Properties

Label 847.6.a.c
Level $847$
Weight $6$
Character orbit 847.a
Self dual yes
Analytic conductor $135.845$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [847,6,Mod(1,847)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(847, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("847.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 847.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(135.845095382\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{57})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 4) q^{2} - 6 \beta q^{3} + (9 \beta - 2) q^{4} + (10 \beta - 14) q^{5} + (30 \beta + 84) q^{6} - 49 q^{7} + ( - 11 \beta + 10) q^{8} + (36 \beta + 261) q^{9} + ( - 36 \beta - 84) q^{10} + \cdots + ( - 2401 \beta - 9604) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 9 q^{2} - 6 q^{3} + 5 q^{4} - 18 q^{5} + 198 q^{6} - 98 q^{7} + 9 q^{8} + 558 q^{9} - 204 q^{10} - 1554 q^{12} + 350 q^{13} + 441 q^{14} - 1656 q^{15} + 113 q^{16} - 1800 q^{17} - 3537 q^{18} + 3266 q^{19}+ \cdots - 21609 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.27492
−3.27492
−8.27492 −25.6495 36.4743 28.7492 212.248 −49.0000 −37.0241 414.897 −237.897
1.2 −0.725083 19.6495 −31.4743 −46.7492 −14.2475 −49.0000 46.0241 143.103 33.8970
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 847.6.a.c 2
11.b odd 2 1 7.6.a.b 2
33.d even 2 1 63.6.a.f 2
44.c even 2 1 112.6.a.h 2
55.d odd 2 1 175.6.a.c 2
55.e even 4 2 175.6.b.c 4
77.b even 2 1 49.6.a.f 2
77.h odd 6 2 49.6.c.e 4
77.i even 6 2 49.6.c.d 4
88.b odd 2 1 448.6.a.w 2
88.g even 2 1 448.6.a.u 2
132.d odd 2 1 1008.6.a.bq 2
231.h odd 2 1 441.6.a.l 2
308.g odd 2 1 784.6.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.6.a.b 2 11.b odd 2 1
49.6.a.f 2 77.b even 2 1
49.6.c.d 4 77.i even 6 2
49.6.c.e 4 77.h odd 6 2
63.6.a.f 2 33.d even 2 1
112.6.a.h 2 44.c even 2 1
175.6.a.c 2 55.d odd 2 1
175.6.b.c 4 55.e even 4 2
441.6.a.l 2 231.h odd 2 1
448.6.a.u 2 88.g even 2 1
448.6.a.w 2 88.b odd 2 1
784.6.a.v 2 308.g odd 2 1
847.6.a.c 2 1.a even 1 1 trivial
1008.6.a.bq 2 132.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 9T_{2} + 6 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(847))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 9T + 6 \) Copy content Toggle raw display
$3$ \( T^{2} + 6T - 504 \) Copy content Toggle raw display
$5$ \( T^{2} + 18T - 1344 \) Copy content Toggle raw display
$7$ \( (T + 49)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 350T - 195608 \) Copy content Toggle raw display
$17$ \( T^{2} + 1800 T + 727692 \) Copy content Toggle raw display
$19$ \( T^{2} - 3266 T + 2662072 \) Copy content Toggle raw display
$23$ \( T^{2} - 2088 T - 3507456 \) Copy content Toggle raw display
$29$ \( T^{2} + 6696 T + 10304172 \) Copy content Toggle raw display
$31$ \( T^{2} + 20T - 4155200 \) Copy content Toggle raw display
$37$ \( T^{2} - 6232 T + 5554156 \) Copy content Toggle raw display
$41$ \( T^{2} - 6048 T - 7848036 \) Copy content Toggle raw display
$43$ \( T^{2} - 3020 T - 324400352 \) Copy content Toggle raw display
$47$ \( T^{2} - 11700 T - 165954432 \) Copy content Toggle raw display
$53$ \( T^{2} - 9468 T + 21794244 \) Copy content Toggle raw display
$59$ \( T^{2} + 43938 T + 422751336 \) Copy content Toggle raw display
$61$ \( T^{2} - 64754 T + 719128816 \) Copy content Toggle raw display
$67$ \( T^{2} - 24784 T + 99708976 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 2121099264 \) Copy content Toggle raw display
$73$ \( T^{2} + 17452 T - 317520812 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 2508546944 \) Copy content Toggle raw display
$83$ \( T^{2} + 117558 T - 79919784 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 5252421468 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 1000631156 \) Copy content Toggle raw display
show more
show less