Properties

Label 85.2.a.c.1.2
Level $85$
Weight $2$
Character 85.1
Self dual yes
Analytic conductor $0.679$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,2,Mod(1,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 85.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205 q^{2} -0.732051 q^{3} +1.00000 q^{4} +1.00000 q^{5} -1.26795 q^{6} +0.732051 q^{7} -1.73205 q^{8} -2.46410 q^{9} +1.73205 q^{10} +1.26795 q^{11} -0.732051 q^{12} -4.00000 q^{13} +1.26795 q^{14} -0.732051 q^{15} -5.00000 q^{16} -1.00000 q^{17} -4.26795 q^{18} +5.46410 q^{19} +1.00000 q^{20} -0.535898 q^{21} +2.19615 q^{22} +2.19615 q^{23} +1.26795 q^{24} +1.00000 q^{25} -6.92820 q^{26} +4.00000 q^{27} +0.732051 q^{28} +3.46410 q^{29} -1.26795 q^{30} +6.73205 q^{31} -5.19615 q^{32} -0.928203 q^{33} -1.73205 q^{34} +0.732051 q^{35} -2.46410 q^{36} -7.46410 q^{37} +9.46410 q^{38} +2.92820 q^{39} -1.73205 q^{40} +3.46410 q^{41} -0.928203 q^{42} -7.46410 q^{43} +1.26795 q^{44} -2.46410 q^{45} +3.80385 q^{46} -0.928203 q^{47} +3.66025 q^{48} -6.46410 q^{49} +1.73205 q^{50} +0.732051 q^{51} -4.00000 q^{52} +6.00000 q^{53} +6.92820 q^{54} +1.26795 q^{55} -1.26795 q^{56} -4.00000 q^{57} +6.00000 q^{58} +9.46410 q^{59} -0.732051 q^{60} +8.92820 q^{61} +11.6603 q^{62} -1.80385 q^{63} +1.00000 q^{64} -4.00000 q^{65} -1.60770 q^{66} -10.0000 q^{67} -1.00000 q^{68} -1.60770 q^{69} +1.26795 q^{70} -5.66025 q^{71} +4.26795 q^{72} -14.3923 q^{73} -12.9282 q^{74} -0.732051 q^{75} +5.46410 q^{76} +0.928203 q^{77} +5.07180 q^{78} -16.5885 q^{79} -5.00000 q^{80} +4.46410 q^{81} +6.00000 q^{82} +15.4641 q^{83} -0.535898 q^{84} -1.00000 q^{85} -12.9282 q^{86} -2.53590 q^{87} -2.19615 q^{88} -16.3923 q^{89} -4.26795 q^{90} -2.92820 q^{91} +2.19615 q^{92} -4.92820 q^{93} -1.60770 q^{94} +5.46410 q^{95} +3.80385 q^{96} +8.92820 q^{97} -11.1962 q^{98} -3.12436 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{4} + 2 q^{5} - 6 q^{6} - 2 q^{7} + 2 q^{9} + 6 q^{11} + 2 q^{12} - 8 q^{13} + 6 q^{14} + 2 q^{15} - 10 q^{16} - 2 q^{17} - 12 q^{18} + 4 q^{19} + 2 q^{20} - 8 q^{21} - 6 q^{22} - 6 q^{23}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.22474 0.612372 0.790569i \(-0.290215\pi\)
0.612372 + 0.790569i \(0.290215\pi\)
\(3\) −0.732051 −0.422650 −0.211325 0.977416i \(-0.567778\pi\)
−0.211325 + 0.977416i \(0.567778\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) −1.26795 −0.517638
\(7\) 0.732051 0.276689 0.138345 0.990384i \(-0.455822\pi\)
0.138345 + 0.990384i \(0.455822\pi\)
\(8\) −1.73205 −0.612372
\(9\) −2.46410 −0.821367
\(10\) 1.73205 0.547723
\(11\) 1.26795 0.382301 0.191151 0.981561i \(-0.438778\pi\)
0.191151 + 0.981561i \(0.438778\pi\)
\(12\) −0.732051 −0.211325
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 1.26795 0.338874
\(15\) −0.732051 −0.189015
\(16\) −5.00000 −1.25000
\(17\) −1.00000 −0.242536
\(18\) −4.26795 −1.00597
\(19\) 5.46410 1.25355 0.626775 0.779200i \(-0.284374\pi\)
0.626775 + 0.779200i \(0.284374\pi\)
\(20\) 1.00000 0.223607
\(21\) −0.535898 −0.116943
\(22\) 2.19615 0.468221
\(23\) 2.19615 0.457929 0.228965 0.973435i \(-0.426466\pi\)
0.228965 + 0.973435i \(0.426466\pi\)
\(24\) 1.26795 0.258819
\(25\) 1.00000 0.200000
\(26\) −6.92820 −1.35873
\(27\) 4.00000 0.769800
\(28\) 0.732051 0.138345
\(29\) 3.46410 0.643268 0.321634 0.946864i \(-0.395768\pi\)
0.321634 + 0.946864i \(0.395768\pi\)
\(30\) −1.26795 −0.231495
\(31\) 6.73205 1.20911 0.604556 0.796563i \(-0.293351\pi\)
0.604556 + 0.796563i \(0.293351\pi\)
\(32\) −5.19615 −0.918559
\(33\) −0.928203 −0.161579
\(34\) −1.73205 −0.297044
\(35\) 0.732051 0.123739
\(36\) −2.46410 −0.410684
\(37\) −7.46410 −1.22709 −0.613545 0.789659i \(-0.710257\pi\)
−0.613545 + 0.789659i \(0.710257\pi\)
\(38\) 9.46410 1.53528
\(39\) 2.92820 0.468888
\(40\) −1.73205 −0.273861
\(41\) 3.46410 0.541002 0.270501 0.962720i \(-0.412811\pi\)
0.270501 + 0.962720i \(0.412811\pi\)
\(42\) −0.928203 −0.143225
\(43\) −7.46410 −1.13826 −0.569132 0.822246i \(-0.692721\pi\)
−0.569132 + 0.822246i \(0.692721\pi\)
\(44\) 1.26795 0.191151
\(45\) −2.46410 −0.367327
\(46\) 3.80385 0.560847
\(47\) −0.928203 −0.135392 −0.0676962 0.997706i \(-0.521565\pi\)
−0.0676962 + 0.997706i \(0.521565\pi\)
\(48\) 3.66025 0.528312
\(49\) −6.46410 −0.923443
\(50\) 1.73205 0.244949
\(51\) 0.732051 0.102508
\(52\) −4.00000 −0.554700
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 6.92820 0.942809
\(55\) 1.26795 0.170970
\(56\) −1.26795 −0.169437
\(57\) −4.00000 −0.529813
\(58\) 6.00000 0.787839
\(59\) 9.46410 1.23212 0.616061 0.787699i \(-0.288728\pi\)
0.616061 + 0.787699i \(0.288728\pi\)
\(60\) −0.732051 −0.0945074
\(61\) 8.92820 1.14314 0.571570 0.820554i \(-0.306335\pi\)
0.571570 + 0.820554i \(0.306335\pi\)
\(62\) 11.6603 1.48085
\(63\) −1.80385 −0.227263
\(64\) 1.00000 0.125000
\(65\) −4.00000 −0.496139
\(66\) −1.60770 −0.197894
\(67\) −10.0000 −1.22169 −0.610847 0.791748i \(-0.709171\pi\)
−0.610847 + 0.791748i \(0.709171\pi\)
\(68\) −1.00000 −0.121268
\(69\) −1.60770 −0.193544
\(70\) 1.26795 0.151549
\(71\) −5.66025 −0.671749 −0.335874 0.941907i \(-0.609032\pi\)
−0.335874 + 0.941907i \(0.609032\pi\)
\(72\) 4.26795 0.502983
\(73\) −14.3923 −1.68449 −0.842246 0.539093i \(-0.818767\pi\)
−0.842246 + 0.539093i \(0.818767\pi\)
\(74\) −12.9282 −1.50287
\(75\) −0.732051 −0.0845299
\(76\) 5.46410 0.626775
\(77\) 0.928203 0.105779
\(78\) 5.07180 0.574268
\(79\) −16.5885 −1.86635 −0.933174 0.359426i \(-0.882973\pi\)
−0.933174 + 0.359426i \(0.882973\pi\)
\(80\) −5.00000 −0.559017
\(81\) 4.46410 0.496011
\(82\) 6.00000 0.662589
\(83\) 15.4641 1.69741 0.848703 0.528870i \(-0.177384\pi\)
0.848703 + 0.528870i \(0.177384\pi\)
\(84\) −0.535898 −0.0584713
\(85\) −1.00000 −0.108465
\(86\) −12.9282 −1.39408
\(87\) −2.53590 −0.271877
\(88\) −2.19615 −0.234111
\(89\) −16.3923 −1.73758 −0.868790 0.495180i \(-0.835102\pi\)
−0.868790 + 0.495180i \(0.835102\pi\)
\(90\) −4.26795 −0.449881
\(91\) −2.92820 −0.306959
\(92\) 2.19615 0.228965
\(93\) −4.92820 −0.511031
\(94\) −1.60770 −0.165821
\(95\) 5.46410 0.560605
\(96\) 3.80385 0.388229
\(97\) 8.92820 0.906522 0.453261 0.891378i \(-0.350261\pi\)
0.453261 + 0.891378i \(0.350261\pi\)
\(98\) −11.1962 −1.13098
\(99\) −3.12436 −0.314010
\(100\) 1.00000 0.100000
\(101\) −2.53590 −0.252331 −0.126166 0.992009i \(-0.540267\pi\)
−0.126166 + 0.992009i \(0.540267\pi\)
\(102\) 1.26795 0.125546
\(103\) −4.92820 −0.485590 −0.242795 0.970078i \(-0.578064\pi\)
−0.242795 + 0.970078i \(0.578064\pi\)
\(104\) 6.92820 0.679366
\(105\) −0.535898 −0.0522983
\(106\) 10.3923 1.00939
\(107\) 0.339746 0.0328445 0.0164222 0.999865i \(-0.494772\pi\)
0.0164222 + 0.999865i \(0.494772\pi\)
\(108\) 4.00000 0.384900
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 2.19615 0.209395
\(111\) 5.46410 0.518630
\(112\) −3.66025 −0.345861
\(113\) 17.3205 1.62938 0.814688 0.579899i \(-0.196908\pi\)
0.814688 + 0.579899i \(0.196908\pi\)
\(114\) −6.92820 −0.648886
\(115\) 2.19615 0.204792
\(116\) 3.46410 0.321634
\(117\) 9.85641 0.911225
\(118\) 16.3923 1.50903
\(119\) −0.732051 −0.0671070
\(120\) 1.26795 0.115747
\(121\) −9.39230 −0.853846
\(122\) 15.4641 1.40005
\(123\) −2.53590 −0.228654
\(124\) 6.73205 0.604556
\(125\) 1.00000 0.0894427
\(126\) −3.12436 −0.278340
\(127\) 6.39230 0.567225 0.283613 0.958939i \(-0.408467\pi\)
0.283613 + 0.958939i \(0.408467\pi\)
\(128\) 12.1244 1.07165
\(129\) 5.46410 0.481087
\(130\) −6.92820 −0.607644
\(131\) 8.19615 0.716101 0.358051 0.933702i \(-0.383442\pi\)
0.358051 + 0.933702i \(0.383442\pi\)
\(132\) −0.928203 −0.0807897
\(133\) 4.00000 0.346844
\(134\) −17.3205 −1.49626
\(135\) 4.00000 0.344265
\(136\) 1.73205 0.148522
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) −2.78461 −0.237042
\(139\) 13.6603 1.15865 0.579324 0.815097i \(-0.303317\pi\)
0.579324 + 0.815097i \(0.303317\pi\)
\(140\) 0.732051 0.0618696
\(141\) 0.679492 0.0572235
\(142\) −9.80385 −0.822721
\(143\) −5.07180 −0.424125
\(144\) 12.3205 1.02671
\(145\) 3.46410 0.287678
\(146\) −24.9282 −2.06307
\(147\) 4.73205 0.390293
\(148\) −7.46410 −0.613545
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) −1.26795 −0.103528
\(151\) 5.46410 0.444662 0.222331 0.974971i \(-0.428633\pi\)
0.222331 + 0.974971i \(0.428633\pi\)
\(152\) −9.46410 −0.767640
\(153\) 2.46410 0.199211
\(154\) 1.60770 0.129552
\(155\) 6.73205 0.540731
\(156\) 2.92820 0.234444
\(157\) −4.92820 −0.393313 −0.196657 0.980472i \(-0.563008\pi\)
−0.196657 + 0.980472i \(0.563008\pi\)
\(158\) −28.7321 −2.28580
\(159\) −4.39230 −0.348332
\(160\) −5.19615 −0.410792
\(161\) 1.60770 0.126704
\(162\) 7.73205 0.607487
\(163\) 10.1962 0.798624 0.399312 0.916815i \(-0.369249\pi\)
0.399312 + 0.916815i \(0.369249\pi\)
\(164\) 3.46410 0.270501
\(165\) −0.928203 −0.0722605
\(166\) 26.7846 2.07889
\(167\) −18.5885 −1.43842 −0.719209 0.694794i \(-0.755496\pi\)
−0.719209 + 0.694794i \(0.755496\pi\)
\(168\) 0.928203 0.0716124
\(169\) 3.00000 0.230769
\(170\) −1.73205 −0.132842
\(171\) −13.4641 −1.02963
\(172\) −7.46410 −0.569132
\(173\) −3.46410 −0.263371 −0.131685 0.991292i \(-0.542039\pi\)
−0.131685 + 0.991292i \(0.542039\pi\)
\(174\) −4.39230 −0.332980
\(175\) 0.732051 0.0553378
\(176\) −6.33975 −0.477876
\(177\) −6.92820 −0.520756
\(178\) −28.3923 −2.12809
\(179\) 23.3205 1.74306 0.871528 0.490345i \(-0.163129\pi\)
0.871528 + 0.490345i \(0.163129\pi\)
\(180\) −2.46410 −0.183663
\(181\) 18.3923 1.36709 0.683545 0.729909i \(-0.260437\pi\)
0.683545 + 0.729909i \(0.260437\pi\)
\(182\) −5.07180 −0.375947
\(183\) −6.53590 −0.483148
\(184\) −3.80385 −0.280423
\(185\) −7.46410 −0.548772
\(186\) −8.53590 −0.625882
\(187\) −1.26795 −0.0927216
\(188\) −0.928203 −0.0676962
\(189\) 2.92820 0.212995
\(190\) 9.46410 0.686598
\(191\) −25.8564 −1.87090 −0.935452 0.353454i \(-0.885007\pi\)
−0.935452 + 0.353454i \(0.885007\pi\)
\(192\) −0.732051 −0.0528312
\(193\) 23.4641 1.68898 0.844491 0.535569i \(-0.179903\pi\)
0.844491 + 0.535569i \(0.179903\pi\)
\(194\) 15.4641 1.11026
\(195\) 2.92820 0.209693
\(196\) −6.46410 −0.461722
\(197\) −17.3205 −1.23404 −0.617018 0.786949i \(-0.711659\pi\)
−0.617018 + 0.786949i \(0.711659\pi\)
\(198\) −5.41154 −0.384582
\(199\) −0.196152 −0.0139049 −0.00695244 0.999976i \(-0.502213\pi\)
−0.00695244 + 0.999976i \(0.502213\pi\)
\(200\) −1.73205 −0.122474
\(201\) 7.32051 0.516349
\(202\) −4.39230 −0.309041
\(203\) 2.53590 0.177985
\(204\) 0.732051 0.0512538
\(205\) 3.46410 0.241943
\(206\) −8.53590 −0.594724
\(207\) −5.41154 −0.376128
\(208\) 20.0000 1.38675
\(209\) 6.92820 0.479234
\(210\) −0.928203 −0.0640521
\(211\) −0.196152 −0.0135037 −0.00675184 0.999977i \(-0.502149\pi\)
−0.00675184 + 0.999977i \(0.502149\pi\)
\(212\) 6.00000 0.412082
\(213\) 4.14359 0.283914
\(214\) 0.588457 0.0402261
\(215\) −7.46410 −0.509048
\(216\) −6.92820 −0.471405
\(217\) 4.92820 0.334548
\(218\) −17.3205 −1.17309
\(219\) 10.5359 0.711950
\(220\) 1.26795 0.0854851
\(221\) 4.00000 0.269069
\(222\) 9.46410 0.635189
\(223\) −5.60770 −0.375519 −0.187760 0.982215i \(-0.560123\pi\)
−0.187760 + 0.982215i \(0.560123\pi\)
\(224\) −3.80385 −0.254155
\(225\) −2.46410 −0.164273
\(226\) 30.0000 1.99557
\(227\) 19.2679 1.27886 0.639429 0.768850i \(-0.279171\pi\)
0.639429 + 0.768850i \(0.279171\pi\)
\(228\) −4.00000 −0.264906
\(229\) 12.3923 0.818907 0.409453 0.912331i \(-0.365719\pi\)
0.409453 + 0.912331i \(0.365719\pi\)
\(230\) 3.80385 0.250818
\(231\) −0.679492 −0.0447073
\(232\) −6.00000 −0.393919
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 17.0718 1.11602
\(235\) −0.928203 −0.0605493
\(236\) 9.46410 0.616061
\(237\) 12.1436 0.788811
\(238\) −1.26795 −0.0821889
\(239\) 20.7846 1.34444 0.672222 0.740349i \(-0.265340\pi\)
0.672222 + 0.740349i \(0.265340\pi\)
\(240\) 3.66025 0.236268
\(241\) −26.3923 −1.70008 −0.850039 0.526720i \(-0.823422\pi\)
−0.850039 + 0.526720i \(0.823422\pi\)
\(242\) −16.2679 −1.04574
\(243\) −15.2679 −0.979439
\(244\) 8.92820 0.571570
\(245\) −6.46410 −0.412976
\(246\) −4.39230 −0.280043
\(247\) −21.8564 −1.39069
\(248\) −11.6603 −0.740427
\(249\) −11.3205 −0.717408
\(250\) 1.73205 0.109545
\(251\) −6.92820 −0.437304 −0.218652 0.975803i \(-0.570166\pi\)
−0.218652 + 0.975803i \(0.570166\pi\)
\(252\) −1.80385 −0.113632
\(253\) 2.78461 0.175067
\(254\) 11.0718 0.694706
\(255\) 0.732051 0.0458428
\(256\) 19.0000 1.18750
\(257\) 6.92820 0.432169 0.216085 0.976375i \(-0.430671\pi\)
0.216085 + 0.976375i \(0.430671\pi\)
\(258\) 9.46410 0.589209
\(259\) −5.46410 −0.339523
\(260\) −4.00000 −0.248069
\(261\) −8.53590 −0.528359
\(262\) 14.1962 0.877041
\(263\) −22.3923 −1.38077 −0.690384 0.723443i \(-0.742559\pi\)
−0.690384 + 0.723443i \(0.742559\pi\)
\(264\) 1.60770 0.0989468
\(265\) 6.00000 0.368577
\(266\) 6.92820 0.424795
\(267\) 12.0000 0.734388
\(268\) −10.0000 −0.610847
\(269\) −12.9282 −0.788246 −0.394123 0.919058i \(-0.628952\pi\)
−0.394123 + 0.919058i \(0.628952\pi\)
\(270\) 6.92820 0.421637
\(271\) −10.9282 −0.663841 −0.331921 0.943307i \(-0.607697\pi\)
−0.331921 + 0.943307i \(0.607697\pi\)
\(272\) 5.00000 0.303170
\(273\) 2.14359 0.129736
\(274\) 0 0
\(275\) 1.26795 0.0764602
\(276\) −1.60770 −0.0967719
\(277\) 7.07180 0.424903 0.212452 0.977172i \(-0.431855\pi\)
0.212452 + 0.977172i \(0.431855\pi\)
\(278\) 23.6603 1.41905
\(279\) −16.5885 −0.993125
\(280\) −1.26795 −0.0757745
\(281\) 0.928203 0.0553720 0.0276860 0.999617i \(-0.491186\pi\)
0.0276860 + 0.999617i \(0.491186\pi\)
\(282\) 1.17691 0.0700842
\(283\) −8.73205 −0.519067 −0.259533 0.965734i \(-0.583569\pi\)
−0.259533 + 0.965734i \(0.583569\pi\)
\(284\) −5.66025 −0.335874
\(285\) −4.00000 −0.236940
\(286\) −8.78461 −0.519445
\(287\) 2.53590 0.149689
\(288\) 12.8038 0.754474
\(289\) 1.00000 0.0588235
\(290\) 6.00000 0.352332
\(291\) −6.53590 −0.383141
\(292\) −14.3923 −0.842246
\(293\) 12.9282 0.755274 0.377637 0.925954i \(-0.376737\pi\)
0.377637 + 0.925954i \(0.376737\pi\)
\(294\) 8.19615 0.478009
\(295\) 9.46410 0.551021
\(296\) 12.9282 0.751437
\(297\) 5.07180 0.294295
\(298\) −10.3923 −0.602010
\(299\) −8.78461 −0.508027
\(300\) −0.732051 −0.0422650
\(301\) −5.46410 −0.314946
\(302\) 9.46410 0.544598
\(303\) 1.85641 0.106648
\(304\) −27.3205 −1.56694
\(305\) 8.92820 0.511227
\(306\) 4.26795 0.243982
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) 0.928203 0.0528893
\(309\) 3.60770 0.205235
\(310\) 11.6603 0.662258
\(311\) 22.0526 1.25049 0.625243 0.780430i \(-0.285000\pi\)
0.625243 + 0.780430i \(0.285000\pi\)
\(312\) −5.07180 −0.287134
\(313\) −5.60770 −0.316966 −0.158483 0.987362i \(-0.550660\pi\)
−0.158483 + 0.987362i \(0.550660\pi\)
\(314\) −8.53590 −0.481709
\(315\) −1.80385 −0.101635
\(316\) −16.5885 −0.933174
\(317\) −11.0718 −0.621854 −0.310927 0.950434i \(-0.600639\pi\)
−0.310927 + 0.950434i \(0.600639\pi\)
\(318\) −7.60770 −0.426618
\(319\) 4.39230 0.245922
\(320\) 1.00000 0.0559017
\(321\) −0.248711 −0.0138817
\(322\) 2.78461 0.155180
\(323\) −5.46410 −0.304031
\(324\) 4.46410 0.248006
\(325\) −4.00000 −0.221880
\(326\) 17.6603 0.978111
\(327\) 7.32051 0.404825
\(328\) −6.00000 −0.331295
\(329\) −0.679492 −0.0374616
\(330\) −1.60770 −0.0885007
\(331\) −13.4641 −0.740054 −0.370027 0.929021i \(-0.620652\pi\)
−0.370027 + 0.929021i \(0.620652\pi\)
\(332\) 15.4641 0.848703
\(333\) 18.3923 1.00789
\(334\) −32.1962 −1.76170
\(335\) −10.0000 −0.546358
\(336\) 2.67949 0.146178
\(337\) 34.7846 1.89484 0.947419 0.319995i \(-0.103681\pi\)
0.947419 + 0.319995i \(0.103681\pi\)
\(338\) 5.19615 0.282633
\(339\) −12.6795 −0.688655
\(340\) −1.00000 −0.0542326
\(341\) 8.53590 0.462245
\(342\) −23.3205 −1.26103
\(343\) −9.85641 −0.532196
\(344\) 12.9282 0.697042
\(345\) −1.60770 −0.0865554
\(346\) −6.00000 −0.322562
\(347\) 14.1962 0.762089 0.381045 0.924557i \(-0.375564\pi\)
0.381045 + 0.924557i \(0.375564\pi\)
\(348\) −2.53590 −0.135938
\(349\) −30.7846 −1.64786 −0.823931 0.566690i \(-0.808224\pi\)
−0.823931 + 0.566690i \(0.808224\pi\)
\(350\) 1.26795 0.0677747
\(351\) −16.0000 −0.854017
\(352\) −6.58846 −0.351166
\(353\) −14.7846 −0.786905 −0.393453 0.919345i \(-0.628719\pi\)
−0.393453 + 0.919345i \(0.628719\pi\)
\(354\) −12.0000 −0.637793
\(355\) −5.66025 −0.300415
\(356\) −16.3923 −0.868790
\(357\) 0.535898 0.0283628
\(358\) 40.3923 2.13480
\(359\) −14.5359 −0.767175 −0.383588 0.923504i \(-0.625312\pi\)
−0.383588 + 0.923504i \(0.625312\pi\)
\(360\) 4.26795 0.224941
\(361\) 10.8564 0.571390
\(362\) 31.8564 1.67434
\(363\) 6.87564 0.360878
\(364\) −2.92820 −0.153480
\(365\) −14.3923 −0.753328
\(366\) −11.3205 −0.591732
\(367\) −18.1962 −0.949831 −0.474916 0.880031i \(-0.657521\pi\)
−0.474916 + 0.880031i \(0.657521\pi\)
\(368\) −10.9808 −0.572412
\(369\) −8.53590 −0.444361
\(370\) −12.9282 −0.672105
\(371\) 4.39230 0.228037
\(372\) −4.92820 −0.255515
\(373\) 20.0000 1.03556 0.517780 0.855514i \(-0.326758\pi\)
0.517780 + 0.855514i \(0.326758\pi\)
\(374\) −2.19615 −0.113560
\(375\) −0.732051 −0.0378029
\(376\) 1.60770 0.0829105
\(377\) −13.8564 −0.713641
\(378\) 5.07180 0.260865
\(379\) 28.1962 1.44834 0.724170 0.689622i \(-0.242223\pi\)
0.724170 + 0.689622i \(0.242223\pi\)
\(380\) 5.46410 0.280302
\(381\) −4.67949 −0.239738
\(382\) −44.7846 −2.29138
\(383\) 8.53590 0.436164 0.218082 0.975930i \(-0.430020\pi\)
0.218082 + 0.975930i \(0.430020\pi\)
\(384\) −8.87564 −0.452933
\(385\) 0.928203 0.0473056
\(386\) 40.6410 2.06857
\(387\) 18.3923 0.934933
\(388\) 8.92820 0.453261
\(389\) 16.3923 0.831123 0.415561 0.909565i \(-0.363585\pi\)
0.415561 + 0.909565i \(0.363585\pi\)
\(390\) 5.07180 0.256820
\(391\) −2.19615 −0.111064
\(392\) 11.1962 0.565491
\(393\) −6.00000 −0.302660
\(394\) −30.0000 −1.51138
\(395\) −16.5885 −0.834656
\(396\) −3.12436 −0.157005
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) −0.339746 −0.0170299
\(399\) −2.92820 −0.146594
\(400\) −5.00000 −0.250000
\(401\) −0.928203 −0.0463523 −0.0231761 0.999731i \(-0.507378\pi\)
−0.0231761 + 0.999731i \(0.507378\pi\)
\(402\) 12.6795 0.632396
\(403\) −26.9282 −1.34139
\(404\) −2.53590 −0.126166
\(405\) 4.46410 0.221823
\(406\) 4.39230 0.217986
\(407\) −9.46410 −0.469118
\(408\) −1.26795 −0.0627728
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 6.00000 0.296319
\(411\) 0 0
\(412\) −4.92820 −0.242795
\(413\) 6.92820 0.340915
\(414\) −9.37307 −0.460661
\(415\) 15.4641 0.759103
\(416\) 20.7846 1.01905
\(417\) −10.0000 −0.489702
\(418\) 12.0000 0.586939
\(419\) 27.8038 1.35831 0.679153 0.733996i \(-0.262347\pi\)
0.679153 + 0.733996i \(0.262347\pi\)
\(420\) −0.535898 −0.0261492
\(421\) −1.46410 −0.0713559 −0.0356780 0.999363i \(-0.511359\pi\)
−0.0356780 + 0.999363i \(0.511359\pi\)
\(422\) −0.339746 −0.0165386
\(423\) 2.28719 0.111207
\(424\) −10.3923 −0.504695
\(425\) −1.00000 −0.0485071
\(426\) 7.17691 0.347723
\(427\) 6.53590 0.316294
\(428\) 0.339746 0.0164222
\(429\) 3.71281 0.179256
\(430\) −12.9282 −0.623453
\(431\) 20.1962 0.972814 0.486407 0.873732i \(-0.338307\pi\)
0.486407 + 0.873732i \(0.338307\pi\)
\(432\) −20.0000 −0.962250
\(433\) 9.85641 0.473669 0.236834 0.971550i \(-0.423890\pi\)
0.236834 + 0.971550i \(0.423890\pi\)
\(434\) 8.53590 0.409736
\(435\) −2.53590 −0.121587
\(436\) −10.0000 −0.478913
\(437\) 12.0000 0.574038
\(438\) 18.2487 0.871957
\(439\) 18.0526 0.861602 0.430801 0.902447i \(-0.358231\pi\)
0.430801 + 0.902447i \(0.358231\pi\)
\(440\) −2.19615 −0.104697
\(441\) 15.9282 0.758486
\(442\) 6.92820 0.329541
\(443\) 0.928203 0.0441003 0.0220501 0.999757i \(-0.492981\pi\)
0.0220501 + 0.999757i \(0.492981\pi\)
\(444\) 5.46410 0.259315
\(445\) −16.3923 −0.777070
\(446\) −9.71281 −0.459915
\(447\) 4.39230 0.207749
\(448\) 0.732051 0.0345861
\(449\) −13.6077 −0.642187 −0.321093 0.947048i \(-0.604050\pi\)
−0.321093 + 0.947048i \(0.604050\pi\)
\(450\) −4.26795 −0.201193
\(451\) 4.39230 0.206826
\(452\) 17.3205 0.814688
\(453\) −4.00000 −0.187936
\(454\) 33.3731 1.56628
\(455\) −2.92820 −0.137276
\(456\) 6.92820 0.324443
\(457\) 4.78461 0.223815 0.111907 0.993719i \(-0.464304\pi\)
0.111907 + 0.993719i \(0.464304\pi\)
\(458\) 21.4641 1.00295
\(459\) −4.00000 −0.186704
\(460\) 2.19615 0.102396
\(461\) −11.0718 −0.515665 −0.257832 0.966190i \(-0.583008\pi\)
−0.257832 + 0.966190i \(0.583008\pi\)
\(462\) −1.17691 −0.0547550
\(463\) 3.85641 0.179222 0.0896112 0.995977i \(-0.471438\pi\)
0.0896112 + 0.995977i \(0.471438\pi\)
\(464\) −17.3205 −0.804084
\(465\) −4.92820 −0.228540
\(466\) 10.3923 0.481414
\(467\) 22.3923 1.03619 0.518096 0.855322i \(-0.326641\pi\)
0.518096 + 0.855322i \(0.326641\pi\)
\(468\) 9.85641 0.455613
\(469\) −7.32051 −0.338030
\(470\) −1.60770 −0.0741574
\(471\) 3.60770 0.166234
\(472\) −16.3923 −0.754517
\(473\) −9.46410 −0.435160
\(474\) 21.0333 0.966092
\(475\) 5.46410 0.250710
\(476\) −0.732051 −0.0335535
\(477\) −14.7846 −0.676941
\(478\) 36.0000 1.64660
\(479\) 5.66025 0.258624 0.129312 0.991604i \(-0.458723\pi\)
0.129312 + 0.991604i \(0.458723\pi\)
\(480\) 3.80385 0.173621
\(481\) 29.8564 1.36133
\(482\) −45.7128 −2.08216
\(483\) −1.17691 −0.0535515
\(484\) −9.39230 −0.426923
\(485\) 8.92820 0.405409
\(486\) −26.4449 −1.19956
\(487\) −26.9808 −1.22262 −0.611308 0.791393i \(-0.709356\pi\)
−0.611308 + 0.791393i \(0.709356\pi\)
\(488\) −15.4641 −0.700027
\(489\) −7.46410 −0.337538
\(490\) −11.1962 −0.505791
\(491\) −40.3923 −1.82288 −0.911440 0.411434i \(-0.865028\pi\)
−0.911440 + 0.411434i \(0.865028\pi\)
\(492\) −2.53590 −0.114327
\(493\) −3.46410 −0.156015
\(494\) −37.8564 −1.70324
\(495\) −3.12436 −0.140429
\(496\) −33.6603 −1.51139
\(497\) −4.14359 −0.185866
\(498\) −19.6077 −0.878642
\(499\) 1.66025 0.0743232 0.0371616 0.999309i \(-0.488168\pi\)
0.0371616 + 0.999309i \(0.488168\pi\)
\(500\) 1.00000 0.0447214
\(501\) 13.6077 0.607947
\(502\) −12.0000 −0.535586
\(503\) −9.12436 −0.406835 −0.203417 0.979092i \(-0.565205\pi\)
−0.203417 + 0.979092i \(0.565205\pi\)
\(504\) 3.12436 0.139170
\(505\) −2.53590 −0.112846
\(506\) 4.82309 0.214412
\(507\) −2.19615 −0.0975346
\(508\) 6.39230 0.283613
\(509\) −7.85641 −0.348229 −0.174115 0.984725i \(-0.555706\pi\)
−0.174115 + 0.984725i \(0.555706\pi\)
\(510\) 1.26795 0.0561457
\(511\) −10.5359 −0.466081
\(512\) 8.66025 0.382733
\(513\) 21.8564 0.964984
\(514\) 12.0000 0.529297
\(515\) −4.92820 −0.217163
\(516\) 5.46410 0.240544
\(517\) −1.17691 −0.0517606
\(518\) −9.46410 −0.415829
\(519\) 2.53590 0.111314
\(520\) 6.92820 0.303822
\(521\) 31.8564 1.39565 0.697827 0.716266i \(-0.254150\pi\)
0.697827 + 0.716266i \(0.254150\pi\)
\(522\) −14.7846 −0.647105
\(523\) −22.0000 −0.961993 −0.480996 0.876723i \(-0.659725\pi\)
−0.480996 + 0.876723i \(0.659725\pi\)
\(524\) 8.19615 0.358051
\(525\) −0.535898 −0.0233885
\(526\) −38.7846 −1.69109
\(527\) −6.73205 −0.293253
\(528\) 4.64102 0.201974
\(529\) −18.1769 −0.790301
\(530\) 10.3923 0.451413
\(531\) −23.3205 −1.01202
\(532\) 4.00000 0.173422
\(533\) −13.8564 −0.600188
\(534\) 20.7846 0.899438
\(535\) 0.339746 0.0146885
\(536\) 17.3205 0.748132
\(537\) −17.0718 −0.736702
\(538\) −22.3923 −0.965401
\(539\) −8.19615 −0.353033
\(540\) 4.00000 0.172133
\(541\) −23.1769 −0.996453 −0.498227 0.867047i \(-0.666015\pi\)
−0.498227 + 0.867047i \(0.666015\pi\)
\(542\) −18.9282 −0.813036
\(543\) −13.4641 −0.577800
\(544\) 5.19615 0.222783
\(545\) −10.0000 −0.428353
\(546\) 3.71281 0.158894
\(547\) 25.9090 1.10779 0.553894 0.832587i \(-0.313141\pi\)
0.553894 + 0.832587i \(0.313141\pi\)
\(548\) 0 0
\(549\) −22.0000 −0.938937
\(550\) 2.19615 0.0936443
\(551\) 18.9282 0.806369
\(552\) 2.78461 0.118521
\(553\) −12.1436 −0.516398
\(554\) 12.2487 0.520398
\(555\) 5.46410 0.231938
\(556\) 13.6603 0.579324
\(557\) 6.92820 0.293557 0.146779 0.989169i \(-0.453109\pi\)
0.146779 + 0.989169i \(0.453109\pi\)
\(558\) −28.7321 −1.21632
\(559\) 29.8564 1.26279
\(560\) −3.66025 −0.154674
\(561\) 0.928203 0.0391888
\(562\) 1.60770 0.0678165
\(563\) 20.5359 0.865485 0.432742 0.901518i \(-0.357546\pi\)
0.432742 + 0.901518i \(0.357546\pi\)
\(564\) 0.679492 0.0286118
\(565\) 17.3205 0.728679
\(566\) −15.1244 −0.635724
\(567\) 3.26795 0.137241
\(568\) 9.80385 0.411360
\(569\) −28.6410 −1.20069 −0.600347 0.799740i \(-0.704971\pi\)
−0.600347 + 0.799740i \(0.704971\pi\)
\(570\) −6.92820 −0.290191
\(571\) 22.4449 0.939288 0.469644 0.882856i \(-0.344382\pi\)
0.469644 + 0.882856i \(0.344382\pi\)
\(572\) −5.07180 −0.212062
\(573\) 18.9282 0.790737
\(574\) 4.39230 0.183331
\(575\) 2.19615 0.0915859
\(576\) −2.46410 −0.102671
\(577\) 30.6410 1.27560 0.637801 0.770201i \(-0.279844\pi\)
0.637801 + 0.770201i \(0.279844\pi\)
\(578\) 1.73205 0.0720438
\(579\) −17.1769 −0.713848
\(580\) 3.46410 0.143839
\(581\) 11.3205 0.469654
\(582\) −11.3205 −0.469250
\(583\) 7.60770 0.315079
\(584\) 24.9282 1.03154
\(585\) 9.85641 0.407512
\(586\) 22.3923 0.925018
\(587\) 25.6077 1.05694 0.528471 0.848951i \(-0.322765\pi\)
0.528471 + 0.848951i \(0.322765\pi\)
\(588\) 4.73205 0.195146
\(589\) 36.7846 1.51568
\(590\) 16.3923 0.674861
\(591\) 12.6795 0.521565
\(592\) 37.3205 1.53386
\(593\) −7.85641 −0.322624 −0.161312 0.986903i \(-0.551573\pi\)
−0.161312 + 0.986903i \(0.551573\pi\)
\(594\) 8.78461 0.360437
\(595\) −0.732051 −0.0300112
\(596\) −6.00000 −0.245770
\(597\) 0.143594 0.00587689
\(598\) −15.2154 −0.622204
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 1.26795 0.0517638
\(601\) −40.2487 −1.64178 −0.820890 0.571087i \(-0.806522\pi\)
−0.820890 + 0.571087i \(0.806522\pi\)
\(602\) −9.46410 −0.385728
\(603\) 24.6410 1.00346
\(604\) 5.46410 0.222331
\(605\) −9.39230 −0.381851
\(606\) 3.21539 0.130616
\(607\) −4.33975 −0.176145 −0.0880724 0.996114i \(-0.528071\pi\)
−0.0880724 + 0.996114i \(0.528071\pi\)
\(608\) −28.3923 −1.15146
\(609\) −1.85641 −0.0752254
\(610\) 15.4641 0.626123
\(611\) 3.71281 0.150204
\(612\) 2.46410 0.0996054
\(613\) −11.8564 −0.478876 −0.239438 0.970912i \(-0.576963\pi\)
−0.239438 + 0.970912i \(0.576963\pi\)
\(614\) −17.3205 −0.698999
\(615\) −2.53590 −0.102257
\(616\) −1.60770 −0.0647759
\(617\) −20.5359 −0.826744 −0.413372 0.910562i \(-0.635649\pi\)
−0.413372 + 0.910562i \(0.635649\pi\)
\(618\) 6.24871 0.251360
\(619\) 7.41154 0.297895 0.148948 0.988845i \(-0.452411\pi\)
0.148948 + 0.988845i \(0.452411\pi\)
\(620\) 6.73205 0.270366
\(621\) 8.78461 0.352514
\(622\) 38.1962 1.53153
\(623\) −12.0000 −0.480770
\(624\) −14.6410 −0.586110
\(625\) 1.00000 0.0400000
\(626\) −9.71281 −0.388202
\(627\) −5.07180 −0.202548
\(628\) −4.92820 −0.196657
\(629\) 7.46410 0.297613
\(630\) −3.12436 −0.124477
\(631\) −11.6077 −0.462095 −0.231048 0.972942i \(-0.574215\pi\)
−0.231048 + 0.972942i \(0.574215\pi\)
\(632\) 28.7321 1.14290
\(633\) 0.143594 0.00570733
\(634\) −19.1769 −0.761613
\(635\) 6.39230 0.253671
\(636\) −4.39230 −0.174166
\(637\) 25.8564 1.02447
\(638\) 7.60770 0.301192
\(639\) 13.9474 0.551752
\(640\) 12.1244 0.479257
\(641\) −31.1769 −1.23141 −0.615707 0.787975i \(-0.711130\pi\)
−0.615707 + 0.787975i \(0.711130\pi\)
\(642\) −0.430781 −0.0170016
\(643\) −13.8038 −0.544371 −0.272185 0.962245i \(-0.587746\pi\)
−0.272185 + 0.962245i \(0.587746\pi\)
\(644\) 1.60770 0.0633521
\(645\) 5.46410 0.215149
\(646\) −9.46410 −0.372360
\(647\) 2.78461 0.109474 0.0547372 0.998501i \(-0.482568\pi\)
0.0547372 + 0.998501i \(0.482568\pi\)
\(648\) −7.73205 −0.303744
\(649\) 12.0000 0.471041
\(650\) −6.92820 −0.271746
\(651\) −3.60770 −0.141397
\(652\) 10.1962 0.399312
\(653\) −46.3923 −1.81547 −0.907736 0.419543i \(-0.862190\pi\)
−0.907736 + 0.419543i \(0.862190\pi\)
\(654\) 12.6795 0.495807
\(655\) 8.19615 0.320250
\(656\) −17.3205 −0.676252
\(657\) 35.4641 1.38359
\(658\) −1.17691 −0.0458809
\(659\) 8.78461 0.342200 0.171100 0.985254i \(-0.445268\pi\)
0.171100 + 0.985254i \(0.445268\pi\)
\(660\) −0.928203 −0.0361303
\(661\) −35.8564 −1.39465 −0.697326 0.716754i \(-0.745627\pi\)
−0.697326 + 0.716754i \(0.745627\pi\)
\(662\) −23.3205 −0.906377
\(663\) −2.92820 −0.113722
\(664\) −26.7846 −1.03944
\(665\) 4.00000 0.155113
\(666\) 31.8564 1.23441
\(667\) 7.60770 0.294571
\(668\) −18.5885 −0.719209
\(669\) 4.10512 0.158713
\(670\) −17.3205 −0.669150
\(671\) 11.3205 0.437023
\(672\) 2.78461 0.107419
\(673\) 16.5359 0.637412 0.318706 0.947854i \(-0.396752\pi\)
0.318706 + 0.947854i \(0.396752\pi\)
\(674\) 60.2487 2.32069
\(675\) 4.00000 0.153960
\(676\) 3.00000 0.115385
\(677\) −38.7846 −1.49061 −0.745307 0.666722i \(-0.767697\pi\)
−0.745307 + 0.666722i \(0.767697\pi\)
\(678\) −21.9615 −0.843427
\(679\) 6.53590 0.250825
\(680\) 1.73205 0.0664211
\(681\) −14.1051 −0.540509
\(682\) 14.7846 0.566132
\(683\) 48.8372 1.86870 0.934351 0.356354i \(-0.115980\pi\)
0.934351 + 0.356354i \(0.115980\pi\)
\(684\) −13.4641 −0.514813
\(685\) 0 0
\(686\) −17.0718 −0.651804
\(687\) −9.07180 −0.346111
\(688\) 37.3205 1.42283
\(689\) −24.0000 −0.914327
\(690\) −2.78461 −0.106008
\(691\) 12.9808 0.493811 0.246906 0.969040i \(-0.420586\pi\)
0.246906 + 0.969040i \(0.420586\pi\)
\(692\) −3.46410 −0.131685
\(693\) −2.28719 −0.0868831
\(694\) 24.5885 0.933365
\(695\) 13.6603 0.518163
\(696\) 4.39230 0.166490
\(697\) −3.46410 −0.131212
\(698\) −53.3205 −2.01821
\(699\) −4.39230 −0.166132
\(700\) 0.732051 0.0276689
\(701\) −23.3205 −0.880803 −0.440402 0.897801i \(-0.645164\pi\)
−0.440402 + 0.897801i \(0.645164\pi\)
\(702\) −27.7128 −1.04595
\(703\) −40.7846 −1.53822
\(704\) 1.26795 0.0477876
\(705\) 0.679492 0.0255911
\(706\) −25.6077 −0.963758
\(707\) −1.85641 −0.0698174
\(708\) −6.92820 −0.260378
\(709\) 11.4641 0.430543 0.215272 0.976554i \(-0.430936\pi\)
0.215272 + 0.976554i \(0.430936\pi\)
\(710\) −9.80385 −0.367932
\(711\) 40.8756 1.53296
\(712\) 28.3923 1.06405
\(713\) 14.7846 0.553688
\(714\) 0.928203 0.0347371
\(715\) −5.07180 −0.189674
\(716\) 23.3205 0.871528
\(717\) −15.2154 −0.568229
\(718\) −25.1769 −0.939594
\(719\) −36.5885 −1.36452 −0.682260 0.731110i \(-0.739003\pi\)
−0.682260 + 0.731110i \(0.739003\pi\)
\(720\) 12.3205 0.459158
\(721\) −3.60770 −0.134358
\(722\) 18.8038 0.699807
\(723\) 19.3205 0.718537
\(724\) 18.3923 0.683545
\(725\) 3.46410 0.128654
\(726\) 11.9090 0.441983
\(727\) 27.8564 1.03314 0.516568 0.856246i \(-0.327209\pi\)
0.516568 + 0.856246i \(0.327209\pi\)
\(728\) 5.07180 0.187973
\(729\) −2.21539 −0.0820515
\(730\) −24.9282 −0.922634
\(731\) 7.46410 0.276070
\(732\) −6.53590 −0.241574
\(733\) 2.00000 0.0738717 0.0369358 0.999318i \(-0.488240\pi\)
0.0369358 + 0.999318i \(0.488240\pi\)
\(734\) −31.5167 −1.16330
\(735\) 4.73205 0.174544
\(736\) −11.4115 −0.420635
\(737\) −12.6795 −0.467055
\(738\) −14.7846 −0.544229
\(739\) −32.3923 −1.19157 −0.595785 0.803144i \(-0.703159\pi\)
−0.595785 + 0.803144i \(0.703159\pi\)
\(740\) −7.46410 −0.274386
\(741\) 16.0000 0.587775
\(742\) 7.60770 0.279287
\(743\) −19.2679 −0.706872 −0.353436 0.935459i \(-0.614987\pi\)
−0.353436 + 0.935459i \(0.614987\pi\)
\(744\) 8.53590 0.312941
\(745\) −6.00000 −0.219823
\(746\) 34.6410 1.26830
\(747\) −38.1051 −1.39419
\(748\) −1.26795 −0.0463608
\(749\) 0.248711 0.00908771
\(750\) −1.26795 −0.0462990
\(751\) 26.3397 0.961151 0.480575 0.876953i \(-0.340428\pi\)
0.480575 + 0.876953i \(0.340428\pi\)
\(752\) 4.64102 0.169240
\(753\) 5.07180 0.184827
\(754\) −24.0000 −0.874028
\(755\) 5.46410 0.198859
\(756\) 2.92820 0.106498
\(757\) −38.6410 −1.40443 −0.702216 0.711964i \(-0.747806\pi\)
−0.702216 + 0.711964i \(0.747806\pi\)
\(758\) 48.8372 1.77385
\(759\) −2.03848 −0.0739920
\(760\) −9.46410 −0.343299
\(761\) −7.60770 −0.275779 −0.137889 0.990448i \(-0.544032\pi\)
−0.137889 + 0.990448i \(0.544032\pi\)
\(762\) −8.10512 −0.293617
\(763\) −7.32051 −0.265020
\(764\) −25.8564 −0.935452
\(765\) 2.46410 0.0890898
\(766\) 14.7846 0.534190
\(767\) −37.8564 −1.36692
\(768\) −13.9090 −0.501897
\(769\) 15.6077 0.562828 0.281414 0.959586i \(-0.409197\pi\)
0.281414 + 0.959586i \(0.409197\pi\)
\(770\) 1.60770 0.0579373
\(771\) −5.07180 −0.182656
\(772\) 23.4641 0.844491
\(773\) 22.6410 0.814341 0.407170 0.913352i \(-0.366516\pi\)
0.407170 + 0.913352i \(0.366516\pi\)
\(774\) 31.8564 1.14505
\(775\) 6.73205 0.241822
\(776\) −15.4641 −0.555129
\(777\) 4.00000 0.143499
\(778\) 28.3923 1.01791
\(779\) 18.9282 0.678173
\(780\) 2.92820 0.104846
\(781\) −7.17691 −0.256810
\(782\) −3.80385 −0.136025
\(783\) 13.8564 0.495188
\(784\) 32.3205 1.15430
\(785\) −4.92820 −0.175895
\(786\) −10.3923 −0.370681
\(787\) −21.9090 −0.780970 −0.390485 0.920609i \(-0.627693\pi\)
−0.390485 + 0.920609i \(0.627693\pi\)
\(788\) −17.3205 −0.617018
\(789\) 16.3923 0.583582
\(790\) −28.7321 −1.02224
\(791\) 12.6795 0.450831
\(792\) 5.41154 0.192291
\(793\) −35.7128 −1.26820
\(794\) 24.2487 0.860555
\(795\) −4.39230 −0.155779
\(796\) −0.196152 −0.00695244
\(797\) −11.0718 −0.392183 −0.196092 0.980586i \(-0.562825\pi\)
−0.196092 + 0.980586i \(0.562825\pi\)
\(798\) −5.07180 −0.179540
\(799\) 0.928203 0.0328375
\(800\) −5.19615 −0.183712
\(801\) 40.3923 1.42719
\(802\) −1.60770 −0.0567697
\(803\) −18.2487 −0.643983
\(804\) 7.32051 0.258174
\(805\) 1.60770 0.0566638
\(806\) −46.6410 −1.64286
\(807\) 9.46410 0.333152
\(808\) 4.39230 0.154521
\(809\) −28.1436 −0.989476 −0.494738 0.869042i \(-0.664736\pi\)
−0.494738 + 0.869042i \(0.664736\pi\)
\(810\) 7.73205 0.271677
\(811\) −34.8372 −1.22330 −0.611649 0.791129i \(-0.709494\pi\)
−0.611649 + 0.791129i \(0.709494\pi\)
\(812\) 2.53590 0.0889926
\(813\) 8.00000 0.280572
\(814\) −16.3923 −0.574550
\(815\) 10.1962 0.357156
\(816\) −3.66025 −0.128135
\(817\) −40.7846 −1.42687
\(818\) 45.0333 1.57455
\(819\) 7.21539 0.252126
\(820\) 3.46410 0.120972
\(821\) −11.0718 −0.386408 −0.193204 0.981159i \(-0.561888\pi\)
−0.193204 + 0.981159i \(0.561888\pi\)
\(822\) 0 0
\(823\) 42.9808 1.49822 0.749108 0.662448i \(-0.230483\pi\)
0.749108 + 0.662448i \(0.230483\pi\)
\(824\) 8.53590 0.297362
\(825\) −0.928203 −0.0323159
\(826\) 12.0000 0.417533
\(827\) −26.1962 −0.910929 −0.455465 0.890254i \(-0.650527\pi\)
−0.455465 + 0.890254i \(0.650527\pi\)
\(828\) −5.41154 −0.188064
\(829\) −37.7128 −1.30982 −0.654910 0.755707i \(-0.727294\pi\)
−0.654910 + 0.755707i \(0.727294\pi\)
\(830\) 26.7846 0.929707
\(831\) −5.17691 −0.179585
\(832\) −4.00000 −0.138675
\(833\) 6.46410 0.223968
\(834\) −17.3205 −0.599760
\(835\) −18.5885 −0.643280
\(836\) 6.92820 0.239617
\(837\) 26.9282 0.930775
\(838\) 48.1577 1.66358
\(839\) 22.7321 0.784798 0.392399 0.919795i \(-0.371645\pi\)
0.392399 + 0.919795i \(0.371645\pi\)
\(840\) 0.928203 0.0320261
\(841\) −17.0000 −0.586207
\(842\) −2.53590 −0.0873928
\(843\) −0.679492 −0.0234029
\(844\) −0.196152 −0.00675184
\(845\) 3.00000 0.103203
\(846\) 3.96152 0.136200
\(847\) −6.87564 −0.236250
\(848\) −30.0000 −1.03020
\(849\) 6.39230 0.219383
\(850\) −1.73205 −0.0594089
\(851\) −16.3923 −0.561921
\(852\) 4.14359 0.141957
\(853\) 39.1769 1.34139 0.670696 0.741732i \(-0.265996\pi\)
0.670696 + 0.741732i \(0.265996\pi\)
\(854\) 11.3205 0.387380
\(855\) −13.4641 −0.460463
\(856\) −0.588457 −0.0201131
\(857\) −31.1769 −1.06498 −0.532492 0.846435i \(-0.678744\pi\)
−0.532492 + 0.846435i \(0.678744\pi\)
\(858\) 6.43078 0.219543
\(859\) −18.5359 −0.632437 −0.316218 0.948686i \(-0.602413\pi\)
−0.316218 + 0.948686i \(0.602413\pi\)
\(860\) −7.46410 −0.254524
\(861\) −1.85641 −0.0632662
\(862\) 34.9808 1.19145
\(863\) 36.9282 1.25705 0.628525 0.777789i \(-0.283659\pi\)
0.628525 + 0.777789i \(0.283659\pi\)
\(864\) −20.7846 −0.707107
\(865\) −3.46410 −0.117783
\(866\) 17.0718 0.580123
\(867\) −0.732051 −0.0248617
\(868\) 4.92820 0.167274
\(869\) −21.0333 −0.713507
\(870\) −4.39230 −0.148913
\(871\) 40.0000 1.35535
\(872\) 17.3205 0.586546
\(873\) −22.0000 −0.744587
\(874\) 20.7846 0.703050
\(875\) 0.732051 0.0247478
\(876\) 10.5359 0.355975
\(877\) −42.7846 −1.44473 −0.722367 0.691510i \(-0.756946\pi\)
−0.722367 + 0.691510i \(0.756946\pi\)
\(878\) 31.2679 1.05524
\(879\) −9.46410 −0.319216
\(880\) −6.33975 −0.213713
\(881\) −6.67949 −0.225038 −0.112519 0.993650i \(-0.535892\pi\)
−0.112519 + 0.993650i \(0.535892\pi\)
\(882\) 27.5885 0.928952
\(883\) −10.0000 −0.336527 −0.168263 0.985742i \(-0.553816\pi\)
−0.168263 + 0.985742i \(0.553816\pi\)
\(884\) 4.00000 0.134535
\(885\) −6.92820 −0.232889
\(886\) 1.60770 0.0540116
\(887\) −21.1244 −0.709286 −0.354643 0.935002i \(-0.615398\pi\)
−0.354643 + 0.935002i \(0.615398\pi\)
\(888\) −9.46410 −0.317594
\(889\) 4.67949 0.156945
\(890\) −28.3923 −0.951712
\(891\) 5.66025 0.189626
\(892\) −5.60770 −0.187760
\(893\) −5.07180 −0.169721
\(894\) 7.60770 0.254439
\(895\) 23.3205 0.779519
\(896\) 8.87564 0.296514
\(897\) 6.43078 0.214718
\(898\) −23.5692 −0.786515
\(899\) 23.3205 0.777782
\(900\) −2.46410 −0.0821367
\(901\) −6.00000 −0.199889
\(902\) 7.60770 0.253309
\(903\) 4.00000 0.133112
\(904\) −30.0000 −0.997785
\(905\) 18.3923 0.611381
\(906\) −6.92820 −0.230174
\(907\) 27.2679 0.905417 0.452709 0.891658i \(-0.350458\pi\)
0.452709 + 0.891658i \(0.350458\pi\)
\(908\) 19.2679 0.639429
\(909\) 6.24871 0.207257
\(910\) −5.07180 −0.168128
\(911\) 53.6603 1.77784 0.888922 0.458059i \(-0.151455\pi\)
0.888922 + 0.458059i \(0.151455\pi\)
\(912\) 20.0000 0.662266
\(913\) 19.6077 0.648920
\(914\) 8.28719 0.274116
\(915\) −6.53590 −0.216070
\(916\) 12.3923 0.409453
\(917\) 6.00000 0.198137
\(918\) −6.92820 −0.228665
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) −3.80385 −0.125409
\(921\) 7.32051 0.241219
\(922\) −19.1769 −0.631558
\(923\) 22.6410 0.745238
\(924\) −0.679492 −0.0223536
\(925\) −7.46410 −0.245418
\(926\) 6.67949 0.219502
\(927\) 12.1436 0.398848
\(928\) −18.0000 −0.590879
\(929\) 3.46410 0.113653 0.0568267 0.998384i \(-0.481902\pi\)
0.0568267 + 0.998384i \(0.481902\pi\)
\(930\) −8.53590 −0.279903
\(931\) −35.3205 −1.15758
\(932\) 6.00000 0.196537
\(933\) −16.1436 −0.528518
\(934\) 38.7846 1.26907
\(935\) −1.26795 −0.0414664
\(936\) −17.0718 −0.558009
\(937\) 36.6410 1.19701 0.598505 0.801119i \(-0.295762\pi\)
0.598505 + 0.801119i \(0.295762\pi\)
\(938\) −12.6795 −0.414000
\(939\) 4.10512 0.133965
\(940\) −0.928203 −0.0302747
\(941\) −0.248711 −0.00810776 −0.00405388 0.999992i \(-0.501290\pi\)
−0.00405388 + 0.999992i \(0.501290\pi\)
\(942\) 6.24871 0.203594
\(943\) 7.60770 0.247741
\(944\) −47.3205 −1.54015
\(945\) 2.92820 0.0952545
\(946\) −16.3923 −0.532960
\(947\) −2.19615 −0.0713654 −0.0356827 0.999363i \(-0.511361\pi\)
−0.0356827 + 0.999363i \(0.511361\pi\)
\(948\) 12.1436 0.394406
\(949\) 57.5692 1.86878
\(950\) 9.46410 0.307056
\(951\) 8.10512 0.262826
\(952\) 1.26795 0.0410945
\(953\) 32.7846 1.06200 0.530999 0.847373i \(-0.321817\pi\)
0.530999 + 0.847373i \(0.321817\pi\)
\(954\) −25.6077 −0.829080
\(955\) −25.8564 −0.836694
\(956\) 20.7846 0.672222
\(957\) −3.21539 −0.103939
\(958\) 9.80385 0.316748
\(959\) 0 0
\(960\) −0.732051 −0.0236268
\(961\) 14.3205 0.461952
\(962\) 51.7128 1.66729
\(963\) −0.837169 −0.0269774
\(964\) −26.3923 −0.850039
\(965\) 23.4641 0.755336
\(966\) −2.03848 −0.0655869
\(967\) −23.1769 −0.745319 −0.372660 0.927968i \(-0.621554\pi\)
−0.372660 + 0.927968i \(0.621554\pi\)
\(968\) 16.2679 0.522872
\(969\) 4.00000 0.128499
\(970\) 15.4641 0.496522
\(971\) 5.75129 0.184568 0.0922838 0.995733i \(-0.470583\pi\)
0.0922838 + 0.995733i \(0.470583\pi\)
\(972\) −15.2679 −0.489720
\(973\) 10.0000 0.320585
\(974\) −46.7321 −1.49739
\(975\) 2.92820 0.0937776
\(976\) −44.6410 −1.42892
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) −12.9282 −0.413398
\(979\) −20.7846 −0.664279
\(980\) −6.46410 −0.206488
\(981\) 24.6410 0.786727
\(982\) −69.9615 −2.23256
\(983\) 55.2679 1.76277 0.881387 0.472395i \(-0.156610\pi\)
0.881387 + 0.472395i \(0.156610\pi\)
\(984\) 4.39230 0.140022
\(985\) −17.3205 −0.551877
\(986\) −6.00000 −0.191079
\(987\) 0.497423 0.0158331
\(988\) −21.8564 −0.695345
\(989\) −16.3923 −0.521245
\(990\) −5.41154 −0.171990
\(991\) 48.9808 1.55593 0.777963 0.628311i \(-0.216253\pi\)
0.777963 + 0.628311i \(0.216253\pi\)
\(992\) −34.9808 −1.11064
\(993\) 9.85641 0.312784
\(994\) −7.17691 −0.227638
\(995\) −0.196152 −0.00621845
\(996\) −11.3205 −0.358704
\(997\) 18.3923 0.582490 0.291245 0.956648i \(-0.405930\pi\)
0.291245 + 0.956648i \(0.405930\pi\)
\(998\) 2.87564 0.0910269
\(999\) −29.8564 −0.944615
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.a.c.1.2 2
3.2 odd 2 765.2.a.g.1.1 2
4.3 odd 2 1360.2.a.k.1.2 2
5.2 odd 4 425.2.b.d.324.3 4
5.3 odd 4 425.2.b.d.324.2 4
5.4 even 2 425.2.a.e.1.1 2
7.6 odd 2 4165.2.a.t.1.2 2
8.3 odd 2 5440.2.a.bl.1.1 2
8.5 even 2 5440.2.a.bb.1.2 2
15.14 odd 2 3825.2.a.v.1.2 2
17.4 even 4 1445.2.d.e.866.2 4
17.13 even 4 1445.2.d.e.866.1 4
17.16 even 2 1445.2.a.g.1.2 2
20.19 odd 2 6800.2.a.bg.1.1 2
85.84 even 2 7225.2.a.l.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.a.c.1.2 2 1.1 even 1 trivial
425.2.a.e.1.1 2 5.4 even 2
425.2.b.d.324.2 4 5.3 odd 4
425.2.b.d.324.3 4 5.2 odd 4
765.2.a.g.1.1 2 3.2 odd 2
1360.2.a.k.1.2 2 4.3 odd 2
1445.2.a.g.1.2 2 17.16 even 2
1445.2.d.e.866.1 4 17.13 even 4
1445.2.d.e.866.2 4 17.4 even 4
3825.2.a.v.1.2 2 15.14 odd 2
4165.2.a.t.1.2 2 7.6 odd 2
5440.2.a.bb.1.2 2 8.5 even 2
5440.2.a.bl.1.1 2 8.3 odd 2
6800.2.a.bg.1.1 2 20.19 odd 2
7225.2.a.l.1.1 2 85.84 even 2