Properties

Label 8470.2.a.a
Level $8470$
Weight $2$
Character orbit 8470.a
Self dual yes
Analytic conductor $67.633$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8470 = 2 \cdot 5 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8470.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(67.6332905120\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} - 3q^{3} + q^{4} + q^{5} + 3q^{6} - q^{7} - q^{8} + 6q^{9} + O(q^{10}) \) \( q - q^{2} - 3q^{3} + q^{4} + q^{5} + 3q^{6} - q^{7} - q^{8} + 6q^{9} - q^{10} - 3q^{12} - q^{13} + q^{14} - 3q^{15} + q^{16} - 6q^{18} + 7q^{19} + q^{20} + 3q^{21} + q^{23} + 3q^{24} + q^{25} + q^{26} - 9q^{27} - q^{28} - 8q^{29} + 3q^{30} - 4q^{31} - q^{32} - q^{35} + 6q^{36} + 2q^{37} - 7q^{38} + 3q^{39} - q^{40} + 6q^{41} - 3q^{42} + 6q^{43} + 6q^{45} - q^{46} - 12q^{47} - 3q^{48} + q^{49} - q^{50} - q^{52} - 12q^{53} + 9q^{54} + q^{56} - 21q^{57} + 8q^{58} + 3q^{59} - 3q^{60} + 6q^{61} + 4q^{62} - 6q^{63} + q^{64} - q^{65} + 8q^{67} - 3q^{69} + q^{70} - 8q^{71} - 6q^{72} - 16q^{73} - 2q^{74} - 3q^{75} + 7q^{76} - 3q^{78} + 9q^{79} + q^{80} + 9q^{81} - 6q^{82} + 13q^{83} + 3q^{84} - 6q^{86} + 24q^{87} + 6q^{89} - 6q^{90} + q^{91} + q^{92} + 12q^{93} + 12q^{94} + 7q^{95} + 3q^{96} - 8q^{97} - q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −3.00000 1.00000 1.00000 3.00000 −1.00000 −1.00000 6.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(5\) \(-1\)
\(7\) \(1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8470.2.a.a 1
11.b odd 2 1 8470.2.a.q yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8470.2.a.a 1 1.a even 1 1 trivial
8470.2.a.q yes 1 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8470))\):

\( T_{3} + 3 \)
\( T_{13} + 1 \)
\( T_{17} \)
\( T_{19} - 7 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( 3 + T \)
$5$ \( -1 + T \)
$7$ \( 1 + T \)
$11$ \( T \)
$13$ \( 1 + T \)
$17$ \( T \)
$19$ \( -7 + T \)
$23$ \( -1 + T \)
$29$ \( 8 + T \)
$31$ \( 4 + T \)
$37$ \( -2 + T \)
$41$ \( -6 + T \)
$43$ \( -6 + T \)
$47$ \( 12 + T \)
$53$ \( 12 + T \)
$59$ \( -3 + T \)
$61$ \( -6 + T \)
$67$ \( -8 + T \)
$71$ \( 8 + T \)
$73$ \( 16 + T \)
$79$ \( -9 + T \)
$83$ \( -13 + T \)
$89$ \( -6 + T \)
$97$ \( 8 + T \)
show more
show less