Properties

Label 85.2.a.c.1.1
Level $85$
Weight $2$
Character 85.1
Self dual yes
Analytic conductor $0.679$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,2,Mod(1,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 85.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{2} +2.73205 q^{3} +1.00000 q^{4} +1.00000 q^{5} -4.73205 q^{6} -2.73205 q^{7} +1.73205 q^{8} +4.46410 q^{9} -1.73205 q^{10} +4.73205 q^{11} +2.73205 q^{12} -4.00000 q^{13} +4.73205 q^{14} +2.73205 q^{15} -5.00000 q^{16} -1.00000 q^{17} -7.73205 q^{18} -1.46410 q^{19} +1.00000 q^{20} -7.46410 q^{21} -8.19615 q^{22} -8.19615 q^{23} +4.73205 q^{24} +1.00000 q^{25} +6.92820 q^{26} +4.00000 q^{27} -2.73205 q^{28} -3.46410 q^{29} -4.73205 q^{30} +3.26795 q^{31} +5.19615 q^{32} +12.9282 q^{33} +1.73205 q^{34} -2.73205 q^{35} +4.46410 q^{36} -0.535898 q^{37} +2.53590 q^{38} -10.9282 q^{39} +1.73205 q^{40} -3.46410 q^{41} +12.9282 q^{42} -0.535898 q^{43} +4.73205 q^{44} +4.46410 q^{45} +14.1962 q^{46} +12.9282 q^{47} -13.6603 q^{48} +0.464102 q^{49} -1.73205 q^{50} -2.73205 q^{51} -4.00000 q^{52} +6.00000 q^{53} -6.92820 q^{54} +4.73205 q^{55} -4.73205 q^{56} -4.00000 q^{57} +6.00000 q^{58} +2.53590 q^{59} +2.73205 q^{60} -4.92820 q^{61} -5.66025 q^{62} -12.1962 q^{63} +1.00000 q^{64} -4.00000 q^{65} -22.3923 q^{66} -10.0000 q^{67} -1.00000 q^{68} -22.3923 q^{69} +4.73205 q^{70} +11.6603 q^{71} +7.73205 q^{72} +6.39230 q^{73} +0.928203 q^{74} +2.73205 q^{75} -1.46410 q^{76} -12.9282 q^{77} +18.9282 q^{78} +14.5885 q^{79} -5.00000 q^{80} -2.46410 q^{81} +6.00000 q^{82} +8.53590 q^{83} -7.46410 q^{84} -1.00000 q^{85} +0.928203 q^{86} -9.46410 q^{87} +8.19615 q^{88} +4.39230 q^{89} -7.73205 q^{90} +10.9282 q^{91} -8.19615 q^{92} +8.92820 q^{93} -22.3923 q^{94} -1.46410 q^{95} +14.1962 q^{96} -4.92820 q^{97} -0.803848 q^{98} +21.1244 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{4} + 2 q^{5} - 6 q^{6} - 2 q^{7} + 2 q^{9} + 6 q^{11} + 2 q^{12} - 8 q^{13} + 6 q^{14} + 2 q^{15} - 10 q^{16} - 2 q^{17} - 12 q^{18} + 4 q^{19} + 2 q^{20} - 8 q^{21} - 6 q^{22} - 6 q^{23}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73205 −1.22474 −0.612372 0.790569i \(-0.709785\pi\)
−0.612372 + 0.790569i \(0.709785\pi\)
\(3\) 2.73205 1.57735 0.788675 0.614810i \(-0.210767\pi\)
0.788675 + 0.614810i \(0.210767\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) −4.73205 −1.93185
\(7\) −2.73205 −1.03262 −0.516309 0.856402i \(-0.672694\pi\)
−0.516309 + 0.856402i \(0.672694\pi\)
\(8\) 1.73205 0.612372
\(9\) 4.46410 1.48803
\(10\) −1.73205 −0.547723
\(11\) 4.73205 1.42677 0.713384 0.700774i \(-0.247162\pi\)
0.713384 + 0.700774i \(0.247162\pi\)
\(12\) 2.73205 0.788675
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 4.73205 1.26469
\(15\) 2.73205 0.705412
\(16\) −5.00000 −1.25000
\(17\) −1.00000 −0.242536
\(18\) −7.73205 −1.82246
\(19\) −1.46410 −0.335888 −0.167944 0.985797i \(-0.553713\pi\)
−0.167944 + 0.985797i \(0.553713\pi\)
\(20\) 1.00000 0.223607
\(21\) −7.46410 −1.62880
\(22\) −8.19615 −1.74743
\(23\) −8.19615 −1.70902 −0.854508 0.519438i \(-0.826141\pi\)
−0.854508 + 0.519438i \(0.826141\pi\)
\(24\) 4.73205 0.965926
\(25\) 1.00000 0.200000
\(26\) 6.92820 1.35873
\(27\) 4.00000 0.769800
\(28\) −2.73205 −0.516309
\(29\) −3.46410 −0.643268 −0.321634 0.946864i \(-0.604232\pi\)
−0.321634 + 0.946864i \(0.604232\pi\)
\(30\) −4.73205 −0.863950
\(31\) 3.26795 0.586941 0.293471 0.955968i \(-0.405190\pi\)
0.293471 + 0.955968i \(0.405190\pi\)
\(32\) 5.19615 0.918559
\(33\) 12.9282 2.25051
\(34\) 1.73205 0.297044
\(35\) −2.73205 −0.461801
\(36\) 4.46410 0.744017
\(37\) −0.535898 −0.0881012 −0.0440506 0.999029i \(-0.514026\pi\)
−0.0440506 + 0.999029i \(0.514026\pi\)
\(38\) 2.53590 0.411377
\(39\) −10.9282 −1.74991
\(40\) 1.73205 0.273861
\(41\) −3.46410 −0.541002 −0.270501 0.962720i \(-0.587189\pi\)
−0.270501 + 0.962720i \(0.587189\pi\)
\(42\) 12.9282 1.99487
\(43\) −0.535898 −0.0817237 −0.0408619 0.999165i \(-0.513010\pi\)
−0.0408619 + 0.999165i \(0.513010\pi\)
\(44\) 4.73205 0.713384
\(45\) 4.46410 0.665469
\(46\) 14.1962 2.09311
\(47\) 12.9282 1.88577 0.942886 0.333115i \(-0.108100\pi\)
0.942886 + 0.333115i \(0.108100\pi\)
\(48\) −13.6603 −1.97169
\(49\) 0.464102 0.0663002
\(50\) −1.73205 −0.244949
\(51\) −2.73205 −0.382564
\(52\) −4.00000 −0.554700
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) −6.92820 −0.942809
\(55\) 4.73205 0.638070
\(56\) −4.73205 −0.632347
\(57\) −4.00000 −0.529813
\(58\) 6.00000 0.787839
\(59\) 2.53590 0.330146 0.165073 0.986281i \(-0.447214\pi\)
0.165073 + 0.986281i \(0.447214\pi\)
\(60\) 2.73205 0.352706
\(61\) −4.92820 −0.630992 −0.315496 0.948927i \(-0.602171\pi\)
−0.315496 + 0.948927i \(0.602171\pi\)
\(62\) −5.66025 −0.718853
\(63\) −12.1962 −1.53657
\(64\) 1.00000 0.125000
\(65\) −4.00000 −0.496139
\(66\) −22.3923 −2.75630
\(67\) −10.0000 −1.22169 −0.610847 0.791748i \(-0.709171\pi\)
−0.610847 + 0.791748i \(0.709171\pi\)
\(68\) −1.00000 −0.121268
\(69\) −22.3923 −2.69572
\(70\) 4.73205 0.565588
\(71\) 11.6603 1.38382 0.691909 0.721985i \(-0.256770\pi\)
0.691909 + 0.721985i \(0.256770\pi\)
\(72\) 7.73205 0.911231
\(73\) 6.39230 0.748163 0.374081 0.927396i \(-0.377958\pi\)
0.374081 + 0.927396i \(0.377958\pi\)
\(74\) 0.928203 0.107901
\(75\) 2.73205 0.315470
\(76\) −1.46410 −0.167944
\(77\) −12.9282 −1.47331
\(78\) 18.9282 2.14320
\(79\) 14.5885 1.64133 0.820665 0.571410i \(-0.193603\pi\)
0.820665 + 0.571410i \(0.193603\pi\)
\(80\) −5.00000 −0.559017
\(81\) −2.46410 −0.273789
\(82\) 6.00000 0.662589
\(83\) 8.53590 0.936937 0.468468 0.883480i \(-0.344806\pi\)
0.468468 + 0.883480i \(0.344806\pi\)
\(84\) −7.46410 −0.814400
\(85\) −1.00000 −0.108465
\(86\) 0.928203 0.100091
\(87\) −9.46410 −1.01466
\(88\) 8.19615 0.873713
\(89\) 4.39230 0.465583 0.232792 0.972527i \(-0.425214\pi\)
0.232792 + 0.972527i \(0.425214\pi\)
\(90\) −7.73205 −0.815030
\(91\) 10.9282 1.14559
\(92\) −8.19615 −0.854508
\(93\) 8.92820 0.925812
\(94\) −22.3923 −2.30959
\(95\) −1.46410 −0.150214
\(96\) 14.1962 1.44889
\(97\) −4.92820 −0.500383 −0.250192 0.968196i \(-0.580494\pi\)
−0.250192 + 0.968196i \(0.580494\pi\)
\(98\) −0.803848 −0.0812009
\(99\) 21.1244 2.12308
\(100\) 1.00000 0.100000
\(101\) −9.46410 −0.941713 −0.470857 0.882210i \(-0.656055\pi\)
−0.470857 + 0.882210i \(0.656055\pi\)
\(102\) 4.73205 0.468543
\(103\) 8.92820 0.879722 0.439861 0.898066i \(-0.355028\pi\)
0.439861 + 0.898066i \(0.355028\pi\)
\(104\) −6.92820 −0.679366
\(105\) −7.46410 −0.728422
\(106\) −10.3923 −1.00939
\(107\) 17.6603 1.70728 0.853641 0.520862i \(-0.174390\pi\)
0.853641 + 0.520862i \(0.174390\pi\)
\(108\) 4.00000 0.384900
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) −8.19615 −0.781472
\(111\) −1.46410 −0.138966
\(112\) 13.6603 1.29077
\(113\) −17.3205 −1.62938 −0.814688 0.579899i \(-0.803092\pi\)
−0.814688 + 0.579899i \(0.803092\pi\)
\(114\) 6.92820 0.648886
\(115\) −8.19615 −0.764295
\(116\) −3.46410 −0.321634
\(117\) −17.8564 −1.65083
\(118\) −4.39230 −0.404344
\(119\) 2.73205 0.250447
\(120\) 4.73205 0.431975
\(121\) 11.3923 1.03566
\(122\) 8.53590 0.772804
\(123\) −9.46410 −0.853349
\(124\) 3.26795 0.293471
\(125\) 1.00000 0.0894427
\(126\) 21.1244 1.88191
\(127\) −14.3923 −1.27711 −0.638555 0.769576i \(-0.720468\pi\)
−0.638555 + 0.769576i \(0.720468\pi\)
\(128\) −12.1244 −1.07165
\(129\) −1.46410 −0.128907
\(130\) 6.92820 0.607644
\(131\) −2.19615 −0.191879 −0.0959394 0.995387i \(-0.530585\pi\)
−0.0959394 + 0.995387i \(0.530585\pi\)
\(132\) 12.9282 1.12526
\(133\) 4.00000 0.346844
\(134\) 17.3205 1.49626
\(135\) 4.00000 0.344265
\(136\) −1.73205 −0.148522
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 38.7846 3.30157
\(139\) −3.66025 −0.310459 −0.155229 0.987878i \(-0.549612\pi\)
−0.155229 + 0.987878i \(0.549612\pi\)
\(140\) −2.73205 −0.230900
\(141\) 35.3205 2.97452
\(142\) −20.1962 −1.69482
\(143\) −18.9282 −1.58286
\(144\) −22.3205 −1.86004
\(145\) −3.46410 −0.287678
\(146\) −11.0718 −0.916308
\(147\) 1.26795 0.104579
\(148\) −0.535898 −0.0440506
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) −4.73205 −0.386370
\(151\) −1.46410 −0.119147 −0.0595734 0.998224i \(-0.518974\pi\)
−0.0595734 + 0.998224i \(0.518974\pi\)
\(152\) −2.53590 −0.205689
\(153\) −4.46410 −0.360901
\(154\) 22.3923 1.80442
\(155\) 3.26795 0.262488
\(156\) −10.9282 −0.874957
\(157\) 8.92820 0.712548 0.356274 0.934381i \(-0.384047\pi\)
0.356274 + 0.934381i \(0.384047\pi\)
\(158\) −25.2679 −2.01021
\(159\) 16.3923 1.29999
\(160\) 5.19615 0.410792
\(161\) 22.3923 1.76476
\(162\) 4.26795 0.335322
\(163\) −0.196152 −0.0153638 −0.00768192 0.999970i \(-0.502445\pi\)
−0.00768192 + 0.999970i \(0.502445\pi\)
\(164\) −3.46410 −0.270501
\(165\) 12.9282 1.00646
\(166\) −14.7846 −1.14751
\(167\) 12.5885 0.974124 0.487062 0.873367i \(-0.338069\pi\)
0.487062 + 0.873367i \(0.338069\pi\)
\(168\) −12.9282 −0.997433
\(169\) 3.00000 0.230769
\(170\) 1.73205 0.132842
\(171\) −6.53590 −0.499813
\(172\) −0.535898 −0.0408619
\(173\) 3.46410 0.263371 0.131685 0.991292i \(-0.457961\pi\)
0.131685 + 0.991292i \(0.457961\pi\)
\(174\) 16.3923 1.24270
\(175\) −2.73205 −0.206524
\(176\) −23.6603 −1.78346
\(177\) 6.92820 0.520756
\(178\) −7.60770 −0.570221
\(179\) −11.3205 −0.846135 −0.423067 0.906098i \(-0.639047\pi\)
−0.423067 + 0.906098i \(0.639047\pi\)
\(180\) 4.46410 0.332734
\(181\) −2.39230 −0.177819 −0.0889093 0.996040i \(-0.528338\pi\)
−0.0889093 + 0.996040i \(0.528338\pi\)
\(182\) −18.9282 −1.40305
\(183\) −13.4641 −0.995295
\(184\) −14.1962 −1.04655
\(185\) −0.535898 −0.0394000
\(186\) −15.4641 −1.13388
\(187\) −4.73205 −0.346042
\(188\) 12.9282 0.942886
\(189\) −10.9282 −0.794910
\(190\) 2.53590 0.183973
\(191\) 1.85641 0.134325 0.0671624 0.997742i \(-0.478605\pi\)
0.0671624 + 0.997742i \(0.478605\pi\)
\(192\) 2.73205 0.197169
\(193\) 16.5359 1.19028 0.595140 0.803622i \(-0.297097\pi\)
0.595140 + 0.803622i \(0.297097\pi\)
\(194\) 8.53590 0.612842
\(195\) −10.9282 −0.782585
\(196\) 0.464102 0.0331501
\(197\) 17.3205 1.23404 0.617018 0.786949i \(-0.288341\pi\)
0.617018 + 0.786949i \(0.288341\pi\)
\(198\) −36.5885 −2.60023
\(199\) 10.1962 0.722786 0.361393 0.932414i \(-0.382301\pi\)
0.361393 + 0.932414i \(0.382301\pi\)
\(200\) 1.73205 0.122474
\(201\) −27.3205 −1.92704
\(202\) 16.3923 1.15336
\(203\) 9.46410 0.664250
\(204\) −2.73205 −0.191282
\(205\) −3.46410 −0.241943
\(206\) −15.4641 −1.07744
\(207\) −36.5885 −2.54307
\(208\) 20.0000 1.38675
\(209\) −6.92820 −0.479234
\(210\) 12.9282 0.892131
\(211\) 10.1962 0.701932 0.350966 0.936388i \(-0.385853\pi\)
0.350966 + 0.936388i \(0.385853\pi\)
\(212\) 6.00000 0.412082
\(213\) 31.8564 2.18277
\(214\) −30.5885 −2.09098
\(215\) −0.535898 −0.0365480
\(216\) 6.92820 0.471405
\(217\) −8.92820 −0.606086
\(218\) 17.3205 1.17309
\(219\) 17.4641 1.18011
\(220\) 4.73205 0.319035
\(221\) 4.00000 0.269069
\(222\) 2.53590 0.170198
\(223\) −26.3923 −1.76736 −0.883680 0.468092i \(-0.844942\pi\)
−0.883680 + 0.468092i \(0.844942\pi\)
\(224\) −14.1962 −0.948520
\(225\) 4.46410 0.297607
\(226\) 30.0000 1.99557
\(227\) 22.7321 1.50878 0.754390 0.656427i \(-0.227933\pi\)
0.754390 + 0.656427i \(0.227933\pi\)
\(228\) −4.00000 −0.264906
\(229\) −8.39230 −0.554579 −0.277290 0.960786i \(-0.589436\pi\)
−0.277290 + 0.960786i \(0.589436\pi\)
\(230\) 14.1962 0.936067
\(231\) −35.3205 −2.32392
\(232\) −6.00000 −0.393919
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 30.9282 2.02184
\(235\) 12.9282 0.843343
\(236\) 2.53590 0.165073
\(237\) 39.8564 2.58895
\(238\) −4.73205 −0.306733
\(239\) −20.7846 −1.34444 −0.672222 0.740349i \(-0.734660\pi\)
−0.672222 + 0.740349i \(0.734660\pi\)
\(240\) −13.6603 −0.881766
\(241\) −5.60770 −0.361223 −0.180612 0.983554i \(-0.557808\pi\)
−0.180612 + 0.983554i \(0.557808\pi\)
\(242\) −19.7321 −1.26842
\(243\) −18.7321 −1.20166
\(244\) −4.92820 −0.315496
\(245\) 0.464102 0.0296504
\(246\) 16.3923 1.04514
\(247\) 5.85641 0.372634
\(248\) 5.66025 0.359426
\(249\) 23.3205 1.47788
\(250\) −1.73205 −0.109545
\(251\) 6.92820 0.437304 0.218652 0.975803i \(-0.429834\pi\)
0.218652 + 0.975803i \(0.429834\pi\)
\(252\) −12.1962 −0.768285
\(253\) −38.7846 −2.43837
\(254\) 24.9282 1.56413
\(255\) −2.73205 −0.171088
\(256\) 19.0000 1.18750
\(257\) −6.92820 −0.432169 −0.216085 0.976375i \(-0.569329\pi\)
−0.216085 + 0.976375i \(0.569329\pi\)
\(258\) 2.53590 0.157878
\(259\) 1.46410 0.0909748
\(260\) −4.00000 −0.248069
\(261\) −15.4641 −0.957204
\(262\) 3.80385 0.235002
\(263\) −1.60770 −0.0991347 −0.0495674 0.998771i \(-0.515784\pi\)
−0.0495674 + 0.998771i \(0.515784\pi\)
\(264\) 22.3923 1.37815
\(265\) 6.00000 0.368577
\(266\) −6.92820 −0.424795
\(267\) 12.0000 0.734388
\(268\) −10.0000 −0.610847
\(269\) 0.928203 0.0565935 0.0282968 0.999600i \(-0.490992\pi\)
0.0282968 + 0.999600i \(0.490992\pi\)
\(270\) −6.92820 −0.421637
\(271\) 2.92820 0.177876 0.0889378 0.996037i \(-0.471653\pi\)
0.0889378 + 0.996037i \(0.471653\pi\)
\(272\) 5.00000 0.303170
\(273\) 29.8564 1.80699
\(274\) 0 0
\(275\) 4.73205 0.285353
\(276\) −22.3923 −1.34786
\(277\) 20.9282 1.25745 0.628727 0.777626i \(-0.283576\pi\)
0.628727 + 0.777626i \(0.283576\pi\)
\(278\) 6.33975 0.380233
\(279\) 14.5885 0.873388
\(280\) −4.73205 −0.282794
\(281\) −12.9282 −0.771232 −0.385616 0.922659i \(-0.626011\pi\)
−0.385616 + 0.922659i \(0.626011\pi\)
\(282\) −61.1769 −3.64303
\(283\) −5.26795 −0.313147 −0.156574 0.987666i \(-0.550045\pi\)
−0.156574 + 0.987666i \(0.550045\pi\)
\(284\) 11.6603 0.691909
\(285\) −4.00000 −0.236940
\(286\) 32.7846 1.93859
\(287\) 9.46410 0.558648
\(288\) 23.1962 1.36685
\(289\) 1.00000 0.0588235
\(290\) 6.00000 0.352332
\(291\) −13.4641 −0.789280
\(292\) 6.39230 0.374081
\(293\) −0.928203 −0.0542262 −0.0271131 0.999632i \(-0.508631\pi\)
−0.0271131 + 0.999632i \(0.508631\pi\)
\(294\) −2.19615 −0.128082
\(295\) 2.53590 0.147646
\(296\) −0.928203 −0.0539507
\(297\) 18.9282 1.09833
\(298\) 10.3923 0.602010
\(299\) 32.7846 1.89598
\(300\) 2.73205 0.157735
\(301\) 1.46410 0.0843894
\(302\) 2.53590 0.145925
\(303\) −25.8564 −1.48541
\(304\) 7.32051 0.419860
\(305\) −4.92820 −0.282188
\(306\) 7.73205 0.442012
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) −12.9282 −0.736653
\(309\) 24.3923 1.38763
\(310\) −5.66025 −0.321481
\(311\) −16.0526 −0.910257 −0.455129 0.890426i \(-0.650407\pi\)
−0.455129 + 0.890426i \(0.650407\pi\)
\(312\) −18.9282 −1.07160
\(313\) −26.3923 −1.49178 −0.745891 0.666068i \(-0.767976\pi\)
−0.745891 + 0.666068i \(0.767976\pi\)
\(314\) −15.4641 −0.872690
\(315\) −12.1962 −0.687175
\(316\) 14.5885 0.820665
\(317\) −24.9282 −1.40011 −0.700054 0.714090i \(-0.746841\pi\)
−0.700054 + 0.714090i \(0.746841\pi\)
\(318\) −28.3923 −1.59216
\(319\) −16.3923 −0.917793
\(320\) 1.00000 0.0559017
\(321\) 48.2487 2.69298
\(322\) −38.7846 −2.16138
\(323\) 1.46410 0.0814648
\(324\) −2.46410 −0.136895
\(325\) −4.00000 −0.221880
\(326\) 0.339746 0.0188168
\(327\) −27.3205 −1.51083
\(328\) −6.00000 −0.331295
\(329\) −35.3205 −1.94728
\(330\) −22.3923 −1.23266
\(331\) −6.53590 −0.359245 −0.179623 0.983736i \(-0.557488\pi\)
−0.179623 + 0.983736i \(0.557488\pi\)
\(332\) 8.53590 0.468468
\(333\) −2.39230 −0.131097
\(334\) −21.8038 −1.19305
\(335\) −10.0000 −0.546358
\(336\) 37.3205 2.03600
\(337\) −6.78461 −0.369581 −0.184791 0.982778i \(-0.559161\pi\)
−0.184791 + 0.982778i \(0.559161\pi\)
\(338\) −5.19615 −0.282633
\(339\) −47.3205 −2.57010
\(340\) −1.00000 −0.0542326
\(341\) 15.4641 0.837428
\(342\) 11.3205 0.612143
\(343\) 17.8564 0.964155
\(344\) −0.928203 −0.0500454
\(345\) −22.3923 −1.20556
\(346\) −6.00000 −0.322562
\(347\) 3.80385 0.204201 0.102101 0.994774i \(-0.467444\pi\)
0.102101 + 0.994774i \(0.467444\pi\)
\(348\) −9.46410 −0.507329
\(349\) 10.7846 0.577287 0.288643 0.957437i \(-0.406796\pi\)
0.288643 + 0.957437i \(0.406796\pi\)
\(350\) 4.73205 0.252939
\(351\) −16.0000 −0.854017
\(352\) 24.5885 1.31057
\(353\) 26.7846 1.42560 0.712800 0.701367i \(-0.247427\pi\)
0.712800 + 0.701367i \(0.247427\pi\)
\(354\) −12.0000 −0.637793
\(355\) 11.6603 0.618862
\(356\) 4.39230 0.232792
\(357\) 7.46410 0.395042
\(358\) 19.6077 1.03630
\(359\) −21.4641 −1.13283 −0.566416 0.824119i \(-0.691670\pi\)
−0.566416 + 0.824119i \(0.691670\pi\)
\(360\) 7.73205 0.407515
\(361\) −16.8564 −0.887179
\(362\) 4.14359 0.217782
\(363\) 31.1244 1.63361
\(364\) 10.9282 0.572793
\(365\) 6.39230 0.334589
\(366\) 23.3205 1.21898
\(367\) −7.80385 −0.407358 −0.203679 0.979038i \(-0.565290\pi\)
−0.203679 + 0.979038i \(0.565290\pi\)
\(368\) 40.9808 2.13627
\(369\) −15.4641 −0.805029
\(370\) 0.928203 0.0482550
\(371\) −16.3923 −0.851046
\(372\) 8.92820 0.462906
\(373\) 20.0000 1.03556 0.517780 0.855514i \(-0.326758\pi\)
0.517780 + 0.855514i \(0.326758\pi\)
\(374\) 8.19615 0.423813
\(375\) 2.73205 0.141082
\(376\) 22.3923 1.15479
\(377\) 13.8564 0.713641
\(378\) 18.9282 0.973562
\(379\) 17.8038 0.914522 0.457261 0.889332i \(-0.348830\pi\)
0.457261 + 0.889332i \(0.348830\pi\)
\(380\) −1.46410 −0.0751068
\(381\) −39.3205 −2.01445
\(382\) −3.21539 −0.164514
\(383\) 15.4641 0.790179 0.395089 0.918643i \(-0.370714\pi\)
0.395089 + 0.918643i \(0.370714\pi\)
\(384\) −33.1244 −1.69037
\(385\) −12.9282 −0.658882
\(386\) −28.6410 −1.45779
\(387\) −2.39230 −0.121608
\(388\) −4.92820 −0.250192
\(389\) −4.39230 −0.222699 −0.111349 0.993781i \(-0.535517\pi\)
−0.111349 + 0.993781i \(0.535517\pi\)
\(390\) 18.9282 0.958467
\(391\) 8.19615 0.414497
\(392\) 0.803848 0.0406004
\(393\) −6.00000 −0.302660
\(394\) −30.0000 −1.51138
\(395\) 14.5885 0.734025
\(396\) 21.1244 1.06154
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) −17.6603 −0.885229
\(399\) 10.9282 0.547094
\(400\) −5.00000 −0.250000
\(401\) 12.9282 0.645604 0.322802 0.946467i \(-0.395375\pi\)
0.322802 + 0.946467i \(0.395375\pi\)
\(402\) 47.3205 2.36013
\(403\) −13.0718 −0.651153
\(404\) −9.46410 −0.470857
\(405\) −2.46410 −0.122442
\(406\) −16.3923 −0.813536
\(407\) −2.53590 −0.125700
\(408\) −4.73205 −0.234271
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 6.00000 0.296319
\(411\) 0 0
\(412\) 8.92820 0.439861
\(413\) −6.92820 −0.340915
\(414\) 63.3731 3.11462
\(415\) 8.53590 0.419011
\(416\) −20.7846 −1.01905
\(417\) −10.0000 −0.489702
\(418\) 12.0000 0.586939
\(419\) 38.1962 1.86600 0.933002 0.359871i \(-0.117179\pi\)
0.933002 + 0.359871i \(0.117179\pi\)
\(420\) −7.46410 −0.364211
\(421\) 5.46410 0.266304 0.133152 0.991096i \(-0.457490\pi\)
0.133152 + 0.991096i \(0.457490\pi\)
\(422\) −17.6603 −0.859688
\(423\) 57.7128 2.80609
\(424\) 10.3923 0.504695
\(425\) −1.00000 −0.0485071
\(426\) −55.1769 −2.67333
\(427\) 13.4641 0.651574
\(428\) 17.6603 0.853641
\(429\) −51.7128 −2.49672
\(430\) 0.928203 0.0447619
\(431\) 9.80385 0.472235 0.236117 0.971725i \(-0.424125\pi\)
0.236117 + 0.971725i \(0.424125\pi\)
\(432\) −20.0000 −0.962250
\(433\) −17.8564 −0.858124 −0.429062 0.903275i \(-0.641156\pi\)
−0.429062 + 0.903275i \(0.641156\pi\)
\(434\) 15.4641 0.742301
\(435\) −9.46410 −0.453769
\(436\) −10.0000 −0.478913
\(437\) 12.0000 0.574038
\(438\) −30.2487 −1.44534
\(439\) −20.0526 −0.957056 −0.478528 0.878072i \(-0.658830\pi\)
−0.478528 + 0.878072i \(0.658830\pi\)
\(440\) 8.19615 0.390736
\(441\) 2.07180 0.0986570
\(442\) −6.92820 −0.329541
\(443\) −12.9282 −0.614237 −0.307119 0.951671i \(-0.599365\pi\)
−0.307119 + 0.951671i \(0.599365\pi\)
\(444\) −1.46410 −0.0694832
\(445\) 4.39230 0.208215
\(446\) 45.7128 2.16456
\(447\) −16.3923 −0.775329
\(448\) −2.73205 −0.129077
\(449\) −34.3923 −1.62307 −0.811537 0.584302i \(-0.801369\pi\)
−0.811537 + 0.584302i \(0.801369\pi\)
\(450\) −7.73205 −0.364492
\(451\) −16.3923 −0.771883
\(452\) −17.3205 −0.814688
\(453\) −4.00000 −0.187936
\(454\) −39.3731 −1.84787
\(455\) 10.9282 0.512322
\(456\) −6.92820 −0.324443
\(457\) −36.7846 −1.72071 −0.860356 0.509694i \(-0.829759\pi\)
−0.860356 + 0.509694i \(0.829759\pi\)
\(458\) 14.5359 0.679218
\(459\) −4.00000 −0.186704
\(460\) −8.19615 −0.382148
\(461\) −24.9282 −1.16102 −0.580511 0.814252i \(-0.697147\pi\)
−0.580511 + 0.814252i \(0.697147\pi\)
\(462\) 61.1769 2.84621
\(463\) −23.8564 −1.10870 −0.554351 0.832283i \(-0.687033\pi\)
−0.554351 + 0.832283i \(0.687033\pi\)
\(464\) 17.3205 0.804084
\(465\) 8.92820 0.414036
\(466\) −10.3923 −0.481414
\(467\) 1.60770 0.0743953 0.0371976 0.999308i \(-0.488157\pi\)
0.0371976 + 0.999308i \(0.488157\pi\)
\(468\) −17.8564 −0.825413
\(469\) 27.3205 1.26154
\(470\) −22.3923 −1.03288
\(471\) 24.3923 1.12394
\(472\) 4.39230 0.202172
\(473\) −2.53590 −0.116601
\(474\) −69.0333 −3.17081
\(475\) −1.46410 −0.0671776
\(476\) 2.73205 0.125223
\(477\) 26.7846 1.22638
\(478\) 36.0000 1.64660
\(479\) −11.6603 −0.532771 −0.266385 0.963867i \(-0.585829\pi\)
−0.266385 + 0.963867i \(0.585829\pi\)
\(480\) 14.1962 0.647963
\(481\) 2.14359 0.0977395
\(482\) 9.71281 0.442407
\(483\) 61.1769 2.78365
\(484\) 11.3923 0.517832
\(485\) −4.92820 −0.223778
\(486\) 32.4449 1.47173
\(487\) 24.9808 1.13199 0.565993 0.824410i \(-0.308493\pi\)
0.565993 + 0.824410i \(0.308493\pi\)
\(488\) −8.53590 −0.386402
\(489\) −0.535898 −0.0242342
\(490\) −0.803848 −0.0363141
\(491\) −19.6077 −0.884883 −0.442441 0.896797i \(-0.645888\pi\)
−0.442441 + 0.896797i \(0.645888\pi\)
\(492\) −9.46410 −0.426675
\(493\) 3.46410 0.156015
\(494\) −10.1436 −0.456382
\(495\) 21.1244 0.949469
\(496\) −16.3397 −0.733676
\(497\) −31.8564 −1.42896
\(498\) −40.3923 −1.81002
\(499\) −15.6603 −0.701049 −0.350525 0.936554i \(-0.613997\pi\)
−0.350525 + 0.936554i \(0.613997\pi\)
\(500\) 1.00000 0.0447214
\(501\) 34.3923 1.53653
\(502\) −12.0000 −0.535586
\(503\) 15.1244 0.674362 0.337181 0.941440i \(-0.390527\pi\)
0.337181 + 0.941440i \(0.390527\pi\)
\(504\) −21.1244 −0.940954
\(505\) −9.46410 −0.421147
\(506\) 67.1769 2.98638
\(507\) 8.19615 0.364004
\(508\) −14.3923 −0.638555
\(509\) 19.8564 0.880120 0.440060 0.897968i \(-0.354957\pi\)
0.440060 + 0.897968i \(0.354957\pi\)
\(510\) 4.73205 0.209539
\(511\) −17.4641 −0.772566
\(512\) −8.66025 −0.382733
\(513\) −5.85641 −0.258567
\(514\) 12.0000 0.529297
\(515\) 8.92820 0.393424
\(516\) −1.46410 −0.0644535
\(517\) 61.1769 2.69056
\(518\) −2.53590 −0.111421
\(519\) 9.46410 0.415428
\(520\) −6.92820 −0.303822
\(521\) 4.14359 0.181534 0.0907671 0.995872i \(-0.471068\pi\)
0.0907671 + 0.995872i \(0.471068\pi\)
\(522\) 26.7846 1.17233
\(523\) −22.0000 −0.961993 −0.480996 0.876723i \(-0.659725\pi\)
−0.480996 + 0.876723i \(0.659725\pi\)
\(524\) −2.19615 −0.0959394
\(525\) −7.46410 −0.325760
\(526\) 2.78461 0.121415
\(527\) −3.26795 −0.142354
\(528\) −64.6410 −2.81314
\(529\) 44.1769 1.92074
\(530\) −10.3923 −0.451413
\(531\) 11.3205 0.491268
\(532\) 4.00000 0.173422
\(533\) 13.8564 0.600188
\(534\) −20.7846 −0.899438
\(535\) 17.6603 0.763519
\(536\) −17.3205 −0.748132
\(537\) −30.9282 −1.33465
\(538\) −1.60770 −0.0693127
\(539\) 2.19615 0.0945950
\(540\) 4.00000 0.172133
\(541\) 39.1769 1.68435 0.842174 0.539207i \(-0.181276\pi\)
0.842174 + 0.539207i \(0.181276\pi\)
\(542\) −5.07180 −0.217852
\(543\) −6.53590 −0.280482
\(544\) −5.19615 −0.222783
\(545\) −10.0000 −0.428353
\(546\) −51.7128 −2.21310
\(547\) −39.9090 −1.70638 −0.853192 0.521597i \(-0.825337\pi\)
−0.853192 + 0.521597i \(0.825337\pi\)
\(548\) 0 0
\(549\) −22.0000 −0.938937
\(550\) −8.19615 −0.349485
\(551\) 5.07180 0.216066
\(552\) −38.7846 −1.65078
\(553\) −39.8564 −1.69487
\(554\) −36.2487 −1.54006
\(555\) −1.46410 −0.0621477
\(556\) −3.66025 −0.155229
\(557\) −6.92820 −0.293557 −0.146779 0.989169i \(-0.546891\pi\)
−0.146779 + 0.989169i \(0.546891\pi\)
\(558\) −25.2679 −1.06968
\(559\) 2.14359 0.0906643
\(560\) 13.6603 0.577251
\(561\) −12.9282 −0.545829
\(562\) 22.3923 0.944562
\(563\) 27.4641 1.15747 0.578737 0.815514i \(-0.303546\pi\)
0.578737 + 0.815514i \(0.303546\pi\)
\(564\) 35.3205 1.48726
\(565\) −17.3205 −0.728679
\(566\) 9.12436 0.383525
\(567\) 6.73205 0.282720
\(568\) 20.1962 0.847412
\(569\) 40.6410 1.70376 0.851880 0.523737i \(-0.175463\pi\)
0.851880 + 0.523737i \(0.175463\pi\)
\(570\) 6.92820 0.290191
\(571\) −36.4449 −1.52517 −0.762585 0.646888i \(-0.776070\pi\)
−0.762585 + 0.646888i \(0.776070\pi\)
\(572\) −18.9282 −0.791428
\(573\) 5.07180 0.211877
\(574\) −16.3923 −0.684202
\(575\) −8.19615 −0.341803
\(576\) 4.46410 0.186004
\(577\) −38.6410 −1.60865 −0.804323 0.594192i \(-0.797472\pi\)
−0.804323 + 0.594192i \(0.797472\pi\)
\(578\) −1.73205 −0.0720438
\(579\) 45.1769 1.87749
\(580\) −3.46410 −0.143839
\(581\) −23.3205 −0.967498
\(582\) 23.3205 0.966666
\(583\) 28.3923 1.17589
\(584\) 11.0718 0.458154
\(585\) −17.8564 −0.738272
\(586\) 1.60770 0.0664133
\(587\) 46.3923 1.91482 0.957408 0.288740i \(-0.0932362\pi\)
0.957408 + 0.288740i \(0.0932362\pi\)
\(588\) 1.26795 0.0522893
\(589\) −4.78461 −0.197146
\(590\) −4.39230 −0.180828
\(591\) 47.3205 1.94651
\(592\) 2.67949 0.110126
\(593\) 19.8564 0.815405 0.407702 0.913115i \(-0.366330\pi\)
0.407702 + 0.913115i \(0.366330\pi\)
\(594\) −32.7846 −1.34517
\(595\) 2.73205 0.112003
\(596\) −6.00000 −0.245770
\(597\) 27.8564 1.14009
\(598\) −56.7846 −2.32210
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 4.73205 0.193185
\(601\) 8.24871 0.336472 0.168236 0.985747i \(-0.446193\pi\)
0.168236 + 0.985747i \(0.446193\pi\)
\(602\) −2.53590 −0.103356
\(603\) −44.6410 −1.81792
\(604\) −1.46410 −0.0595734
\(605\) 11.3923 0.463163
\(606\) 44.7846 1.81925
\(607\) −21.6603 −0.879163 −0.439581 0.898203i \(-0.644873\pi\)
−0.439581 + 0.898203i \(0.644873\pi\)
\(608\) −7.60770 −0.308533
\(609\) 25.8564 1.04775
\(610\) 8.53590 0.345608
\(611\) −51.7128 −2.09208
\(612\) −4.46410 −0.180451
\(613\) 15.8564 0.640434 0.320217 0.947344i \(-0.396244\pi\)
0.320217 + 0.947344i \(0.396244\pi\)
\(614\) 17.3205 0.698999
\(615\) −9.46410 −0.381629
\(616\) −22.3923 −0.902212
\(617\) −27.4641 −1.10566 −0.552832 0.833293i \(-0.686453\pi\)
−0.552832 + 0.833293i \(0.686453\pi\)
\(618\) −42.2487 −1.69949
\(619\) 38.5885 1.55100 0.775501 0.631347i \(-0.217498\pi\)
0.775501 + 0.631347i \(0.217498\pi\)
\(620\) 3.26795 0.131244
\(621\) −32.7846 −1.31560
\(622\) 27.8038 1.11483
\(623\) −12.0000 −0.480770
\(624\) 54.6410 2.18739
\(625\) 1.00000 0.0400000
\(626\) 45.7128 1.82705
\(627\) −18.9282 −0.755920
\(628\) 8.92820 0.356274
\(629\) 0.535898 0.0213677
\(630\) 21.1244 0.841614
\(631\) −32.3923 −1.28952 −0.644759 0.764386i \(-0.723042\pi\)
−0.644759 + 0.764386i \(0.723042\pi\)
\(632\) 25.2679 1.00511
\(633\) 27.8564 1.10719
\(634\) 43.1769 1.71477
\(635\) −14.3923 −0.571141
\(636\) 16.3923 0.649997
\(637\) −1.85641 −0.0735535
\(638\) 28.3923 1.12406
\(639\) 52.0526 2.05917
\(640\) −12.1244 −0.479257
\(641\) 31.1769 1.23141 0.615707 0.787975i \(-0.288870\pi\)
0.615707 + 0.787975i \(0.288870\pi\)
\(642\) −83.5692 −3.29821
\(643\) −24.1962 −0.954203 −0.477102 0.878848i \(-0.658313\pi\)
−0.477102 + 0.878848i \(0.658313\pi\)
\(644\) 22.3923 0.882380
\(645\) −1.46410 −0.0576489
\(646\) −2.53590 −0.0997736
\(647\) −38.7846 −1.52478 −0.762390 0.647118i \(-0.775974\pi\)
−0.762390 + 0.647118i \(0.775974\pi\)
\(648\) −4.26795 −0.167661
\(649\) 12.0000 0.471041
\(650\) 6.92820 0.271746
\(651\) −24.3923 −0.956010
\(652\) −0.196152 −0.00768192
\(653\) −25.6077 −1.00211 −0.501053 0.865416i \(-0.667054\pi\)
−0.501053 + 0.865416i \(0.667054\pi\)
\(654\) 47.3205 1.85038
\(655\) −2.19615 −0.0858108
\(656\) 17.3205 0.676252
\(657\) 28.5359 1.11329
\(658\) 61.1769 2.38492
\(659\) −32.7846 −1.27711 −0.638554 0.769577i \(-0.720467\pi\)
−0.638554 + 0.769577i \(0.720467\pi\)
\(660\) 12.9282 0.503230
\(661\) −8.14359 −0.316749 −0.158375 0.987379i \(-0.550625\pi\)
−0.158375 + 0.987379i \(0.550625\pi\)
\(662\) 11.3205 0.439984
\(663\) 10.9282 0.424416
\(664\) 14.7846 0.573754
\(665\) 4.00000 0.155113
\(666\) 4.14359 0.160561
\(667\) 28.3923 1.09935
\(668\) 12.5885 0.487062
\(669\) −72.1051 −2.78774
\(670\) 17.3205 0.669150
\(671\) −23.3205 −0.900278
\(672\) −38.7846 −1.49615
\(673\) 23.4641 0.904475 0.452237 0.891898i \(-0.350626\pi\)
0.452237 + 0.891898i \(0.350626\pi\)
\(674\) 11.7513 0.452643
\(675\) 4.00000 0.153960
\(676\) 3.00000 0.115385
\(677\) 2.78461 0.107021 0.0535106 0.998567i \(-0.482959\pi\)
0.0535106 + 0.998567i \(0.482959\pi\)
\(678\) 81.9615 3.14771
\(679\) 13.4641 0.516705
\(680\) −1.73205 −0.0664211
\(681\) 62.1051 2.37987
\(682\) −26.7846 −1.02564
\(683\) −30.8372 −1.17995 −0.589976 0.807421i \(-0.700863\pi\)
−0.589976 + 0.807421i \(0.700863\pi\)
\(684\) −6.53590 −0.249906
\(685\) 0 0
\(686\) −30.9282 −1.18084
\(687\) −22.9282 −0.874766
\(688\) 2.67949 0.102155
\(689\) −24.0000 −0.914327
\(690\) 38.7846 1.47650
\(691\) −38.9808 −1.48290 −0.741449 0.671009i \(-0.765861\pi\)
−0.741449 + 0.671009i \(0.765861\pi\)
\(692\) 3.46410 0.131685
\(693\) −57.7128 −2.19233
\(694\) −6.58846 −0.250094
\(695\) −3.66025 −0.138841
\(696\) −16.3923 −0.621349
\(697\) 3.46410 0.131212
\(698\) −18.6795 −0.707029
\(699\) 16.3923 0.620014
\(700\) −2.73205 −0.103262
\(701\) 11.3205 0.427570 0.213785 0.976881i \(-0.431421\pi\)
0.213785 + 0.976881i \(0.431421\pi\)
\(702\) 27.7128 1.04595
\(703\) 0.784610 0.0295921
\(704\) 4.73205 0.178346
\(705\) 35.3205 1.33025
\(706\) −46.3923 −1.74600
\(707\) 25.8564 0.972430
\(708\) 6.92820 0.260378
\(709\) 4.53590 0.170349 0.0851746 0.996366i \(-0.472855\pi\)
0.0851746 + 0.996366i \(0.472855\pi\)
\(710\) −20.1962 −0.757948
\(711\) 65.1244 2.44235
\(712\) 7.60770 0.285110
\(713\) −26.7846 −1.00309
\(714\) −12.9282 −0.483826
\(715\) −18.9282 −0.707875
\(716\) −11.3205 −0.423067
\(717\) −56.7846 −2.12066
\(718\) 37.1769 1.38743
\(719\) −5.41154 −0.201816 −0.100908 0.994896i \(-0.532175\pi\)
−0.100908 + 0.994896i \(0.532175\pi\)
\(720\) −22.3205 −0.831836
\(721\) −24.3923 −0.908417
\(722\) 29.1962 1.08657
\(723\) −15.3205 −0.569776
\(724\) −2.39230 −0.0889093
\(725\) −3.46410 −0.128654
\(726\) −53.9090 −2.00075
\(727\) 0.143594 0.00532559 0.00266279 0.999996i \(-0.499152\pi\)
0.00266279 + 0.999996i \(0.499152\pi\)
\(728\) 18.9282 0.701526
\(729\) −43.7846 −1.62165
\(730\) −11.0718 −0.409786
\(731\) 0.535898 0.0198209
\(732\) −13.4641 −0.497648
\(733\) 2.00000 0.0738717 0.0369358 0.999318i \(-0.488240\pi\)
0.0369358 + 0.999318i \(0.488240\pi\)
\(734\) 13.5167 0.498909
\(735\) 1.26795 0.0467690
\(736\) −42.5885 −1.56983
\(737\) −47.3205 −1.74307
\(738\) 26.7846 0.985955
\(739\) −11.6077 −0.426996 −0.213498 0.976944i \(-0.568486\pi\)
−0.213498 + 0.976944i \(0.568486\pi\)
\(740\) −0.535898 −0.0197000
\(741\) 16.0000 0.587775
\(742\) 28.3923 1.04231
\(743\) −22.7321 −0.833958 −0.416979 0.908916i \(-0.636911\pi\)
−0.416979 + 0.908916i \(0.636911\pi\)
\(744\) 15.4641 0.566941
\(745\) −6.00000 −0.219823
\(746\) −34.6410 −1.26830
\(747\) 38.1051 1.39419
\(748\) −4.73205 −0.173021
\(749\) −48.2487 −1.76297
\(750\) −4.73205 −0.172790
\(751\) 43.6603 1.59319 0.796593 0.604516i \(-0.206634\pi\)
0.796593 + 0.604516i \(0.206634\pi\)
\(752\) −64.6410 −2.35722
\(753\) 18.9282 0.689782
\(754\) −24.0000 −0.874028
\(755\) −1.46410 −0.0532841
\(756\) −10.9282 −0.397455
\(757\) 30.6410 1.11367 0.556833 0.830624i \(-0.312016\pi\)
0.556833 + 0.830624i \(0.312016\pi\)
\(758\) −30.8372 −1.12006
\(759\) −105.962 −3.84616
\(760\) −2.53590 −0.0919867
\(761\) −28.3923 −1.02922 −0.514610 0.857424i \(-0.672063\pi\)
−0.514610 + 0.857424i \(0.672063\pi\)
\(762\) 68.1051 2.46719
\(763\) 27.3205 0.989069
\(764\) 1.85641 0.0671624
\(765\) −4.46410 −0.161400
\(766\) −26.7846 −0.967767
\(767\) −10.1436 −0.366264
\(768\) 51.9090 1.87310
\(769\) 36.3923 1.31234 0.656170 0.754613i \(-0.272175\pi\)
0.656170 + 0.754613i \(0.272175\pi\)
\(770\) 22.3923 0.806963
\(771\) −18.9282 −0.681683
\(772\) 16.5359 0.595140
\(773\) −46.6410 −1.67756 −0.838780 0.544470i \(-0.816731\pi\)
−0.838780 + 0.544470i \(0.816731\pi\)
\(774\) 4.14359 0.148938
\(775\) 3.26795 0.117388
\(776\) −8.53590 −0.306421
\(777\) 4.00000 0.143499
\(778\) 7.60770 0.272749
\(779\) 5.07180 0.181716
\(780\) −10.9282 −0.391292
\(781\) 55.1769 1.97439
\(782\) −14.1962 −0.507653
\(783\) −13.8564 −0.495188
\(784\) −2.32051 −0.0828753
\(785\) 8.92820 0.318661
\(786\) 10.3923 0.370681
\(787\) 43.9090 1.56519 0.782593 0.622534i \(-0.213897\pi\)
0.782593 + 0.622534i \(0.213897\pi\)
\(788\) 17.3205 0.617018
\(789\) −4.39230 −0.156370
\(790\) −25.2679 −0.898993
\(791\) 47.3205 1.68252
\(792\) 36.5885 1.30011
\(793\) 19.7128 0.700023
\(794\) −24.2487 −0.860555
\(795\) 16.3923 0.581375
\(796\) 10.1962 0.361393
\(797\) −24.9282 −0.883002 −0.441501 0.897261i \(-0.645554\pi\)
−0.441501 + 0.897261i \(0.645554\pi\)
\(798\) −18.9282 −0.670051
\(799\) −12.9282 −0.457367
\(800\) 5.19615 0.183712
\(801\) 19.6077 0.692804
\(802\) −22.3923 −0.790700
\(803\) 30.2487 1.06745
\(804\) −27.3205 −0.963520
\(805\) 22.3923 0.789225
\(806\) 22.6410 0.797496
\(807\) 2.53590 0.0892679
\(808\) −16.3923 −0.576679
\(809\) −55.8564 −1.96381 −0.981903 0.189383i \(-0.939351\pi\)
−0.981903 + 0.189383i \(0.939351\pi\)
\(810\) 4.26795 0.149960
\(811\) 44.8372 1.57445 0.787223 0.616668i \(-0.211518\pi\)
0.787223 + 0.616668i \(0.211518\pi\)
\(812\) 9.46410 0.332125
\(813\) 8.00000 0.280572
\(814\) 4.39230 0.153950
\(815\) −0.196152 −0.00687092
\(816\) 13.6603 0.478205
\(817\) 0.784610 0.0274500
\(818\) −45.0333 −1.57455
\(819\) 48.7846 1.70467
\(820\) −3.46410 −0.120972
\(821\) −24.9282 −0.870000 −0.435000 0.900430i \(-0.643252\pi\)
−0.435000 + 0.900430i \(0.643252\pi\)
\(822\) 0 0
\(823\) −8.98076 −0.313050 −0.156525 0.987674i \(-0.550029\pi\)
−0.156525 + 0.987674i \(0.550029\pi\)
\(824\) 15.4641 0.538718
\(825\) 12.9282 0.450102
\(826\) 12.0000 0.417533
\(827\) −15.8038 −0.549554 −0.274777 0.961508i \(-0.588604\pi\)
−0.274777 + 0.961508i \(0.588604\pi\)
\(828\) −36.5885 −1.27154
\(829\) 17.7128 0.615191 0.307596 0.951517i \(-0.400476\pi\)
0.307596 + 0.951517i \(0.400476\pi\)
\(830\) −14.7846 −0.513181
\(831\) 57.1769 1.98345
\(832\) −4.00000 −0.138675
\(833\) −0.464102 −0.0160802
\(834\) 17.3205 0.599760
\(835\) 12.5885 0.435642
\(836\) −6.92820 −0.239617
\(837\) 13.0718 0.451827
\(838\) −66.1577 −2.28538
\(839\) 19.2679 0.665203 0.332602 0.943067i \(-0.392074\pi\)
0.332602 + 0.943067i \(0.392074\pi\)
\(840\) −12.9282 −0.446065
\(841\) −17.0000 −0.586207
\(842\) −9.46410 −0.326154
\(843\) −35.3205 −1.21650
\(844\) 10.1962 0.350966
\(845\) 3.00000 0.103203
\(846\) −99.9615 −3.43675
\(847\) −31.1244 −1.06945
\(848\) −30.0000 −1.03020
\(849\) −14.3923 −0.493943
\(850\) 1.73205 0.0594089
\(851\) 4.39230 0.150566
\(852\) 31.8564 1.09138
\(853\) −23.1769 −0.793562 −0.396781 0.917913i \(-0.629873\pi\)
−0.396781 + 0.917913i \(0.629873\pi\)
\(854\) −23.3205 −0.798011
\(855\) −6.53590 −0.223523
\(856\) 30.5885 1.04549
\(857\) 31.1769 1.06498 0.532492 0.846435i \(-0.321256\pi\)
0.532492 + 0.846435i \(0.321256\pi\)
\(858\) 89.5692 3.05784
\(859\) −25.4641 −0.868824 −0.434412 0.900714i \(-0.643044\pi\)
−0.434412 + 0.900714i \(0.643044\pi\)
\(860\) −0.535898 −0.0182740
\(861\) 25.8564 0.881184
\(862\) −16.9808 −0.578367
\(863\) 23.0718 0.785373 0.392687 0.919672i \(-0.371546\pi\)
0.392687 + 0.919672i \(0.371546\pi\)
\(864\) 20.7846 0.707107
\(865\) 3.46410 0.117783
\(866\) 30.9282 1.05098
\(867\) 2.73205 0.0927853
\(868\) −8.92820 −0.303043
\(869\) 69.0333 2.34180
\(870\) 16.3923 0.555751
\(871\) 40.0000 1.35535
\(872\) −17.3205 −0.586546
\(873\) −22.0000 −0.744587
\(874\) −20.7846 −0.703050
\(875\) −2.73205 −0.0923602
\(876\) 17.4641 0.590057
\(877\) −1.21539 −0.0410408 −0.0205204 0.999789i \(-0.506532\pi\)
−0.0205204 + 0.999789i \(0.506532\pi\)
\(878\) 34.7321 1.17215
\(879\) −2.53590 −0.0855337
\(880\) −23.6603 −0.797587
\(881\) −41.3205 −1.39212 −0.696062 0.717982i \(-0.745066\pi\)
−0.696062 + 0.717982i \(0.745066\pi\)
\(882\) −3.58846 −0.120830
\(883\) −10.0000 −0.336527 −0.168263 0.985742i \(-0.553816\pi\)
−0.168263 + 0.985742i \(0.553816\pi\)
\(884\) 4.00000 0.134535
\(885\) 6.92820 0.232889
\(886\) 22.3923 0.752284
\(887\) 3.12436 0.104906 0.0524528 0.998623i \(-0.483296\pi\)
0.0524528 + 0.998623i \(0.483296\pi\)
\(888\) −2.53590 −0.0850992
\(889\) 39.3205 1.31877
\(890\) −7.60770 −0.255011
\(891\) −11.6603 −0.390633
\(892\) −26.3923 −0.883680
\(893\) −18.9282 −0.633408
\(894\) 28.3923 0.949581
\(895\) −11.3205 −0.378403
\(896\) 33.1244 1.10661
\(897\) 89.5692 2.99063
\(898\) 59.5692 1.98785
\(899\) −11.3205 −0.377560
\(900\) 4.46410 0.148803
\(901\) −6.00000 −0.199889
\(902\) 28.3923 0.945360
\(903\) 4.00000 0.133112
\(904\) −30.0000 −0.997785
\(905\) −2.39230 −0.0795229
\(906\) 6.92820 0.230174
\(907\) 30.7321 1.02044 0.510220 0.860044i \(-0.329564\pi\)
0.510220 + 0.860044i \(0.329564\pi\)
\(908\) 22.7321 0.754390
\(909\) −42.2487 −1.40130
\(910\) −18.9282 −0.627464
\(911\) 36.3397 1.20399 0.601995 0.798500i \(-0.294373\pi\)
0.601995 + 0.798500i \(0.294373\pi\)
\(912\) 20.0000 0.662266
\(913\) 40.3923 1.33679
\(914\) 63.7128 2.10743
\(915\) −13.4641 −0.445109
\(916\) −8.39230 −0.277290
\(917\) 6.00000 0.198137
\(918\) 6.92820 0.228665
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) −14.1962 −0.468033
\(921\) −27.3205 −0.900241
\(922\) 43.1769 1.42196
\(923\) −46.6410 −1.53521
\(924\) −35.3205 −1.16196
\(925\) −0.535898 −0.0176202
\(926\) 41.3205 1.35788
\(927\) 39.8564 1.30906
\(928\) −18.0000 −0.590879
\(929\) −3.46410 −0.113653 −0.0568267 0.998384i \(-0.518098\pi\)
−0.0568267 + 0.998384i \(0.518098\pi\)
\(930\) −15.4641 −0.507088
\(931\) −0.679492 −0.0222694
\(932\) 6.00000 0.196537
\(933\) −43.8564 −1.43579
\(934\) −2.78461 −0.0911152
\(935\) −4.73205 −0.154755
\(936\) −30.9282 −1.01092
\(937\) −32.6410 −1.06634 −0.533168 0.846010i \(-0.678999\pi\)
−0.533168 + 0.846010i \(0.678999\pi\)
\(938\) −47.3205 −1.54507
\(939\) −72.1051 −2.35306
\(940\) 12.9282 0.421671
\(941\) 48.2487 1.57286 0.786432 0.617677i \(-0.211926\pi\)
0.786432 + 0.617677i \(0.211926\pi\)
\(942\) −42.2487 −1.37654
\(943\) 28.3923 0.924581
\(944\) −12.6795 −0.412682
\(945\) −10.9282 −0.355494
\(946\) 4.39230 0.142806
\(947\) 8.19615 0.266339 0.133170 0.991093i \(-0.457485\pi\)
0.133170 + 0.991093i \(0.457485\pi\)
\(948\) 39.8564 1.29448
\(949\) −25.5692 −0.830012
\(950\) 2.53590 0.0822754
\(951\) −68.1051 −2.20846
\(952\) 4.73205 0.153367
\(953\) −8.78461 −0.284561 −0.142281 0.989826i \(-0.545444\pi\)
−0.142281 + 0.989826i \(0.545444\pi\)
\(954\) −46.3923 −1.50201
\(955\) 1.85641 0.0600719
\(956\) −20.7846 −0.672222
\(957\) −44.7846 −1.44768
\(958\) 20.1962 0.652508
\(959\) 0 0
\(960\) 2.73205 0.0881766
\(961\) −20.3205 −0.655500
\(962\) −3.71281 −0.119706
\(963\) 78.8372 2.54049
\(964\) −5.60770 −0.180612
\(965\) 16.5359 0.532309
\(966\) −105.962 −3.40926
\(967\) 39.1769 1.25984 0.629922 0.776658i \(-0.283087\pi\)
0.629922 + 0.776658i \(0.283087\pi\)
\(968\) 19.7321 0.634212
\(969\) 4.00000 0.128499
\(970\) 8.53590 0.274071
\(971\) 54.2487 1.74092 0.870462 0.492236i \(-0.163820\pi\)
0.870462 + 0.492236i \(0.163820\pi\)
\(972\) −18.7321 −0.600831
\(973\) 10.0000 0.320585
\(974\) −43.2679 −1.38639
\(975\) −10.9282 −0.349983
\(976\) 24.6410 0.788740
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) 0.928203 0.0296807
\(979\) 20.7846 0.664279
\(980\) 0.464102 0.0148252
\(981\) −44.6410 −1.42528
\(982\) 33.9615 1.08376
\(983\) 58.7321 1.87326 0.936631 0.350318i \(-0.113927\pi\)
0.936631 + 0.350318i \(0.113927\pi\)
\(984\) −16.3923 −0.522568
\(985\) 17.3205 0.551877
\(986\) −6.00000 −0.191079
\(987\) −96.4974 −3.07155
\(988\) 5.85641 0.186317
\(989\) 4.39230 0.139667
\(990\) −36.5885 −1.16286
\(991\) −2.98076 −0.0946870 −0.0473435 0.998879i \(-0.515076\pi\)
−0.0473435 + 0.998879i \(0.515076\pi\)
\(992\) 16.9808 0.539140
\(993\) −17.8564 −0.566656
\(994\) 55.1769 1.75011
\(995\) 10.1962 0.323240
\(996\) 23.3205 0.738939
\(997\) −2.39230 −0.0757651 −0.0378825 0.999282i \(-0.512061\pi\)
−0.0378825 + 0.999282i \(0.512061\pi\)
\(998\) 27.1244 0.858606
\(999\) −2.14359 −0.0678203
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.a.c.1.1 2
3.2 odd 2 765.2.a.g.1.2 2
4.3 odd 2 1360.2.a.k.1.1 2
5.2 odd 4 425.2.b.d.324.1 4
5.3 odd 4 425.2.b.d.324.4 4
5.4 even 2 425.2.a.e.1.2 2
7.6 odd 2 4165.2.a.t.1.1 2
8.3 odd 2 5440.2.a.bl.1.2 2
8.5 even 2 5440.2.a.bb.1.1 2
15.14 odd 2 3825.2.a.v.1.1 2
17.4 even 4 1445.2.d.e.866.3 4
17.13 even 4 1445.2.d.e.866.4 4
17.16 even 2 1445.2.a.g.1.1 2
20.19 odd 2 6800.2.a.bg.1.2 2
85.84 even 2 7225.2.a.l.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.a.c.1.1 2 1.1 even 1 trivial
425.2.a.e.1.2 2 5.4 even 2
425.2.b.d.324.1 4 5.2 odd 4
425.2.b.d.324.4 4 5.3 odd 4
765.2.a.g.1.2 2 3.2 odd 2
1360.2.a.k.1.1 2 4.3 odd 2
1445.2.a.g.1.1 2 17.16 even 2
1445.2.d.e.866.3 4 17.4 even 4
1445.2.d.e.866.4 4 17.13 even 4
3825.2.a.v.1.1 2 15.14 odd 2
4165.2.a.t.1.1 2 7.6 odd 2
5440.2.a.bb.1.1 2 8.5 even 2
5440.2.a.bl.1.2 2 8.3 odd 2
6800.2.a.bg.1.2 2 20.19 odd 2
7225.2.a.l.1.2 2 85.84 even 2