Properties

Label 85.2.a.a.1.1
Level $85$
Weight $2$
Character 85.1
Self dual yes
Analytic conductor $0.679$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,2,Mod(1,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 85.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.00000 q^{3} -1.00000 q^{4} -1.00000 q^{5} +2.00000 q^{6} -2.00000 q^{7} -3.00000 q^{8} +1.00000 q^{9} -1.00000 q^{10} +2.00000 q^{11} -2.00000 q^{12} +2.00000 q^{13} -2.00000 q^{14} -2.00000 q^{15} -1.00000 q^{16} +1.00000 q^{17} +1.00000 q^{18} +1.00000 q^{20} -4.00000 q^{21} +2.00000 q^{22} +6.00000 q^{23} -6.00000 q^{24} +1.00000 q^{25} +2.00000 q^{26} -4.00000 q^{27} +2.00000 q^{28} -6.00000 q^{29} -2.00000 q^{30} -10.0000 q^{31} +5.00000 q^{32} +4.00000 q^{33} +1.00000 q^{34} +2.00000 q^{35} -1.00000 q^{36} +2.00000 q^{37} +4.00000 q^{39} +3.00000 q^{40} +10.0000 q^{41} -4.00000 q^{42} +4.00000 q^{43} -2.00000 q^{44} -1.00000 q^{45} +6.00000 q^{46} +12.0000 q^{47} -2.00000 q^{48} -3.00000 q^{49} +1.00000 q^{50} +2.00000 q^{51} -2.00000 q^{52} -10.0000 q^{53} -4.00000 q^{54} -2.00000 q^{55} +6.00000 q^{56} -6.00000 q^{58} +8.00000 q^{59} +2.00000 q^{60} -14.0000 q^{61} -10.0000 q^{62} -2.00000 q^{63} +7.00000 q^{64} -2.00000 q^{65} +4.00000 q^{66} +8.00000 q^{67} -1.00000 q^{68} +12.0000 q^{69} +2.00000 q^{70} -2.00000 q^{71} -3.00000 q^{72} -14.0000 q^{73} +2.00000 q^{74} +2.00000 q^{75} -4.00000 q^{77} +4.00000 q^{78} -14.0000 q^{79} +1.00000 q^{80} -11.0000 q^{81} +10.0000 q^{82} +4.00000 q^{83} +4.00000 q^{84} -1.00000 q^{85} +4.00000 q^{86} -12.0000 q^{87} -6.00000 q^{88} +6.00000 q^{89} -1.00000 q^{90} -4.00000 q^{91} -6.00000 q^{92} -20.0000 q^{93} +12.0000 q^{94} +10.0000 q^{96} +2.00000 q^{97} -3.00000 q^{98} +2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 2.00000 1.15470 0.577350 0.816497i \(-0.304087\pi\)
0.577350 + 0.816497i \(0.304087\pi\)
\(4\) −1.00000 −0.500000
\(5\) −1.00000 −0.447214
\(6\) 2.00000 0.816497
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) −3.00000 −1.06066
\(9\) 1.00000 0.333333
\(10\) −1.00000 −0.316228
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) −2.00000 −0.577350
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) −2.00000 −0.534522
\(15\) −2.00000 −0.516398
\(16\) −1.00000 −0.250000
\(17\) 1.00000 0.242536
\(18\) 1.00000 0.235702
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 1.00000 0.223607
\(21\) −4.00000 −0.872872
\(22\) 2.00000 0.426401
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) −6.00000 −1.22474
\(25\) 1.00000 0.200000
\(26\) 2.00000 0.392232
\(27\) −4.00000 −0.769800
\(28\) 2.00000 0.377964
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) −2.00000 −0.365148
\(31\) −10.0000 −1.79605 −0.898027 0.439941i \(-0.854999\pi\)
−0.898027 + 0.439941i \(0.854999\pi\)
\(32\) 5.00000 0.883883
\(33\) 4.00000 0.696311
\(34\) 1.00000 0.171499
\(35\) 2.00000 0.338062
\(36\) −1.00000 −0.166667
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 4.00000 0.640513
\(40\) 3.00000 0.474342
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) −4.00000 −0.617213
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) −2.00000 −0.301511
\(45\) −1.00000 −0.149071
\(46\) 6.00000 0.884652
\(47\) 12.0000 1.75038 0.875190 0.483779i \(-0.160736\pi\)
0.875190 + 0.483779i \(0.160736\pi\)
\(48\) −2.00000 −0.288675
\(49\) −3.00000 −0.428571
\(50\) 1.00000 0.141421
\(51\) 2.00000 0.280056
\(52\) −2.00000 −0.277350
\(53\) −10.0000 −1.37361 −0.686803 0.726844i \(-0.740986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) −4.00000 −0.544331
\(55\) −2.00000 −0.269680
\(56\) 6.00000 0.801784
\(57\) 0 0
\(58\) −6.00000 −0.787839
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 2.00000 0.258199
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) −10.0000 −1.27000
\(63\) −2.00000 −0.251976
\(64\) 7.00000 0.875000
\(65\) −2.00000 −0.248069
\(66\) 4.00000 0.492366
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) −1.00000 −0.121268
\(69\) 12.0000 1.44463
\(70\) 2.00000 0.239046
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) −3.00000 −0.353553
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 2.00000 0.232495
\(75\) 2.00000 0.230940
\(76\) 0 0
\(77\) −4.00000 −0.455842
\(78\) 4.00000 0.452911
\(79\) −14.0000 −1.57512 −0.787562 0.616236i \(-0.788657\pi\)
−0.787562 + 0.616236i \(0.788657\pi\)
\(80\) 1.00000 0.111803
\(81\) −11.0000 −1.22222
\(82\) 10.0000 1.10432
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 4.00000 0.436436
\(85\) −1.00000 −0.108465
\(86\) 4.00000 0.431331
\(87\) −12.0000 −1.28654
\(88\) −6.00000 −0.639602
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) −1.00000 −0.105409
\(91\) −4.00000 −0.419314
\(92\) −6.00000 −0.625543
\(93\) −20.0000 −2.07390
\(94\) 12.0000 1.23771
\(95\) 0 0
\(96\) 10.0000 1.02062
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) −3.00000 −0.303046
\(99\) 2.00000 0.201008
\(100\) −1.00000 −0.100000
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 2.00000 0.198030
\(103\) 12.0000 1.18240 0.591198 0.806527i \(-0.298655\pi\)
0.591198 + 0.806527i \(0.298655\pi\)
\(104\) −6.00000 −0.588348
\(105\) 4.00000 0.390360
\(106\) −10.0000 −0.971286
\(107\) 2.00000 0.193347 0.0966736 0.995316i \(-0.469180\pi\)
0.0966736 + 0.995316i \(0.469180\pi\)
\(108\) 4.00000 0.384900
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) −2.00000 −0.190693
\(111\) 4.00000 0.379663
\(112\) 2.00000 0.188982
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) −6.00000 −0.559503
\(116\) 6.00000 0.557086
\(117\) 2.00000 0.184900
\(118\) 8.00000 0.736460
\(119\) −2.00000 −0.183340
\(120\) 6.00000 0.547723
\(121\) −7.00000 −0.636364
\(122\) −14.0000 −1.26750
\(123\) 20.0000 1.80334
\(124\) 10.0000 0.898027
\(125\) −1.00000 −0.0894427
\(126\) −2.00000 −0.178174
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) −3.00000 −0.265165
\(129\) 8.00000 0.704361
\(130\) −2.00000 −0.175412
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) −4.00000 −0.348155
\(133\) 0 0
\(134\) 8.00000 0.691095
\(135\) 4.00000 0.344265
\(136\) −3.00000 −0.257248
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 12.0000 1.02151
\(139\) 14.0000 1.18746 0.593732 0.804663i \(-0.297654\pi\)
0.593732 + 0.804663i \(0.297654\pi\)
\(140\) −2.00000 −0.169031
\(141\) 24.0000 2.02116
\(142\) −2.00000 −0.167836
\(143\) 4.00000 0.334497
\(144\) −1.00000 −0.0833333
\(145\) 6.00000 0.498273
\(146\) −14.0000 −1.15865
\(147\) −6.00000 −0.494872
\(148\) −2.00000 −0.164399
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 2.00000 0.163299
\(151\) −12.0000 −0.976546 −0.488273 0.872691i \(-0.662373\pi\)
−0.488273 + 0.872691i \(0.662373\pi\)
\(152\) 0 0
\(153\) 1.00000 0.0808452
\(154\) −4.00000 −0.322329
\(155\) 10.0000 0.803219
\(156\) −4.00000 −0.320256
\(157\) 6.00000 0.478852 0.239426 0.970915i \(-0.423041\pi\)
0.239426 + 0.970915i \(0.423041\pi\)
\(158\) −14.0000 −1.11378
\(159\) −20.0000 −1.58610
\(160\) −5.00000 −0.395285
\(161\) −12.0000 −0.945732
\(162\) −11.0000 −0.864242
\(163\) −2.00000 −0.156652 −0.0783260 0.996928i \(-0.524958\pi\)
−0.0783260 + 0.996928i \(0.524958\pi\)
\(164\) −10.0000 −0.780869
\(165\) −4.00000 −0.311400
\(166\) 4.00000 0.310460
\(167\) 2.00000 0.154765 0.0773823 0.997001i \(-0.475344\pi\)
0.0773823 + 0.997001i \(0.475344\pi\)
\(168\) 12.0000 0.925820
\(169\) −9.00000 −0.692308
\(170\) −1.00000 −0.0766965
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) −12.0000 −0.909718
\(175\) −2.00000 −0.151186
\(176\) −2.00000 −0.150756
\(177\) 16.0000 1.20263
\(178\) 6.00000 0.449719
\(179\) −24.0000 −1.79384 −0.896922 0.442189i \(-0.854202\pi\)
−0.896922 + 0.442189i \(0.854202\pi\)
\(180\) 1.00000 0.0745356
\(181\) 26.0000 1.93256 0.966282 0.257485i \(-0.0828937\pi\)
0.966282 + 0.257485i \(0.0828937\pi\)
\(182\) −4.00000 −0.296500
\(183\) −28.0000 −2.06982
\(184\) −18.0000 −1.32698
\(185\) −2.00000 −0.147043
\(186\) −20.0000 −1.46647
\(187\) 2.00000 0.146254
\(188\) −12.0000 −0.875190
\(189\) 8.00000 0.581914
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 14.0000 1.01036
\(193\) 18.0000 1.29567 0.647834 0.761781i \(-0.275675\pi\)
0.647834 + 0.761781i \(0.275675\pi\)
\(194\) 2.00000 0.143592
\(195\) −4.00000 −0.286446
\(196\) 3.00000 0.214286
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 2.00000 0.142134
\(199\) 6.00000 0.425329 0.212664 0.977125i \(-0.431786\pi\)
0.212664 + 0.977125i \(0.431786\pi\)
\(200\) −3.00000 −0.212132
\(201\) 16.0000 1.12855
\(202\) −6.00000 −0.422159
\(203\) 12.0000 0.842235
\(204\) −2.00000 −0.140028
\(205\) −10.0000 −0.698430
\(206\) 12.0000 0.836080
\(207\) 6.00000 0.417029
\(208\) −2.00000 −0.138675
\(209\) 0 0
\(210\) 4.00000 0.276026
\(211\) 2.00000 0.137686 0.0688428 0.997628i \(-0.478069\pi\)
0.0688428 + 0.997628i \(0.478069\pi\)
\(212\) 10.0000 0.686803
\(213\) −4.00000 −0.274075
\(214\) 2.00000 0.136717
\(215\) −4.00000 −0.272798
\(216\) 12.0000 0.816497
\(217\) 20.0000 1.35769
\(218\) 2.00000 0.135457
\(219\) −28.0000 −1.89206
\(220\) 2.00000 0.134840
\(221\) 2.00000 0.134535
\(222\) 4.00000 0.268462
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) −10.0000 −0.668153
\(225\) 1.00000 0.0666667
\(226\) −6.00000 −0.399114
\(227\) −2.00000 −0.132745 −0.0663723 0.997795i \(-0.521143\pi\)
−0.0663723 + 0.997795i \(0.521143\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) −6.00000 −0.395628
\(231\) −8.00000 −0.526361
\(232\) 18.0000 1.18176
\(233\) −14.0000 −0.917170 −0.458585 0.888650i \(-0.651644\pi\)
−0.458585 + 0.888650i \(0.651644\pi\)
\(234\) 2.00000 0.130744
\(235\) −12.0000 −0.782794
\(236\) −8.00000 −0.520756
\(237\) −28.0000 −1.81880
\(238\) −2.00000 −0.129641
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 2.00000 0.129099
\(241\) −6.00000 −0.386494 −0.193247 0.981150i \(-0.561902\pi\)
−0.193247 + 0.981150i \(0.561902\pi\)
\(242\) −7.00000 −0.449977
\(243\) −10.0000 −0.641500
\(244\) 14.0000 0.896258
\(245\) 3.00000 0.191663
\(246\) 20.0000 1.27515
\(247\) 0 0
\(248\) 30.0000 1.90500
\(249\) 8.00000 0.506979
\(250\) −1.00000 −0.0632456
\(251\) 28.0000 1.76734 0.883672 0.468106i \(-0.155064\pi\)
0.883672 + 0.468106i \(0.155064\pi\)
\(252\) 2.00000 0.125988
\(253\) 12.0000 0.754434
\(254\) 8.00000 0.501965
\(255\) −2.00000 −0.125245
\(256\) −17.0000 −1.06250
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) 8.00000 0.498058
\(259\) −4.00000 −0.248548
\(260\) 2.00000 0.124035
\(261\) −6.00000 −0.371391
\(262\) 6.00000 0.370681
\(263\) −8.00000 −0.493301 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(264\) −12.0000 −0.738549
\(265\) 10.0000 0.614295
\(266\) 0 0
\(267\) 12.0000 0.734388
\(268\) −8.00000 −0.488678
\(269\) 10.0000 0.609711 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(270\) 4.00000 0.243432
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) −1.00000 −0.0606339
\(273\) −8.00000 −0.484182
\(274\) −2.00000 −0.120824
\(275\) 2.00000 0.120605
\(276\) −12.0000 −0.722315
\(277\) −30.0000 −1.80253 −0.901263 0.433273i \(-0.857359\pi\)
−0.901263 + 0.433273i \(0.857359\pi\)
\(278\) 14.0000 0.839664
\(279\) −10.0000 −0.598684
\(280\) −6.00000 −0.358569
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 24.0000 1.42918
\(283\) 6.00000 0.356663 0.178331 0.983970i \(-0.442930\pi\)
0.178331 + 0.983970i \(0.442930\pi\)
\(284\) 2.00000 0.118678
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) −20.0000 −1.18056
\(288\) 5.00000 0.294628
\(289\) 1.00000 0.0588235
\(290\) 6.00000 0.352332
\(291\) 4.00000 0.234484
\(292\) 14.0000 0.819288
\(293\) 30.0000 1.75262 0.876309 0.481749i \(-0.159998\pi\)
0.876309 + 0.481749i \(0.159998\pi\)
\(294\) −6.00000 −0.349927
\(295\) −8.00000 −0.465778
\(296\) −6.00000 −0.348743
\(297\) −8.00000 −0.464207
\(298\) 6.00000 0.347571
\(299\) 12.0000 0.693978
\(300\) −2.00000 −0.115470
\(301\) −8.00000 −0.461112
\(302\) −12.0000 −0.690522
\(303\) −12.0000 −0.689382
\(304\) 0 0
\(305\) 14.0000 0.801638
\(306\) 1.00000 0.0571662
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) 4.00000 0.227921
\(309\) 24.0000 1.36531
\(310\) 10.0000 0.567962
\(311\) 6.00000 0.340229 0.170114 0.985424i \(-0.445586\pi\)
0.170114 + 0.985424i \(0.445586\pi\)
\(312\) −12.0000 −0.679366
\(313\) 2.00000 0.113047 0.0565233 0.998401i \(-0.481998\pi\)
0.0565233 + 0.998401i \(0.481998\pi\)
\(314\) 6.00000 0.338600
\(315\) 2.00000 0.112687
\(316\) 14.0000 0.787562
\(317\) 10.0000 0.561656 0.280828 0.959758i \(-0.409391\pi\)
0.280828 + 0.959758i \(0.409391\pi\)
\(318\) −20.0000 −1.12154
\(319\) −12.0000 −0.671871
\(320\) −7.00000 −0.391312
\(321\) 4.00000 0.223258
\(322\) −12.0000 −0.668734
\(323\) 0 0
\(324\) 11.0000 0.611111
\(325\) 2.00000 0.110940
\(326\) −2.00000 −0.110770
\(327\) 4.00000 0.221201
\(328\) −30.0000 −1.65647
\(329\) −24.0000 −1.32316
\(330\) −4.00000 −0.220193
\(331\) 16.0000 0.879440 0.439720 0.898135i \(-0.355078\pi\)
0.439720 + 0.898135i \(0.355078\pi\)
\(332\) −4.00000 −0.219529
\(333\) 2.00000 0.109599
\(334\) 2.00000 0.109435
\(335\) −8.00000 −0.437087
\(336\) 4.00000 0.218218
\(337\) −6.00000 −0.326841 −0.163420 0.986557i \(-0.552253\pi\)
−0.163420 + 0.986557i \(0.552253\pi\)
\(338\) −9.00000 −0.489535
\(339\) −12.0000 −0.651751
\(340\) 1.00000 0.0542326
\(341\) −20.0000 −1.08306
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) −12.0000 −0.646997
\(345\) −12.0000 −0.646058
\(346\) −6.00000 −0.322562
\(347\) −26.0000 −1.39575 −0.697877 0.716218i \(-0.745872\pi\)
−0.697877 + 0.716218i \(0.745872\pi\)
\(348\) 12.0000 0.643268
\(349\) 22.0000 1.17763 0.588817 0.808267i \(-0.299594\pi\)
0.588817 + 0.808267i \(0.299594\pi\)
\(350\) −2.00000 −0.106904
\(351\) −8.00000 −0.427008
\(352\) 10.0000 0.533002
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 16.0000 0.850390
\(355\) 2.00000 0.106149
\(356\) −6.00000 −0.317999
\(357\) −4.00000 −0.211702
\(358\) −24.0000 −1.26844
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 3.00000 0.158114
\(361\) −19.0000 −1.00000
\(362\) 26.0000 1.36653
\(363\) −14.0000 −0.734809
\(364\) 4.00000 0.209657
\(365\) 14.0000 0.732793
\(366\) −28.0000 −1.46358
\(367\) −34.0000 −1.77479 −0.887393 0.461014i \(-0.847486\pi\)
−0.887393 + 0.461014i \(0.847486\pi\)
\(368\) −6.00000 −0.312772
\(369\) 10.0000 0.520579
\(370\) −2.00000 −0.103975
\(371\) 20.0000 1.03835
\(372\) 20.0000 1.03695
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 2.00000 0.103418
\(375\) −2.00000 −0.103280
\(376\) −36.0000 −1.85656
\(377\) −12.0000 −0.618031
\(378\) 8.00000 0.411476
\(379\) −2.00000 −0.102733 −0.0513665 0.998680i \(-0.516358\pi\)
−0.0513665 + 0.998680i \(0.516358\pi\)
\(380\) 0 0
\(381\) 16.0000 0.819705
\(382\) 8.00000 0.409316
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) −6.00000 −0.306186
\(385\) 4.00000 0.203859
\(386\) 18.0000 0.916176
\(387\) 4.00000 0.203331
\(388\) −2.00000 −0.101535
\(389\) 26.0000 1.31825 0.659126 0.752032i \(-0.270926\pi\)
0.659126 + 0.752032i \(0.270926\pi\)
\(390\) −4.00000 −0.202548
\(391\) 6.00000 0.303433
\(392\) 9.00000 0.454569
\(393\) 12.0000 0.605320
\(394\) 2.00000 0.100759
\(395\) 14.0000 0.704416
\(396\) −2.00000 −0.100504
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) 6.00000 0.300753
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 16.0000 0.798007
\(403\) −20.0000 −0.996271
\(404\) 6.00000 0.298511
\(405\) 11.0000 0.546594
\(406\) 12.0000 0.595550
\(407\) 4.00000 0.198273
\(408\) −6.00000 −0.297044
\(409\) −38.0000 −1.87898 −0.939490 0.342578i \(-0.888700\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) −10.0000 −0.493865
\(411\) −4.00000 −0.197305
\(412\) −12.0000 −0.591198
\(413\) −16.0000 −0.787309
\(414\) 6.00000 0.294884
\(415\) −4.00000 −0.196352
\(416\) 10.0000 0.490290
\(417\) 28.0000 1.37117
\(418\) 0 0
\(419\) 18.0000 0.879358 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(420\) −4.00000 −0.195180
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 2.00000 0.0973585
\(423\) 12.0000 0.583460
\(424\) 30.0000 1.45693
\(425\) 1.00000 0.0485071
\(426\) −4.00000 −0.193801
\(427\) 28.0000 1.35501
\(428\) −2.00000 −0.0966736
\(429\) 8.00000 0.386244
\(430\) −4.00000 −0.192897
\(431\) −38.0000 −1.83040 −0.915198 0.403005i \(-0.867966\pi\)
−0.915198 + 0.403005i \(0.867966\pi\)
\(432\) 4.00000 0.192450
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 20.0000 0.960031
\(435\) 12.0000 0.575356
\(436\) −2.00000 −0.0957826
\(437\) 0 0
\(438\) −28.0000 −1.33789
\(439\) 6.00000 0.286364 0.143182 0.989696i \(-0.454267\pi\)
0.143182 + 0.989696i \(0.454267\pi\)
\(440\) 6.00000 0.286039
\(441\) −3.00000 −0.142857
\(442\) 2.00000 0.0951303
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) −4.00000 −0.189832
\(445\) −6.00000 −0.284427
\(446\) 16.0000 0.757622
\(447\) 12.0000 0.567581
\(448\) −14.0000 −0.661438
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 1.00000 0.0471405
\(451\) 20.0000 0.941763
\(452\) 6.00000 0.282216
\(453\) −24.0000 −1.12762
\(454\) −2.00000 −0.0938647
\(455\) 4.00000 0.187523
\(456\) 0 0
\(457\) 6.00000 0.280668 0.140334 0.990104i \(-0.455182\pi\)
0.140334 + 0.990104i \(0.455182\pi\)
\(458\) 10.0000 0.467269
\(459\) −4.00000 −0.186704
\(460\) 6.00000 0.279751
\(461\) −26.0000 −1.21094 −0.605470 0.795868i \(-0.707015\pi\)
−0.605470 + 0.795868i \(0.707015\pi\)
\(462\) −8.00000 −0.372194
\(463\) −36.0000 −1.67306 −0.836531 0.547920i \(-0.815420\pi\)
−0.836531 + 0.547920i \(0.815420\pi\)
\(464\) 6.00000 0.278543
\(465\) 20.0000 0.927478
\(466\) −14.0000 −0.648537
\(467\) 28.0000 1.29569 0.647843 0.761774i \(-0.275671\pi\)
0.647843 + 0.761774i \(0.275671\pi\)
\(468\) −2.00000 −0.0924500
\(469\) −16.0000 −0.738811
\(470\) −12.0000 −0.553519
\(471\) 12.0000 0.552931
\(472\) −24.0000 −1.10469
\(473\) 8.00000 0.367840
\(474\) −28.0000 −1.28608
\(475\) 0 0
\(476\) 2.00000 0.0916698
\(477\) −10.0000 −0.457869
\(478\) −8.00000 −0.365911
\(479\) −18.0000 −0.822441 −0.411220 0.911536i \(-0.634897\pi\)
−0.411220 + 0.911536i \(0.634897\pi\)
\(480\) −10.0000 −0.456435
\(481\) 4.00000 0.182384
\(482\) −6.00000 −0.273293
\(483\) −24.0000 −1.09204
\(484\) 7.00000 0.318182
\(485\) −2.00000 −0.0908153
\(486\) −10.0000 −0.453609
\(487\) 22.0000 0.996915 0.498458 0.866914i \(-0.333900\pi\)
0.498458 + 0.866914i \(0.333900\pi\)
\(488\) 42.0000 1.90125
\(489\) −4.00000 −0.180886
\(490\) 3.00000 0.135526
\(491\) −16.0000 −0.722070 −0.361035 0.932552i \(-0.617576\pi\)
−0.361035 + 0.932552i \(0.617576\pi\)
\(492\) −20.0000 −0.901670
\(493\) −6.00000 −0.270226
\(494\) 0 0
\(495\) −2.00000 −0.0898933
\(496\) 10.0000 0.449013
\(497\) 4.00000 0.179425
\(498\) 8.00000 0.358489
\(499\) −14.0000 −0.626726 −0.313363 0.949633i \(-0.601456\pi\)
−0.313363 + 0.949633i \(0.601456\pi\)
\(500\) 1.00000 0.0447214
\(501\) 4.00000 0.178707
\(502\) 28.0000 1.24970
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 6.00000 0.267261
\(505\) 6.00000 0.266996
\(506\) 12.0000 0.533465
\(507\) −18.0000 −0.799408
\(508\) −8.00000 −0.354943
\(509\) −34.0000 −1.50702 −0.753512 0.657434i \(-0.771642\pi\)
−0.753512 + 0.657434i \(0.771642\pi\)
\(510\) −2.00000 −0.0885615
\(511\) 28.0000 1.23865
\(512\) −11.0000 −0.486136
\(513\) 0 0
\(514\) −2.00000 −0.0882162
\(515\) −12.0000 −0.528783
\(516\) −8.00000 −0.352180
\(517\) 24.0000 1.05552
\(518\) −4.00000 −0.175750
\(519\) −12.0000 −0.526742
\(520\) 6.00000 0.263117
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) −6.00000 −0.262613
\(523\) 32.0000 1.39926 0.699631 0.714504i \(-0.253348\pi\)
0.699631 + 0.714504i \(0.253348\pi\)
\(524\) −6.00000 −0.262111
\(525\) −4.00000 −0.174574
\(526\) −8.00000 −0.348817
\(527\) −10.0000 −0.435607
\(528\) −4.00000 −0.174078
\(529\) 13.0000 0.565217
\(530\) 10.0000 0.434372
\(531\) 8.00000 0.347170
\(532\) 0 0
\(533\) 20.0000 0.866296
\(534\) 12.0000 0.519291
\(535\) −2.00000 −0.0864675
\(536\) −24.0000 −1.03664
\(537\) −48.0000 −2.07135
\(538\) 10.0000 0.431131
\(539\) −6.00000 −0.258438
\(540\) −4.00000 −0.172133
\(541\) −14.0000 −0.601907 −0.300954 0.953639i \(-0.597305\pi\)
−0.300954 + 0.953639i \(0.597305\pi\)
\(542\) −16.0000 −0.687259
\(543\) 52.0000 2.23153
\(544\) 5.00000 0.214373
\(545\) −2.00000 −0.0856706
\(546\) −8.00000 −0.342368
\(547\) −22.0000 −0.940652 −0.470326 0.882493i \(-0.655864\pi\)
−0.470326 + 0.882493i \(0.655864\pi\)
\(548\) 2.00000 0.0854358
\(549\) −14.0000 −0.597505
\(550\) 2.00000 0.0852803
\(551\) 0 0
\(552\) −36.0000 −1.53226
\(553\) 28.0000 1.19068
\(554\) −30.0000 −1.27458
\(555\) −4.00000 −0.169791
\(556\) −14.0000 −0.593732
\(557\) 2.00000 0.0847427 0.0423714 0.999102i \(-0.486509\pi\)
0.0423714 + 0.999102i \(0.486509\pi\)
\(558\) −10.0000 −0.423334
\(559\) 8.00000 0.338364
\(560\) −2.00000 −0.0845154
\(561\) 4.00000 0.168880
\(562\) −6.00000 −0.253095
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) −24.0000 −1.01058
\(565\) 6.00000 0.252422
\(566\) 6.00000 0.252199
\(567\) 22.0000 0.923913
\(568\) 6.00000 0.251754
\(569\) −38.0000 −1.59304 −0.796521 0.604610i \(-0.793329\pi\)
−0.796521 + 0.604610i \(0.793329\pi\)
\(570\) 0 0
\(571\) 18.0000 0.753277 0.376638 0.926360i \(-0.377080\pi\)
0.376638 + 0.926360i \(0.377080\pi\)
\(572\) −4.00000 −0.167248
\(573\) 16.0000 0.668410
\(574\) −20.0000 −0.834784
\(575\) 6.00000 0.250217
\(576\) 7.00000 0.291667
\(577\) 6.00000 0.249783 0.124892 0.992170i \(-0.460142\pi\)
0.124892 + 0.992170i \(0.460142\pi\)
\(578\) 1.00000 0.0415945
\(579\) 36.0000 1.49611
\(580\) −6.00000 −0.249136
\(581\) −8.00000 −0.331896
\(582\) 4.00000 0.165805
\(583\) −20.0000 −0.828315
\(584\) 42.0000 1.73797
\(585\) −2.00000 −0.0826898
\(586\) 30.0000 1.23929
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 6.00000 0.247436
\(589\) 0 0
\(590\) −8.00000 −0.329355
\(591\) 4.00000 0.164538
\(592\) −2.00000 −0.0821995
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) −8.00000 −0.328244
\(595\) 2.00000 0.0819920
\(596\) −6.00000 −0.245770
\(597\) 12.0000 0.491127
\(598\) 12.0000 0.490716
\(599\) 16.0000 0.653742 0.326871 0.945069i \(-0.394006\pi\)
0.326871 + 0.945069i \(0.394006\pi\)
\(600\) −6.00000 −0.244949
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) −8.00000 −0.326056
\(603\) 8.00000 0.325785
\(604\) 12.0000 0.488273
\(605\) 7.00000 0.284590
\(606\) −12.0000 −0.487467
\(607\) 18.0000 0.730597 0.365299 0.930890i \(-0.380967\pi\)
0.365299 + 0.930890i \(0.380967\pi\)
\(608\) 0 0
\(609\) 24.0000 0.972529
\(610\) 14.0000 0.566843
\(611\) 24.0000 0.970936
\(612\) −1.00000 −0.0404226
\(613\) 46.0000 1.85792 0.928961 0.370177i \(-0.120703\pi\)
0.928961 + 0.370177i \(0.120703\pi\)
\(614\) −16.0000 −0.645707
\(615\) −20.0000 −0.806478
\(616\) 12.0000 0.483494
\(617\) 42.0000 1.69086 0.845428 0.534089i \(-0.179345\pi\)
0.845428 + 0.534089i \(0.179345\pi\)
\(618\) 24.0000 0.965422
\(619\) −14.0000 −0.562708 −0.281354 0.959604i \(-0.590783\pi\)
−0.281354 + 0.959604i \(0.590783\pi\)
\(620\) −10.0000 −0.401610
\(621\) −24.0000 −0.963087
\(622\) 6.00000 0.240578
\(623\) −12.0000 −0.480770
\(624\) −4.00000 −0.160128
\(625\) 1.00000 0.0400000
\(626\) 2.00000 0.0799361
\(627\) 0 0
\(628\) −6.00000 −0.239426
\(629\) 2.00000 0.0797452
\(630\) 2.00000 0.0796819
\(631\) −4.00000 −0.159237 −0.0796187 0.996825i \(-0.525370\pi\)
−0.0796187 + 0.996825i \(0.525370\pi\)
\(632\) 42.0000 1.67067
\(633\) 4.00000 0.158986
\(634\) 10.0000 0.397151
\(635\) −8.00000 −0.317470
\(636\) 20.0000 0.793052
\(637\) −6.00000 −0.237729
\(638\) −12.0000 −0.475085
\(639\) −2.00000 −0.0791188
\(640\) 3.00000 0.118585
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 4.00000 0.157867
\(643\) −14.0000 −0.552106 −0.276053 0.961142i \(-0.589027\pi\)
−0.276053 + 0.961142i \(0.589027\pi\)
\(644\) 12.0000 0.472866
\(645\) −8.00000 −0.315000
\(646\) 0 0
\(647\) 28.0000 1.10079 0.550397 0.834903i \(-0.314476\pi\)
0.550397 + 0.834903i \(0.314476\pi\)
\(648\) 33.0000 1.29636
\(649\) 16.0000 0.628055
\(650\) 2.00000 0.0784465
\(651\) 40.0000 1.56772
\(652\) 2.00000 0.0783260
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) 4.00000 0.156412
\(655\) −6.00000 −0.234439
\(656\) −10.0000 −0.390434
\(657\) −14.0000 −0.546192
\(658\) −24.0000 −0.935617
\(659\) −44.0000 −1.71400 −0.856998 0.515319i \(-0.827673\pi\)
−0.856998 + 0.515319i \(0.827673\pi\)
\(660\) 4.00000 0.155700
\(661\) 46.0000 1.78919 0.894596 0.446875i \(-0.147463\pi\)
0.894596 + 0.446875i \(0.147463\pi\)
\(662\) 16.0000 0.621858
\(663\) 4.00000 0.155347
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 2.00000 0.0774984
\(667\) −36.0000 −1.39393
\(668\) −2.00000 −0.0773823
\(669\) 32.0000 1.23719
\(670\) −8.00000 −0.309067
\(671\) −28.0000 −1.08093
\(672\) −20.0000 −0.771517
\(673\) 10.0000 0.385472 0.192736 0.981251i \(-0.438264\pi\)
0.192736 + 0.981251i \(0.438264\pi\)
\(674\) −6.00000 −0.231111
\(675\) −4.00000 −0.153960
\(676\) 9.00000 0.346154
\(677\) −30.0000 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(678\) −12.0000 −0.460857
\(679\) −4.00000 −0.153506
\(680\) 3.00000 0.115045
\(681\) −4.00000 −0.153280
\(682\) −20.0000 −0.765840
\(683\) 18.0000 0.688751 0.344375 0.938832i \(-0.388091\pi\)
0.344375 + 0.938832i \(0.388091\pi\)
\(684\) 0 0
\(685\) 2.00000 0.0764161
\(686\) 20.0000 0.763604
\(687\) 20.0000 0.763048
\(688\) −4.00000 −0.152499
\(689\) −20.0000 −0.761939
\(690\) −12.0000 −0.456832
\(691\) 2.00000 0.0760836 0.0380418 0.999276i \(-0.487888\pi\)
0.0380418 + 0.999276i \(0.487888\pi\)
\(692\) 6.00000 0.228086
\(693\) −4.00000 −0.151947
\(694\) −26.0000 −0.986947
\(695\) −14.0000 −0.531050
\(696\) 36.0000 1.36458
\(697\) 10.0000 0.378777
\(698\) 22.0000 0.832712
\(699\) −28.0000 −1.05906
\(700\) 2.00000 0.0755929
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) −8.00000 −0.301941
\(703\) 0 0
\(704\) 14.0000 0.527645
\(705\) −24.0000 −0.903892
\(706\) −14.0000 −0.526897
\(707\) 12.0000 0.451306
\(708\) −16.0000 −0.601317
\(709\) −6.00000 −0.225335 −0.112667 0.993633i \(-0.535939\pi\)
−0.112667 + 0.993633i \(0.535939\pi\)
\(710\) 2.00000 0.0750587
\(711\) −14.0000 −0.525041
\(712\) −18.0000 −0.674579
\(713\) −60.0000 −2.24702
\(714\) −4.00000 −0.149696
\(715\) −4.00000 −0.149592
\(716\) 24.0000 0.896922
\(717\) −16.0000 −0.597531
\(718\) 20.0000 0.746393
\(719\) 14.0000 0.522112 0.261056 0.965324i \(-0.415929\pi\)
0.261056 + 0.965324i \(0.415929\pi\)
\(720\) 1.00000 0.0372678
\(721\) −24.0000 −0.893807
\(722\) −19.0000 −0.707107
\(723\) −12.0000 −0.446285
\(724\) −26.0000 −0.966282
\(725\) −6.00000 −0.222834
\(726\) −14.0000 −0.519589
\(727\) −12.0000 −0.445055 −0.222528 0.974926i \(-0.571431\pi\)
−0.222528 + 0.974926i \(0.571431\pi\)
\(728\) 12.0000 0.444750
\(729\) 13.0000 0.481481
\(730\) 14.0000 0.518163
\(731\) 4.00000 0.147945
\(732\) 28.0000 1.03491
\(733\) −2.00000 −0.0738717 −0.0369358 0.999318i \(-0.511760\pi\)
−0.0369358 + 0.999318i \(0.511760\pi\)
\(734\) −34.0000 −1.25496
\(735\) 6.00000 0.221313
\(736\) 30.0000 1.10581
\(737\) 16.0000 0.589368
\(738\) 10.0000 0.368105
\(739\) −8.00000 −0.294285 −0.147142 0.989115i \(-0.547008\pi\)
−0.147142 + 0.989115i \(0.547008\pi\)
\(740\) 2.00000 0.0735215
\(741\) 0 0
\(742\) 20.0000 0.734223
\(743\) −6.00000 −0.220119 −0.110059 0.993925i \(-0.535104\pi\)
−0.110059 + 0.993925i \(0.535104\pi\)
\(744\) 60.0000 2.19971
\(745\) −6.00000 −0.219823
\(746\) 10.0000 0.366126
\(747\) 4.00000 0.146352
\(748\) −2.00000 −0.0731272
\(749\) −4.00000 −0.146157
\(750\) −2.00000 −0.0730297
\(751\) −2.00000 −0.0729810 −0.0364905 0.999334i \(-0.511618\pi\)
−0.0364905 + 0.999334i \(0.511618\pi\)
\(752\) −12.0000 −0.437595
\(753\) 56.0000 2.04075
\(754\) −12.0000 −0.437014
\(755\) 12.0000 0.436725
\(756\) −8.00000 −0.290957
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) −2.00000 −0.0726433
\(759\) 24.0000 0.871145
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 16.0000 0.579619
\(763\) −4.00000 −0.144810
\(764\) −8.00000 −0.289430
\(765\) −1.00000 −0.0361551
\(766\) 0 0
\(767\) 16.0000 0.577727
\(768\) −34.0000 −1.22687
\(769\) −18.0000 −0.649097 −0.324548 0.945869i \(-0.605212\pi\)
−0.324548 + 0.945869i \(0.605212\pi\)
\(770\) 4.00000 0.144150
\(771\) −4.00000 −0.144056
\(772\) −18.0000 −0.647834
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 4.00000 0.143777
\(775\) −10.0000 −0.359211
\(776\) −6.00000 −0.215387
\(777\) −8.00000 −0.286998
\(778\) 26.0000 0.932145
\(779\) 0 0
\(780\) 4.00000 0.143223
\(781\) −4.00000 −0.143131
\(782\) 6.00000 0.214560
\(783\) 24.0000 0.857690
\(784\) 3.00000 0.107143
\(785\) −6.00000 −0.214149
\(786\) 12.0000 0.428026
\(787\) −6.00000 −0.213877 −0.106938 0.994266i \(-0.534105\pi\)
−0.106938 + 0.994266i \(0.534105\pi\)
\(788\) −2.00000 −0.0712470
\(789\) −16.0000 −0.569615
\(790\) 14.0000 0.498098
\(791\) 12.0000 0.426671
\(792\) −6.00000 −0.213201
\(793\) −28.0000 −0.994309
\(794\) −14.0000 −0.496841
\(795\) 20.0000 0.709327
\(796\) −6.00000 −0.212664
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) 12.0000 0.424529
\(800\) 5.00000 0.176777
\(801\) 6.00000 0.212000
\(802\) 18.0000 0.635602
\(803\) −28.0000 −0.988099
\(804\) −16.0000 −0.564276
\(805\) 12.0000 0.422944
\(806\) −20.0000 −0.704470
\(807\) 20.0000 0.704033
\(808\) 18.0000 0.633238
\(809\) 26.0000 0.914111 0.457056 0.889438i \(-0.348904\pi\)
0.457056 + 0.889438i \(0.348904\pi\)
\(810\) 11.0000 0.386501
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) −12.0000 −0.421117
\(813\) −32.0000 −1.12229
\(814\) 4.00000 0.140200
\(815\) 2.00000 0.0700569
\(816\) −2.00000 −0.0700140
\(817\) 0 0
\(818\) −38.0000 −1.32864
\(819\) −4.00000 −0.139771
\(820\) 10.0000 0.349215
\(821\) 2.00000 0.0698005 0.0349002 0.999391i \(-0.488889\pi\)
0.0349002 + 0.999391i \(0.488889\pi\)
\(822\) −4.00000 −0.139516
\(823\) −34.0000 −1.18517 −0.592583 0.805510i \(-0.701892\pi\)
−0.592583 + 0.805510i \(0.701892\pi\)
\(824\) −36.0000 −1.25412
\(825\) 4.00000 0.139262
\(826\) −16.0000 −0.556711
\(827\) −42.0000 −1.46048 −0.730242 0.683189i \(-0.760592\pi\)
−0.730242 + 0.683189i \(0.760592\pi\)
\(828\) −6.00000 −0.208514
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) −4.00000 −0.138842
\(831\) −60.0000 −2.08138
\(832\) 14.0000 0.485363
\(833\) −3.00000 −0.103944
\(834\) 28.0000 0.969561
\(835\) −2.00000 −0.0692129
\(836\) 0 0
\(837\) 40.0000 1.38260
\(838\) 18.0000 0.621800
\(839\) 26.0000 0.897620 0.448810 0.893627i \(-0.351848\pi\)
0.448810 + 0.893627i \(0.351848\pi\)
\(840\) −12.0000 −0.414039
\(841\) 7.00000 0.241379
\(842\) 26.0000 0.896019
\(843\) −12.0000 −0.413302
\(844\) −2.00000 −0.0688428
\(845\) 9.00000 0.309609
\(846\) 12.0000 0.412568
\(847\) 14.0000 0.481046
\(848\) 10.0000 0.343401
\(849\) 12.0000 0.411839
\(850\) 1.00000 0.0342997
\(851\) 12.0000 0.411355
\(852\) 4.00000 0.137038
\(853\) 34.0000 1.16414 0.582069 0.813139i \(-0.302243\pi\)
0.582069 + 0.813139i \(0.302243\pi\)
\(854\) 28.0000 0.958140
\(855\) 0 0
\(856\) −6.00000 −0.205076
\(857\) 34.0000 1.16142 0.580709 0.814111i \(-0.302775\pi\)
0.580709 + 0.814111i \(0.302775\pi\)
\(858\) 8.00000 0.273115
\(859\) −24.0000 −0.818869 −0.409435 0.912339i \(-0.634274\pi\)
−0.409435 + 0.912339i \(0.634274\pi\)
\(860\) 4.00000 0.136399
\(861\) −40.0000 −1.36320
\(862\) −38.0000 −1.29429
\(863\) −4.00000 −0.136162 −0.0680808 0.997680i \(-0.521688\pi\)
−0.0680808 + 0.997680i \(0.521688\pi\)
\(864\) −20.0000 −0.680414
\(865\) 6.00000 0.204006
\(866\) −34.0000 −1.15537
\(867\) 2.00000 0.0679236
\(868\) −20.0000 −0.678844
\(869\) −28.0000 −0.949835
\(870\) 12.0000 0.406838
\(871\) 16.0000 0.542139
\(872\) −6.00000 −0.203186
\(873\) 2.00000 0.0676897
\(874\) 0 0
\(875\) 2.00000 0.0676123
\(876\) 28.0000 0.946032
\(877\) −14.0000 −0.472746 −0.236373 0.971662i \(-0.575959\pi\)
−0.236373 + 0.971662i \(0.575959\pi\)
\(878\) 6.00000 0.202490
\(879\) 60.0000 2.02375
\(880\) 2.00000 0.0674200
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) −3.00000 −0.101015
\(883\) 16.0000 0.538443 0.269221 0.963078i \(-0.413234\pi\)
0.269221 + 0.963078i \(0.413234\pi\)
\(884\) −2.00000 −0.0672673
\(885\) −16.0000 −0.537834
\(886\) 24.0000 0.806296
\(887\) −22.0000 −0.738688 −0.369344 0.929293i \(-0.620418\pi\)
−0.369344 + 0.929293i \(0.620418\pi\)
\(888\) −12.0000 −0.402694
\(889\) −16.0000 −0.536623
\(890\) −6.00000 −0.201120
\(891\) −22.0000 −0.737028
\(892\) −16.0000 −0.535720
\(893\) 0 0
\(894\) 12.0000 0.401340
\(895\) 24.0000 0.802232
\(896\) 6.00000 0.200446
\(897\) 24.0000 0.801337
\(898\) 18.0000 0.600668
\(899\) 60.0000 2.00111
\(900\) −1.00000 −0.0333333
\(901\) −10.0000 −0.333148
\(902\) 20.0000 0.665927
\(903\) −16.0000 −0.532447
\(904\) 18.0000 0.598671
\(905\) −26.0000 −0.864269
\(906\) −24.0000 −0.797347
\(907\) 30.0000 0.996134 0.498067 0.867139i \(-0.334043\pi\)
0.498067 + 0.867139i \(0.334043\pi\)
\(908\) 2.00000 0.0663723
\(909\) −6.00000 −0.199007
\(910\) 4.00000 0.132599
\(911\) −38.0000 −1.25900 −0.629498 0.777002i \(-0.716739\pi\)
−0.629498 + 0.777002i \(0.716739\pi\)
\(912\) 0 0
\(913\) 8.00000 0.264761
\(914\) 6.00000 0.198462
\(915\) 28.0000 0.925651
\(916\) −10.0000 −0.330409
\(917\) −12.0000 −0.396275
\(918\) −4.00000 −0.132020
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 18.0000 0.593442
\(921\) −32.0000 −1.05444
\(922\) −26.0000 −0.856264
\(923\) −4.00000 −0.131662
\(924\) 8.00000 0.263181
\(925\) 2.00000 0.0657596
\(926\) −36.0000 −1.18303
\(927\) 12.0000 0.394132
\(928\) −30.0000 −0.984798
\(929\) 58.0000 1.90292 0.951459 0.307775i \(-0.0995844\pi\)
0.951459 + 0.307775i \(0.0995844\pi\)
\(930\) 20.0000 0.655826
\(931\) 0 0
\(932\) 14.0000 0.458585
\(933\) 12.0000 0.392862
\(934\) 28.0000 0.916188
\(935\) −2.00000 −0.0654070
\(936\) −6.00000 −0.196116
\(937\) −38.0000 −1.24141 −0.620703 0.784046i \(-0.713153\pi\)
−0.620703 + 0.784046i \(0.713153\pi\)
\(938\) −16.0000 −0.522419
\(939\) 4.00000 0.130535
\(940\) 12.0000 0.391397
\(941\) 34.0000 1.10837 0.554184 0.832394i \(-0.313030\pi\)
0.554184 + 0.832394i \(0.313030\pi\)
\(942\) 12.0000 0.390981
\(943\) 60.0000 1.95387
\(944\) −8.00000 −0.260378
\(945\) −8.00000 −0.260240
\(946\) 8.00000 0.260102
\(947\) 26.0000 0.844886 0.422443 0.906389i \(-0.361173\pi\)
0.422443 + 0.906389i \(0.361173\pi\)
\(948\) 28.0000 0.909398
\(949\) −28.0000 −0.908918
\(950\) 0 0
\(951\) 20.0000 0.648544
\(952\) 6.00000 0.194461
\(953\) −18.0000 −0.583077 −0.291539 0.956559i \(-0.594167\pi\)
−0.291539 + 0.956559i \(0.594167\pi\)
\(954\) −10.0000 −0.323762
\(955\) −8.00000 −0.258874
\(956\) 8.00000 0.258738
\(957\) −24.0000 −0.775810
\(958\) −18.0000 −0.581554
\(959\) 4.00000 0.129167
\(960\) −14.0000 −0.451848
\(961\) 69.0000 2.22581
\(962\) 4.00000 0.128965
\(963\) 2.00000 0.0644491
\(964\) 6.00000 0.193247
\(965\) −18.0000 −0.579441
\(966\) −24.0000 −0.772187
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) 21.0000 0.674966
\(969\) 0 0
\(970\) −2.00000 −0.0642161
\(971\) −8.00000 −0.256732 −0.128366 0.991727i \(-0.540973\pi\)
−0.128366 + 0.991727i \(0.540973\pi\)
\(972\) 10.0000 0.320750
\(973\) −28.0000 −0.897639
\(974\) 22.0000 0.704925
\(975\) 4.00000 0.128103
\(976\) 14.0000 0.448129
\(977\) 34.0000 1.08776 0.543878 0.839164i \(-0.316955\pi\)
0.543878 + 0.839164i \(0.316955\pi\)
\(978\) −4.00000 −0.127906
\(979\) 12.0000 0.383522
\(980\) −3.00000 −0.0958315
\(981\) 2.00000 0.0638551
\(982\) −16.0000 −0.510581
\(983\) −6.00000 −0.191370 −0.0956851 0.995412i \(-0.530504\pi\)
−0.0956851 + 0.995412i \(0.530504\pi\)
\(984\) −60.0000 −1.91273
\(985\) −2.00000 −0.0637253
\(986\) −6.00000 −0.191079
\(987\) −48.0000 −1.52786
\(988\) 0 0
\(989\) 24.0000 0.763156
\(990\) −2.00000 −0.0635642
\(991\) −58.0000 −1.84243 −0.921215 0.389053i \(-0.872802\pi\)
−0.921215 + 0.389053i \(0.872802\pi\)
\(992\) −50.0000 −1.58750
\(993\) 32.0000 1.01549
\(994\) 4.00000 0.126872
\(995\) −6.00000 −0.190213
\(996\) −8.00000 −0.253490
\(997\) −62.0000 −1.96356 −0.981780 0.190022i \(-0.939144\pi\)
−0.981780 + 0.190022i \(0.939144\pi\)
\(998\) −14.0000 −0.443162
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.a.a.1.1 1
3.2 odd 2 765.2.a.a.1.1 1
4.3 odd 2 1360.2.a.b.1.1 1
5.2 odd 4 425.2.b.c.324.2 2
5.3 odd 4 425.2.b.c.324.1 2
5.4 even 2 425.2.a.a.1.1 1
7.6 odd 2 4165.2.a.l.1.1 1
8.3 odd 2 5440.2.a.x.1.1 1
8.5 even 2 5440.2.a.e.1.1 1
15.14 odd 2 3825.2.a.l.1.1 1
17.4 even 4 1445.2.d.a.866.1 2
17.13 even 4 1445.2.d.a.866.2 2
17.16 even 2 1445.2.a.c.1.1 1
20.19 odd 2 6800.2.a.v.1.1 1
85.84 even 2 7225.2.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.a.a.1.1 1 1.1 even 1 trivial
425.2.a.a.1.1 1 5.4 even 2
425.2.b.c.324.1 2 5.3 odd 4
425.2.b.c.324.2 2 5.2 odd 4
765.2.a.a.1.1 1 3.2 odd 2
1360.2.a.b.1.1 1 4.3 odd 2
1445.2.a.c.1.1 1 17.16 even 2
1445.2.d.a.866.1 2 17.4 even 4
1445.2.d.a.866.2 2 17.13 even 4
3825.2.a.l.1.1 1 15.14 odd 2
4165.2.a.l.1.1 1 7.6 odd 2
5440.2.a.e.1.1 1 8.5 even 2
5440.2.a.x.1.1 1 8.3 odd 2
6800.2.a.v.1.1 1 20.19 odd 2
7225.2.a.d.1.1 1 85.84 even 2