Defining parameters
Level: | \( N \) | \(=\) | \( 85 = 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 85.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(18\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(85))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 10 | 5 | 5 |
Cusp forms | 7 | 5 | 2 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(17\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(2\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(3\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(85))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 5 | 17 | |||||||
85.2.a.a | $1$ | $0.679$ | \(\Q\) | None | \(1\) | \(2\) | \(-1\) | \(-2\) | $+$ | $-$ | \(q+q^{2}+2q^{3}-q^{4}-q^{5}+2q^{6}-2q^{7}+\cdots\) | |
85.2.a.b | $2$ | $0.679$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(-4\) | \(-2\) | \(-4\) | $+$ | $+$ | \(q+(-1+\beta )q^{2}+(-2-\beta )q^{3}+(1-2\beta )q^{4}+\cdots\) | |
85.2.a.c | $2$ | $0.679$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(2\) | \(-2\) | $-$ | $+$ | \(q+\beta q^{2}+(1-\beta )q^{3}+q^{4}+q^{5}+(-3+\cdots)q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(85))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(85)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 2}\)