Properties

 Label 8470.2.a.ce Level $8470$ Weight $2$ Character orbit 8470.a Self dual yes Analytic conductor $67.633$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$8470 = 2 \cdot 5 \cdot 7 \cdot 11^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 8470.a (trivial)

Newform invariants

 Self dual: yes Analytic conductor: $$67.6332905120$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{3})$$ Defining polynomial: $$x^{2} - 3$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 770) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{3}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{2} + ( 1 + \beta ) q^{3} + q^{4} + q^{5} + ( 1 + \beta ) q^{6} - q^{7} + q^{8} + ( 1 + 2 \beta ) q^{9} +O(q^{10})$$ $$q + q^{2} + ( 1 + \beta ) q^{3} + q^{4} + q^{5} + ( 1 + \beta ) q^{6} - q^{7} + q^{8} + ( 1 + 2 \beta ) q^{9} + q^{10} + ( 1 + \beta ) q^{12} + ( -2 + 2 \beta ) q^{13} - q^{14} + ( 1 + \beta ) q^{15} + q^{16} -2 \beta q^{17} + ( 1 + 2 \beta ) q^{18} + ( 1 + \beta ) q^{19} + q^{20} + ( -1 - \beta ) q^{21} + ( 3 - \beta ) q^{23} + ( 1 + \beta ) q^{24} + q^{25} + ( -2 + 2 \beta ) q^{26} + 4 q^{27} - q^{28} + ( 3 + \beta ) q^{29} + ( 1 + \beta ) q^{30} + ( 2 + 4 \beta ) q^{31} + q^{32} -2 \beta q^{34} - q^{35} + ( 1 + 2 \beta ) q^{36} + ( 5 - \beta ) q^{37} + ( 1 + \beta ) q^{38} + 4 q^{39} + q^{40} + ( 3 + \beta ) q^{41} + ( -1 - \beta ) q^{42} + ( -2 + 4 \beta ) q^{43} + ( 1 + 2 \beta ) q^{45} + ( 3 - \beta ) q^{46} + ( 1 + \beta ) q^{48} + q^{49} + q^{50} + ( -6 - 2 \beta ) q^{51} + ( -2 + 2 \beta ) q^{52} + ( -3 - \beta ) q^{53} + 4 q^{54} - q^{56} + ( 4 + 2 \beta ) q^{57} + ( 3 + \beta ) q^{58} -8 \beta q^{59} + ( 1 + \beta ) q^{60} -2 q^{61} + ( 2 + 4 \beta ) q^{62} + ( -1 - 2 \beta ) q^{63} + q^{64} + ( -2 + 2 \beta ) q^{65} + ( -4 - 4 \beta ) q^{67} -2 \beta q^{68} + 2 \beta q^{69} - q^{70} + ( 6 + 2 \beta ) q^{71} + ( 1 + 2 \beta ) q^{72} + ( -8 - 2 \beta ) q^{73} + ( 5 - \beta ) q^{74} + ( 1 + \beta ) q^{75} + ( 1 + \beta ) q^{76} + 4 q^{78} + ( -5 - \beta ) q^{79} + q^{80} + ( 1 - 2 \beta ) q^{81} + ( 3 + \beta ) q^{82} + ( -6 + 6 \beta ) q^{83} + ( -1 - \beta ) q^{84} -2 \beta q^{85} + ( -2 + 4 \beta ) q^{86} + ( 6 + 4 \beta ) q^{87} + ( -12 - 2 \beta ) q^{89} + ( 1 + 2 \beta ) q^{90} + ( 2 - 2 \beta ) q^{91} + ( 3 - \beta ) q^{92} + ( 14 + 6 \beta ) q^{93} + ( 1 + \beta ) q^{95} + ( 1 + \beta ) q^{96} + ( 11 - 3 \beta ) q^{97} + q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{2} + 2 q^{3} + 2 q^{4} + 2 q^{5} + 2 q^{6} - 2 q^{7} + 2 q^{8} + 2 q^{9} + O(q^{10})$$ $$2 q + 2 q^{2} + 2 q^{3} + 2 q^{4} + 2 q^{5} + 2 q^{6} - 2 q^{7} + 2 q^{8} + 2 q^{9} + 2 q^{10} + 2 q^{12} - 4 q^{13} - 2 q^{14} + 2 q^{15} + 2 q^{16} + 2 q^{18} + 2 q^{19} + 2 q^{20} - 2 q^{21} + 6 q^{23} + 2 q^{24} + 2 q^{25} - 4 q^{26} + 8 q^{27} - 2 q^{28} + 6 q^{29} + 2 q^{30} + 4 q^{31} + 2 q^{32} - 2 q^{35} + 2 q^{36} + 10 q^{37} + 2 q^{38} + 8 q^{39} + 2 q^{40} + 6 q^{41} - 2 q^{42} - 4 q^{43} + 2 q^{45} + 6 q^{46} + 2 q^{48} + 2 q^{49} + 2 q^{50} - 12 q^{51} - 4 q^{52} - 6 q^{53} + 8 q^{54} - 2 q^{56} + 8 q^{57} + 6 q^{58} + 2 q^{60} - 4 q^{61} + 4 q^{62} - 2 q^{63} + 2 q^{64} - 4 q^{65} - 8 q^{67} - 2 q^{70} + 12 q^{71} + 2 q^{72} - 16 q^{73} + 10 q^{74} + 2 q^{75} + 2 q^{76} + 8 q^{78} - 10 q^{79} + 2 q^{80} + 2 q^{81} + 6 q^{82} - 12 q^{83} - 2 q^{84} - 4 q^{86} + 12 q^{87} - 24 q^{89} + 2 q^{90} + 4 q^{91} + 6 q^{92} + 28 q^{93} + 2 q^{95} + 2 q^{96} + 22 q^{97} + 2 q^{98} + O(q^{100})$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.73205 1.73205
1.00000 −0.732051 1.00000 1.00000 −0.732051 −1.00000 1.00000 −2.46410 1.00000
1.2 1.00000 2.73205 1.00000 1.00000 2.73205 −1.00000 1.00000 4.46410 1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$-1$$
$$7$$ $$1$$
$$11$$ $$-1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8470.2.a.ce 2
11.b odd 2 1 770.2.a.h 2
33.d even 2 1 6930.2.a.ca 2
44.c even 2 1 6160.2.a.v 2
55.d odd 2 1 3850.2.a.bm 2
55.e even 4 2 3850.2.c.s 4
77.b even 2 1 5390.2.a.bk 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
770.2.a.h 2 11.b odd 2 1
3850.2.a.bm 2 55.d odd 2 1
3850.2.c.s 4 55.e even 4 2
5390.2.a.bk 2 77.b even 2 1
6160.2.a.v 2 44.c even 2 1
6930.2.a.ca 2 33.d even 2 1
8470.2.a.ce 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(8470))$$:

 $$T_{3}^{2} - 2 T_{3} - 2$$ $$T_{13}^{2} + 4 T_{13} - 8$$ $$T_{17}^{2} - 12$$ $$T_{19}^{2} - 2 T_{19} - 2$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$( -1 + T )^{2}$$
$3$ $$-2 - 2 T + T^{2}$$
$5$ $$( -1 + T )^{2}$$
$7$ $$( 1 + T )^{2}$$
$11$ $$T^{2}$$
$13$ $$-8 + 4 T + T^{2}$$
$17$ $$-12 + T^{2}$$
$19$ $$-2 - 2 T + T^{2}$$
$23$ $$6 - 6 T + T^{2}$$
$29$ $$6 - 6 T + T^{2}$$
$31$ $$-44 - 4 T + T^{2}$$
$37$ $$22 - 10 T + T^{2}$$
$41$ $$6 - 6 T + T^{2}$$
$43$ $$-44 + 4 T + T^{2}$$
$47$ $$T^{2}$$
$53$ $$6 + 6 T + T^{2}$$
$59$ $$-192 + T^{2}$$
$61$ $$( 2 + T )^{2}$$
$67$ $$-32 + 8 T + T^{2}$$
$71$ $$24 - 12 T + T^{2}$$
$73$ $$52 + 16 T + T^{2}$$
$79$ $$22 + 10 T + T^{2}$$
$83$ $$-72 + 12 T + T^{2}$$
$89$ $$132 + 24 T + T^{2}$$
$97$ $$94 - 22 T + T^{2}$$