Properties

Label 8470.2.a.bb
Level $8470$
Weight $2$
Character orbit 8470.a
Self dual yes
Analytic conductor $67.633$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8470 = 2 \cdot 5 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8470.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(67.6332905120\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} - q^{7} + q^{8} - 2q^{9} + O(q^{10}) \) \( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} - q^{7} + q^{8} - 2q^{9} - q^{10} + q^{12} + q^{13} - q^{14} - q^{15} + q^{16} - 6q^{17} - 2q^{18} + 7q^{19} - q^{20} - q^{21} + 3q^{23} + q^{24} + q^{25} + q^{26} - 5q^{27} - q^{28} - 6q^{29} - q^{30} + 2q^{31} + q^{32} - 6q^{34} + q^{35} - 2q^{36} - 4q^{37} + 7q^{38} + q^{39} - q^{40} - q^{42} + 4q^{43} + 2q^{45} + 3q^{46} - 6q^{47} + q^{48} + q^{49} + q^{50} - 6q^{51} + q^{52} - 5q^{54} - q^{56} + 7q^{57} - 6q^{58} - 3q^{59} - q^{60} - 2q^{61} + 2q^{62} + 2q^{63} + q^{64} - q^{65} - 4q^{67} - 6q^{68} + 3q^{69} + q^{70} - 2q^{72} + 4q^{73} - 4q^{74} + q^{75} + 7q^{76} + q^{78} - 17q^{79} - q^{80} + q^{81} - 9q^{83} - q^{84} + 6q^{85} + 4q^{86} - 6q^{87} - 18q^{89} + 2q^{90} - q^{91} + 3q^{92} + 2q^{93} - 6q^{94} - 7q^{95} + q^{96} - 10q^{97} + q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 1.00000 −1.00000 1.00000 −1.00000 1.00000 −2.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)
\(7\) \(1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8470.2.a.bb yes 1
11.b odd 2 1 8470.2.a.m 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8470.2.a.m 1 11.b odd 2 1
8470.2.a.bb yes 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8470))\):

\( T_{3} - 1 \)
\( T_{13} - 1 \)
\( T_{17} + 6 \)
\( T_{19} - 7 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( -1 + T \)
$5$ \( 1 + T \)
$7$ \( 1 + T \)
$11$ \( T \)
$13$ \( -1 + T \)
$17$ \( 6 + T \)
$19$ \( -7 + T \)
$23$ \( -3 + T \)
$29$ \( 6 + T \)
$31$ \( -2 + T \)
$37$ \( 4 + T \)
$41$ \( T \)
$43$ \( -4 + T \)
$47$ \( 6 + T \)
$53$ \( T \)
$59$ \( 3 + T \)
$61$ \( 2 + T \)
$67$ \( 4 + T \)
$71$ \( T \)
$73$ \( -4 + T \)
$79$ \( 17 + T \)
$83$ \( 9 + T \)
$89$ \( 18 + T \)
$97$ \( 10 + T \)
show more
show less