Properties

Label 8470.2.a.n
Level $8470$
Weight $2$
Character orbit 8470.a
Self dual yes
Analytic conductor $67.633$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8470 = 2 \cdot 5 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8470.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(67.6332905120\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{7} - q^{8} - 2q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{7} - q^{8} - 2q^{9} - q^{10} + q^{12} + 3q^{13} + q^{14} + q^{15} + q^{16} + 2q^{18} + 3q^{19} + q^{20} - q^{21} - 7q^{23} - q^{24} + q^{25} - 3q^{26} - 5q^{27} - q^{28} + 8q^{29} - q^{30} + 4q^{31} - q^{32} - q^{35} - 2q^{36} - 6q^{37} - 3q^{38} + 3q^{39} - q^{40} - 10q^{41} + q^{42} + 6q^{43} - 2q^{45} + 7q^{46} - 12q^{47} + q^{48} + q^{49} - q^{50} + 3q^{52} - 12q^{53} + 5q^{54} + q^{56} + 3q^{57} - 8q^{58} - q^{59} + q^{60} - 10q^{61} - 4q^{62} + 2q^{63} + q^{64} + 3q^{65} - 8q^{67} - 7q^{69} + q^{70} + 8q^{71} + 2q^{72} + 8q^{73} + 6q^{74} + q^{75} + 3q^{76} - 3q^{78} - 7q^{79} + q^{80} + q^{81} + 10q^{82} + 9q^{83} - q^{84} - 6q^{86} + 8q^{87} + 6q^{89} + 2q^{90} - 3q^{91} - 7q^{92} + 4q^{93} + 12q^{94} + 3q^{95} - q^{96} + 8q^{97} - q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 1.00000 −1.00000 −1.00000 −1.00000 −2.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(5\) \(-1\)
\(7\) \(1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8470.2.a.n 1
11.b odd 2 1 8470.2.a.bf yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8470.2.a.n 1 1.a even 1 1 trivial
8470.2.a.bf yes 1 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8470))\):

\( T_{3} - 1 \)
\( T_{13} - 3 \)
\( T_{17} \)
\( T_{19} - 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( -1 + T \)
$5$ \( -1 + T \)
$7$ \( 1 + T \)
$11$ \( T \)
$13$ \( -3 + T \)
$17$ \( T \)
$19$ \( -3 + T \)
$23$ \( 7 + T \)
$29$ \( -8 + T \)
$31$ \( -4 + T \)
$37$ \( 6 + T \)
$41$ \( 10 + T \)
$43$ \( -6 + T \)
$47$ \( 12 + T \)
$53$ \( 12 + T \)
$59$ \( 1 + T \)
$61$ \( 10 + T \)
$67$ \( 8 + T \)
$71$ \( -8 + T \)
$73$ \( -8 + T \)
$79$ \( 7 + T \)
$83$ \( -9 + T \)
$89$ \( -6 + T \)
$97$ \( -8 + T \)
show more
show less