Properties

Label 85.2.a
Level $85$
Weight $2$
Character orbit 85.a
Rep. character $\chi_{85}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $3$
Sturm bound $18$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(18\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(85))\).

Total New Old
Modular forms 10 5 5
Cusp forms 7 5 2
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(17\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(1\)
\(-\)\(+\)\(-\)\(2\)
Plus space\(+\)\(2\)
Minus space\(-\)\(3\)

Trace form

\( 5 q - q^{2} + 3 q^{4} - q^{5} - 4 q^{6} - 8 q^{7} - 9 q^{8} + 9 q^{9} + q^{10} + 4 q^{12} - 6 q^{13} + 12 q^{14} + 4 q^{15} - 5 q^{16} - 3 q^{17} - q^{18} + 4 q^{19} + q^{20} - 8 q^{21} + 8 q^{22}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(85))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 17
85.2.a.a 85.a 1.a $1$ $0.679$ \(\Q\) None 85.2.a.a \(1\) \(2\) \(-1\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}-q^{4}-q^{5}+2q^{6}-2q^{7}+\cdots\)
85.2.a.b 85.a 1.a $2$ $0.679$ \(\Q(\sqrt{2}) \) None 85.2.a.b \(-2\) \(-4\) \(-2\) \(-4\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{2}+(-2-\beta )q^{3}+(1-2\beta )q^{4}+\cdots\)
85.2.a.c 85.a 1.a $2$ $0.679$ \(\Q(\sqrt{3}) \) None 85.2.a.c \(0\) \(2\) \(2\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(1-\beta )q^{3}+q^{4}+q^{5}+(-3+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(85))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(85)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 2}\)