) 13.3390i 0.555309i −0.960681 0.277654i \(-0.910443\pi\)
0.960681 0.277654i \(-0.0895570\pi\)
\(578\) 2.03032i 0.0844503i
\(579\) −21.8470 −0.907931
\(580\) −20.0788 + 17.1488i −0.833728 + 0.712066i
\(581\) −5.74573 −0.238373
\(582\) 35.1196i 1.45575i
\(583\) 12.3814i 0.512786i
\(584\) −3.10880 −0.128643
\(585\) −3.96052 4.63720i −0.163747 0.191725i
\(586\) 11.4394 0.472559
\(587\) 30.8029i 1.27137i −0.771947 0.635687i \(-0.780717\pi\)
0.771947 0.635687i \(-0.219283\pi\)
\(588\) 92.0757i 3.79714i
\(589\) 16.5877 0.683482
\(590\) 5.89689 + 6.90441i 0.242771 + 0.284250i
\(591\) −0.358290 −0.0147381
\(592\) 5.85190i 0.240511i
\(593\) 33.2200i 1.36418i 0.731267 + 0.682091i \(0.238929\pi\)
−0.731267 + 0.682091i \(0.761071\pi\)
\(594\) 3.50376 0.143761
\(595\) 8.55318 7.30506i 0.350646 0.299478i
\(596\) −27.1827 −1.11345
\(597\) 36.3597i 1.48810i
\(598\) 0.266265i 0.0108884i
\(599\) −19.0233 −0.777269 −0.388634 0.921392i \(-0.627053\pi\)
−0.388634 + 0.921392i \(0.627053\pi\)
\(600\) 0.460032 2.90441i 0.0187807 0.118572i
\(601\) −15.0239 −0.612836 −0.306418 0.951897i \(-0.599131\pi\)
−0.306418 + 0.951897i \(0.599131\pi\)
\(602\) 45.5733i 1.85743i
\(603\) 8.60412i 0.350387i
\(604\) 13.9151 0.566196
\(605\) −12.5128 + 10.6869i −0.508720 + 0.434485i
\(606\) 23.7307 0.963993
\(607\) 30.9629i 1.25674i −0.777913 0.628372i \(-0.783722\pi\)
0.777913 0.628372i \(-0.216278\pi\)
\(608\) 26.8619i 1.08940i
\(609\) 66.3472 2.68852
\(610\) 21.0779 + 24.6792i 0.853419 + 0.999232i
\(611\) 1.08483 0.0438874
\(612\) 5.55688i 0.224624i
\(613\) 36.0215i 1.45490i −0.686163 0.727448i \(-0.740706\pi\)
0.686163 0.727448i \(-0.259294\pi\)
\(614\) −59.6150 −2.40587
\(615\) 16.2494 + 19.0257i 0.655238 + 0.767190i
\(616\) 2.38155 0.0959556
\(617\) 43.3363i 1.74465i −0.488922 0.872327i \(-0.662610\pi\)
0.488922 0.872327i \(-0.337390\pi\)
\(618\) 16.7338i 0.673134i
\(619\) −23.4651 −0.943142 −0.471571 0.881828i \(-0.656313\pi\)
−0.471571 + 0.881828i \(0.656313\pi\)
\(620\) 18.0288 15.3980i 0.724055 0.618398i
\(621\) −0.113876 −0.00456970
\(622\) 25.2473i 1.01232i
\(623\) 8.25427i 0.330700i
\(624\) 9.23498 0.369695
\(625\) −23.7763 7.72572i −0.951053 0.309029i
\(626\) 31.2076 1.24731
\(627\) 15.0158i 0.599675i
\(628\) 23.5857i 0.941172i
\(629\) −1.56441 −0.0623769
\(630\) −45.4711 + 38.8358i −1.81161 + 1.54725i
\(631\) 0.0249777 0.000994348 0.000497174 1.00000i \(-0.499842\pi\)
0.000497174 1.00000i \(0.499842\pi\)
\(632\) 3.31721i 0.131951i
\(633\) 60.2599i 2.39512i
\(634\) −47.6796 −1.89360
\(635\) −0.495091 0.579680i −0.0196471 0.0230039i
\(636\) 32.6409 1.29430
\(637\) 19.0647i 0.755371i
\(638\) 21.5570i 0.853450i
\(639\) 14.8107 0.585902
\(640\) 2.87718 + 3.36876i 0.113730 + 0.133162i
\(641\) −8.98010 −0.354693 −0.177346 0.984149i \(-0.556751\pi\)
−0.177346 + 0.984149i \(0.556751\pi\)
\(642\) 76.0937i 3.00318i
\(643\) 1.78174i 0.0702648i 0.999383 + 0.0351324i \(0.0111853\pi\)
−0.999383 + 0.0351324i \(0.988815\pi\)
\(644\) −1.34416 −0.0529674
\(645\) −17.9841 + 15.3598i −0.708125 + 0.604792i
\(646\) 6.74065 0.265207
\(647\) 10.9052i 0.428728i 0.976754 + 0.214364i \(0.0687679\pi\)
−0.976754 + 0.214364i \(0.931232\pi\)
\(648\) 2.48096i 0.0974614i
\(649\) −3.81623 −0.149800
\(650\) −1.65411 + 10.4432i −0.0648796 + 0.409617i
\(651\) −59.5733 −2.33486
\(652\) 35.4272i 1.38744i
\(653\) 6.26014i 0.244978i −0.992470 0.122489i \(-0.960912\pi\)
0.992470 0.122489i \(-0.0390877\pi\)
\(654\) 16.3657 0.639950
\(655\) −24.7323 + 21.1233i −0.966372 + 0.825354i
\(656\) −17.6583 −0.689440
\(657\) 32.8077i 1.27995i
\(658\) 10.6375i 0.414694i
\(659\) −23.0608 −0.898320 −0.449160 0.893451i \(-0.648277\pi\)
−0.449160 + 0.893451i \(0.648277\pi\)
\(660\) 13.9389 + 16.3204i 0.542571 + 0.635272i
\(661\) 14.9050 0.579738 0.289869 0.957066i \(-0.406388\pi\)
0.289869 + 0.957066i \(0.406388\pi\)
\(662\) 72.4497i 2.81584i
\(663\) 2.46881i 0.0958808i
\(664\) −0.283406 −0.0109983
\(665\) 24.2527 + 28.3965i 0.940481 + 1.10117i
\(666\) 8.31683 0.322271
\(667\) 0.700627i 0.0271284i
\(668\) 36.3993i 1.40833i
\(669\) −28.4713 −1.10077
\(670\) 11.3438 9.68848i 0.438250 0.374299i
\(671\) −13.6408 −0.526596
\(672\) 96.4726i 3.72151i
\(673\) 40.8225i 1.57359i −0.617213 0.786796i \(-0.711738\pi\)
0.617213 0.786796i \(-0.288262\pi\)
\(674\) 56.8152 2.18844
\(675\) 4.46637 + 0.707432i 0.171911 + 0.0272291i
\(676\) −25.2865 −0.972556
\(677\) 19.5678i 0.752050i 0.926610 + 0.376025i \(0.122709\pi\)
−0.926610 + 0.376025i \(0.877291\pi\)
\(678\) 81.5367i 3.13140i
\(679\) −36.7089 −1.40876
\(680\) 0.421883 0.360320i 0.0161785 0.0138176i
\(681\) 16.4255 0.629428
\(682\) 19.3561i 0.741183i
\(683\) 6.38789i 0.244426i 0.992504 + 0.122213i \(0.0389991\pi\)
−0.992504 + 0.122213i \(0.961001\pi\)
\(684\) −18.4488 −0.705408
\(685\) 22.6087 + 26.4716i 0.863836 + 1.01143i
\(686\) −115.451 −4.40794
\(687\) 35.7497i 1.36394i
\(688\) 16.6916i 0.636360i
\(689\) −6.75844 −0.257476
\(690\) −0.879973 1.03032i −0.0335000 0.0392237i
\(691\) 20.5657 0.782355 0.391177 0.920315i \(-0.372068\pi\)
0.391177 + 0.920315i \(0.372068\pi\)
\(692\) 30.3583i 1.15405i
\(693\) 25.1330i 0.954723i
\(694\) −28.4050 −1.07824
\(695\) 32.1895 27.4922i 1.22102 1.04284i
\(696\) 3.27256 0.124046
\(697\) 4.72064i 0.178807i
\(698\) 36.2201i 1.37095i
\(699\) −21.6383 −0.818434
\(700\) 52.7197 + 8.35031i 1.99262 + 0.315612i
\(701\) 14.1756 0.535403 0.267702 0.963502i \(-0.413736\pi\)
0.267702 + 0.963502i \(0.413736\pi\)
\(702\) 1.91254i 0.0721842i
\(703\) 5.19381i 0.195888i
\(704\) −17.0699 −0.643347
\(705\) 4.19779 3.58522i 0.158098 0.135027i
\(706\) 28.5932 1.07612
\(707\) 24.8046i 0.932875i
\(708\) 10.0606i 0.378102i
\(709\) 8.69879 0.326690 0.163345 0.986569i \(-0.447772\pi\)
0.163345 + 0.986569i \(0.447772\pi\)
\(710\) −16.6772 19.5267i −0.625886 0.732823i
\(711\) −35.0071 −1.31287
\(712\) 0.407139i 0.0152582i
\(713\) 0.629095i 0.0235598i
\(714\) −24.2085 −0.905982
\(715\) −2.88611 3.37922i −0.107934 0.126376i
\(716\) 18.5495 0.693226
\(717\) 2.57354i 0.0961107i
\(718\) 28.6289i 1.06842i
\(719\) −7.42944 −0.277071 −0.138536 0.990357i \(-0.544240\pi\)
−0.138536 + 0.990357i \(0.544240\pi\)
\(720\) 16.6541 14.2239i 0.620663 0.530093i
\(721\) 17.4912 0.651405
\(722\) 16.1972i 0.602798i
\(723\) 2.79388i 0.103906i
\(724\) 20.6027 0.765693
\(725\) 4.35249 27.4795i 0.161648 1.02056i
\(726\) 35.4158 1.31440
\(727\) 6.25530i 0.231996i −0.993249 0.115998i \(-0.962993\pi\)
0.993249 0.115998i \(-0.0370067\pi\)
\(728\) 1.29998i 0.0481804i
\(729\) 19.7508 0.731511
\(730\) 43.2543 36.9424i 1.60091 1.36730i
\(731\) −4.46221 −0.165041
\(732\) 35.9609i 1.32915i
\(733\) 37.1550i 1.37235i 0.727436 + 0.686176i \(0.240712\pi\)
−0.727436 + 0.686176i \(0.759288\pi\)
\(734\) 36.5620 1.34953
\(735\) −63.0065 73.7716i −2.32403 2.72111i
\(736\) 1.01875 0.0375517
\(737\) 6.27000i 0.230958i
\(738\) 25.0963i 0.923807i
\(739\) 23.0688 0.848601 0.424301 0.905521i \(-0.360520\pi\)
0.424301 + 0.905521i \(0.360520\pi\)
\(740\) −4.82131 5.64506i −0.177235 0.207517i
\(741\) 8.19645 0.301104
\(742\) 66.2715i 2.43290i
\(743\) 48.0717i 1.76358i −0.471641 0.881791i \(-0.656338\pi\)
0.471641 0.881791i \(-0.343662\pi\)
\(744\) −2.93844 −0.107728
\(745\) 21.7790 18.6009i 0.797919 0.681483i
\(746\) −22.1378 −0.810523
\(747\) 2.99084i 0.109429i
\(748\) 4.04941i 0.148061i
\(749\) 79.5375 2.90624
\(750\) 28.1130 + 45.8771i 1.02654 + 1.67520i
\(751\) 37.7366 1.37703 0.688514 0.725223i \(-0.258263\pi\)
0.688514 + 0.725223i \(0.258263\pi\)
\(752\) 3.89608i 0.142075i
\(753\) 57.7014i 2.10276i
\(754\) −11.7670 −0.428527
\(755\) −11.1488 + 9.52194i −0.405747 + 0.346539i
\(756\) −9.65492 −0.351146
\(757\) 6.03403i 0.219310i 0.993970 + 0.109655i \(0.0349747\pi\)
−0.993970 + 0.109655i \(0.965025\pi\)
\(758\) 46.3318i 1.68285i
\(759\) 0.569483 0.0206709
\(760\) 1.19626 + 1.40065i 0.0433929 + 0.0508068i
\(761\) 0.199624 0.00723636 0.00361818 0.999993i \(-0.498848\pi\)
0.00361818 + 0.999993i \(0.498848\pi\)
\(762\) 1.64070i 0.0594364i
\(763\) 17.1064i 0.619292i
\(764\) −34.3414 −1.24243
\(765\) −3.80252 4.45220i −0.137480 0.160970i
\(766\) −0.641472 −0.0231773
\(767\) 2.08310i 0.0752164i
\(768\) 32.8749i 1.18627i
\(769\) −43.4861 −1.56815 −0.784074 0.620668i \(-0.786862\pi\)
−0.784074 + 0.620668i \(0.786862\pi\)
\(770\) −33.1358 + 28.3004i −1.19413 + 1.01988i
\(771\) −10.9176 −0.393188
\(772\) 19.5601i 0.703984i
\(773\) 39.3075i 1.41379i 0.707317 + 0.706896i \(0.249905\pi\)
−0.707317 + 0.706896i \(0.750095\pi\)
\(774\) 23.7224 0.852684
\(775\) −3.90812 + 24.6739i −0.140384 + 0.886312i
\(776\) −1.81066 −0.0649988
\(777\) 18.6532i 0.669180i
\(778\) 18.3942i 0.659462i
\(779\) −15.6725 −0.561525
\(780\) 8.90857 7.60859i 0.318978 0.272431i
\(781\) 10.7929 0.386199
\(782\) 0.255643i 0.00914176i
\(783\) 5.03250i 0.179847i
\(784\) 68.4694 2.44534
\(785\) −16.1395 18.8970i −0.576042 0.674463i
\(786\) 70.0013 2.49686
\(787\) 24.0203i 0.856230i 0.903724 + 0.428115i \(0.140822\pi\)
−0.903724 + 0.428115i \(0.859178\pi\)
\(788\) 0.320785i 0.0114275i
\(789\) −27.5096 −0.979369
\(790\) 39.4189 + 46.1539i 1.40246 + 1.64208i
\(791\) 85.2267 3.03031
\(792\) 1.23968i 0.0440500i
\(793\) 7.44586i 0.264410i
\(794\) −18.7945 −0.666992
\(795\) −26.1521 + 22.3358i −0.927518 + 0.792170i
\(796\) 32.5537 1.15383
\(797\) 27.4915i 0.973797i −0.873458 0.486899i \(-0.838128\pi\)
0.873458 0.486899i \(-0.161872\pi\)
\(798\) 80.3722i 2.84514i
\(799\) 1.04155 0.0368474
\(800\) −39.9567 6.32878i −1.41268 0.223756i
\(801\) 4.29661 0.151813
\(802\) 26.5532i 0.937626i
\(803\) 23.9076i 0.843683i
\(804\) −16.5295 −0.582949
\(805\) 1.07695 0.919797i 0.0379575 0.0324186i
\(806\) 10.5656 0.372157
\(807\) 65.4883i 2.30530i
\(808\) 1.22348i 0.0430419i
\(809\) 41.3790 1.45481 0.727404 0.686209i \(-0.240726\pi\)
0.727404 + 0.686209i \(0.240726\pi\)
\(810\) −29.4817 34.5189i −1.03588 1.21287i
\(811\) −41.3679 −1.45262 −0.726311 0.687366i \(-0.758767\pi\)
−0.726311 + 0.687366i \(0.758767\pi\)
\(812\) 59.4022i 2.08461i
\(813\) 3.41630i 0.119815i
\(814\) 6.06064 0.212425
\(815\) −24.2425 28.3845i −0.849176 0.994264i
\(816\) 8.86656 0.310392
\(817\) 14.8145i 0.518294i
\(818\) 10.4131i 0.364087i
\(819\) −13.7189 −0.479378
\(820\) −17.0341 + 14.5484i −0.594858 + 0.508054i
\(821\) −31.6564 −1.10482 −0.552409 0.833574i \(-0.686291\pi\)
−0.552409 + 0.833574i \(0.686291\pi\)
\(822\) 74.9241i 2.61328i
\(823\) 47.2174i 1.64590i 0.568116 + 0.822948i \(0.307672\pi\)
−0.568116 + 0.822948i \(0.692328\pi\)
\(824\) 0.862746 0.0300552
\(825\) −22.3358 3.53779i −0.777634 0.123170i
\(826\) 20.4263 0.710723
\(827\) 40.9254i 1.42311i 0.702628 + 0.711557i \(0.252010\pi\)
−0.702628 + 0.711557i \(0.747990\pi\)
\(828\) 0.699680i 0.0243156i
\(829\) −33.9963 −1.18074 −0.590371 0.807132i \(-0.701018\pi\)
−0.590371 + 0.807132i \(0.701018\pi\)
\(830\) 3.94317 3.36777i 0.136870 0.116897i
\(831\) 5.56441 0.193027
\(832\) 9.31767i 0.323032i
\(833\) 18.3041i 0.634201i
\(834\) −91.1077 −3.15480
\(835\) −24.9076 29.1633i −0.861965 1.00924i
\(836\) −13.4440 −0.464971
\(837\) 4.51870i 0.156189i
\(838\) 64.0494i 2.21255i
\(839\) 22.9314 0.791679 0.395839 0.918320i \(-0.370454\pi\)
0.395839 + 0.918320i \(0.370454\pi\)
\(840\) −4.29627 5.03032i −0.148236 0.173563i
\(841\) 1.96261 0.0676761
\(842\) 10.6916i 0.368456i
\(843\) 31.9019i 1.09876i
\(844\) −53.9521 −1.85711
\(845\) 20.2597 17.3033i 0.696953 0.595251i
\(846\) −5.53718 −0.190372
\(847\) 37.0186i 1.27198i
\(848\) 24.2724i 0.833519i
\(849\) 52.6149 1.80574
\(850\) −1.58812 + 10.0266i −0.0544722 + 0.343910i
\(851\) −0.196978 −0.00675232
\(852\) 28.4530i 0.974782i
\(853\) 4.50549i 0.154265i −0.997021 0.0771325i \(-0.975424\pi\)
0.997021 0.0771325i \(-0.0245764\pi\)
\(854\) 73.0122 2.49842
\(855\) 14.7813 12.6243i 0.505509 0.431743i
\(856\) 3.92316 0.134091
\(857\) 56.4346i 1.92777i −0.266321 0.963884i \(-0.585808\pi\)
0.266321 0.963884i \(-0.414192\pi\)
\(858\) 9.56441i 0.326523i
\(859\) 3.02509 0.103215 0.0516074 0.998667i \(-0.483566\pi\)
0.0516074 + 0.998667i \(0.483566\pi\)
\(860\) −13.7520 16.1016i −0.468939 0.549061i
\(861\) 56.2866 1.91824
\(862\) 72.3343i 2.46372i
\(863\) 37.0247i 1.26033i 0.776460 + 0.630167i \(0.217014\pi\)
−0.776460 + 0.630167i \(0.782986\pi\)
\(864\) 7.31755 0.248948
\(865\) −20.7739 24.3232i −0.706333 0.827015i
\(866\) −41.1886 −1.39965
\(867\) 2.37033i 0.0805005i
\(868\) 53.3374i 1.81039i
\(869\) −25.5104 −0.865380
\(870\) −45.5327 + 38.8884i −1.54370 + 1.31844i
\(871\) 3.42250 0.115967
\(872\) 0.843766i 0.0285735i
\(873\) 19.1082i 0.646714i
\(874\) 0.848731 0.0287088
\(875\) −47.9534 + 29.3852i −1.62112 + 0.993403i
\(876\) −63.0272 −2.12949
\(877\) 31.0032i 1.04690i −0.852055 0.523452i \(-0.824644\pi\)
0.852055 0.523452i \(-0.175356\pi\)
\(878\) 17.7285i 0.598308i
\(879\) 13.3551 0.450457
\(880\) 12.1362 10.3652i 0.409112 0.349412i
\(881\) −53.0789 −1.78827 −0.894137 0.447793i \(-0.852210\pi\)
−0.894137 + 0.447793i \(0.852210\pi\)
\(882\) 97.3100i 3.27660i
\(883\) 56.9680i 1.91713i 0.284882 + 0.958563i \(0.408046\pi\)
−0.284882 + 0.958563i \(0.591954\pi\)
\(884\) 2.21039 0.0743433
\(885\) 6.88440 + 8.06064i 0.231416 + 0.270956i
\(886\) 9.01786 0.302961
\(887\) 45.0418i 1.51235i −0.654367 0.756177i \(-0.727065\pi\)
0.654367 0.756177i \(-0.272935\pi\)
\(888\) 0.920063i 0.0308753i
\(889\) −1.71495 −0.0575177
\(890\) −4.83811 5.66473i −0.162174 0.189882i
\(891\) 19.0794 0.639184
\(892\) 25.4910i 0.853503i
\(893\) 3.45794i 0.115716i
\(894\) −61.6422 −2.06162
\(895\) −14.8619 + 12.6932i −0.496780 + 0.424287i
\(896\) 9.96631 0.332951
\(897\) 0.310854i 0.0103791i
\(898\) 14.9688i 0.499515i
\(899\) −27.8014 −0.927229
\(900\) 4.34661 27.4423i 0.144887 0.914744i
\(901\) −6.48883 −0.216174
\(902\) 18.2882i 0.608930i
\(903\) 53.2052i 1.77056i
\(904\) 4.20378 0.139816
\(905\) −16.5070 + 14.0982i −0.548711 + 0.468641i
\(906\) 31.5552 1.04835
\(907\) 2.07329i 0.0688423i −0.999407 0.0344212i \(-0.989041\pi\)
0.999407 0.0344212i \(-0.0109588\pi\)
\(908\) 14.7062i 0.488041i
\(909\) 12.9116 0.428251
\(910\) 15.4479 + 18.0873i 0.512092 + 0.599587i
\(911\) 37.7535 1.25083 0.625415 0.780293i \(-0.284930\pi\)
0.625415 + 0.780293i \(0.284930\pi\)
\(912\) 29.4369i 0.974754i
\(913\) 2.17949i 0.0721304i
\(914\) −28.4123 −0.939796
\(915\) 24.6077 + 28.8121i 0.813504 + 0.952497i
\(916\) −32.0075 −1.05756
\(917\) 73.1693i 2.41626i
\(918\) 1.83624i 0.0606050i
\(919\) −19.6202 −0.647209 −0.323605 0.946192i \(-0.604895\pi\)
−0.323605 + 0.946192i \(0.604895\pi\)
\(920\) 0.0531203 0.0453687i 0.00175132 0.00149576i
\(921\) −69.5983 −2.29334
\(922\) 62.9365i 2.07270i
\(923\) 5.89131i 0.193915i
\(924\) 48.2832 1.58840
\(925\) 7.72572 + 1.22368i 0.254020 + 0.0402344i
\(926\) −29.0711 −0.955335
\(927\) 9.10471i 0.299038i
\(928\) 45.0214i 1.47790i
\(929\) 32.3131 1.06016 0.530079 0.847948i \(-0.322162\pi\)
0.530079 + 0.847948i \(0.322162\pi\)
\(930\) 40.8839 34.9180i 1.34064 1.14500i
\(931\) 60.7696 1.99164
\(932\) 19.3732i 0.634591i
\(933\) 29.4753i 0.964978i
\(934\) 33.3592 1.09155
\(935\) −2.77097 3.24441i −0.0906205 0.106104i
\(936\) −0.676681 −0.0221180
\(937\) 31.9433i 1.04354i −0.853085 0.521771i \(-0.825271\pi\)
0.853085 0.521771i \(-0.174729\pi\)
\(938\) 33.5601i 1.09578i
\(939\) 36.4338 1.18897
\(940\) 3.20993 + 3.75837i 0.104696 + 0.122585i
\(941\) 50.1401 1.63452 0.817260 0.576269i \(-0.195492\pi\)
0.817260 + 0.576269i \(0.195492\pi\)
\(942\) 53.4853i 1.74264i
\(943\) 0.594387i 0.0193559i
\(944\) −7.48130 −0.243496
\(945\) 7.73557 6.60676i 0.251638 0.214918i
\(946\) 17.2870 0.562049
\(947\) 14.0277i 0.455839i 0.973680 + 0.227919i \(0.0731923\pi\)
−0.973680 + 0.227919i \(0.926808\pi\)
\(948\) 67.2524i 2.18426i
\(949\) 13.0501 0.423623
\(950\) −33.2883 5.27256i −1.08001 0.171064i
\(951\) −55.6641 −1.80503
\(952\) 1.24812i 0.0404518i
\(953\) 15.8829i 0.514497i −0.966345 0.257248i \(-0.917184\pi\)
0.966345 0.257248i \(-0.0828158\pi\)
\(954\) 34.4965 1.11686
\(955\) 27.5145 23.4995i 0.890349 0.760425i
\(956\) −2.30415 −0.0745216
\(957\) 25.1670i 0.813533i
\(958\) 22.3110i 0.720835i
\(959\) 78.3149 2.52892
\(960\) 30.7938 + 36.0551i 0.993865 + 1.16367i
\(961\) −6.03704 −0.194743
\(962\) 3.30822i 0.106661i
\(963\) 41.4018i 1.33415i
\(964\) 2.50143 0.0805656
\(965\) 13.3848 + 15.6717i 0.430872 + 0.504489i
\(966\) −3.04815 −0.0980728
\(967\) 10.6518i 0.342538i 0.985224 + 0.171269i \(0.0547867\pi\)
−0.985224 + 0.171269i \(0.945213\pi\)
\(968\) 1.82593i 0.0586877i
\(969\) 7.86946 0.252804
\(970\) 25.1926 21.5164i 0.808885 0.690849i
\(971\) −17.3640 −0.557236 −0.278618 0.960402i \(-0.589876\pi\)
−0.278618 + 0.960402i \(0.589876\pi\)
\(972\) 44.5406i 1.42864i
\(973\) 95.2309i 3.05296i
\(974\) 17.8420 0.571693
\(975\) −1.93111 + 12.1921i −0.0618451 + 0.390459i
\(976\) −26.7413 −0.855967
\(977\) 15.3732i 0.491833i 0.969291 + 0.245917i \(0.0790889\pi\)
−0.969291 + 0.245917i \(0.920911\pi\)
\(978\) 80.3382i 2.56893i
\(979\) 3.13103 0.100068
\(980\) 66.0494 56.4111i 2.10987 1.80199i
\(981\) 8.90441 0.284296
\(982\) 32.0477i 1.02268i
\(983\) 40.3343i 1.28647i −0.765671 0.643233i \(-0.777593\pi\)
0.765671 0.643233i \(-0.222407\pi\)
\(984\) 2.77632 0.0885058
\(985\) 0.219510 + 0.257015i 0.00699417 + 0.00818917i
\(986\) −11.2975 −0.359787
\(987\) 12.4189i 0.395299i
\(988\) 7.33846i 0.233468i
\(989\) −0.561847 −0.0178657
\(990\) 14.7313 + 17.2482i 0.468191 + 0.548185i
\(991\) 26.3296 0.836386 0.418193 0.908358i \(-0.362664\pi\)
0.418193 + 0.908358i \(0.362664\pi\)
\(992\) 40.4248i 1.28349i
\(993\) 84.5824i 2.68414i
\(994\) −57.7687 −1.83231
\(995\) −26.0822 + 22.2761i −0.826861 + 0.706201i
\(996\) −5.74573 −0.182060
\(997\) 46.9367i 1.48650i 0.669014 + 0.743250i \(0.266717\pi\)
−0.669014 + 0.743250i \(0.733283\pi\)
\(998\) 16.7884i 0.531428i
\(999\) −1.41486 −0.0447643
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.b.a.69.7 yes 8
3.2 odd 2 765.2.b.c.154.2 8
4.3 odd 2 1360.2.e.d.1089.2 8
5.2 odd 4 425.2.a.h.1.1 4
5.3 odd 4 425.2.a.g.1.4 4
5.4 even 2 inner 85.2.b.a.69.2 8
15.2 even 4 3825.2.a.bh.1.4 4
15.8 even 4 3825.2.a.bj.1.1 4
15.14 odd 2 765.2.b.c.154.7 8
17.16 even 2 1445.2.b.e.579.7 8
20.3 even 4 6800.2.a.bw.1.3 4
20.7 even 4 6800.2.a.bt.1.2 4
20.19 odd 2 1360.2.e.d.1089.7 8
85.33 odd 4 7225.2.a.v.1.4 4
85.67 odd 4 7225.2.a.w.1.1 4
85.84 even 2 1445.2.b.e.579.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.b.a.69.2 8 5.4 even 2 inner
85.2.b.a.69.7 yes 8 1.1 even 1 trivial
425.2.a.g.1.4 4 5.3 odd 4
425.2.a.h.1.1 4 5.2 odd 4
765.2.b.c.154.2 8 3.2 odd 2
765.2.b.c.154.7 8 15.14 odd 2
1360.2.e.d.1089.2 8 4.3 odd 2
1360.2.e.d.1089.7 8 20.19 odd 2
1445.2.b.e.579.2 8 85.84 even 2
1445.2.b.e.579.7 8 17.16 even 2
3825.2.a.bh.1.4 4 15.2 even 4
3825.2.a.bj.1.1 4 15.8 even 4
6800.2.a.bt.1.2 4 20.7 even 4
6800.2.a.bw.1.3 4 20.3 even 4
7225.2.a.v.1.4 4 85.33 odd 4
7225.2.a.w.1.1 4 85.67 odd 4