Properties

Label 847.4.a.e.1.3
Level $847$
Weight $4$
Character 847.1
Self dual yes
Analytic conductor $49.975$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [847,4,Mod(1,847)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(847, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("847.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 847.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.9746177749\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.509800.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 5x + 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.11082\) of defining polynomial
Character \(\chi\) \(=\) 847.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.65527 q^{2} +5.17115 q^{3} +5.36103 q^{4} -10.0822 q^{5} +18.9020 q^{6} +7.00000 q^{7} -9.64616 q^{8} -0.259212 q^{9} +O(q^{10})\) \(q+3.65527 q^{2} +5.17115 q^{3} +5.36103 q^{4} -10.0822 q^{5} +18.9020 q^{6} +7.00000 q^{7} -9.64616 q^{8} -0.259212 q^{9} -36.8533 q^{10} +27.7227 q^{12} +84.5724 q^{13} +25.5869 q^{14} -52.1367 q^{15} -78.1476 q^{16} +38.2525 q^{17} -0.947489 q^{18} +127.283 q^{19} -54.0511 q^{20} +36.1980 q^{21} +140.378 q^{23} -49.8817 q^{24} -23.3486 q^{25} +309.135 q^{26} -140.961 q^{27} +37.5272 q^{28} +116.806 q^{29} -190.574 q^{30} +338.709 q^{31} -208.482 q^{32} +139.823 q^{34} -70.5756 q^{35} -1.38964 q^{36} -75.3416 q^{37} +465.256 q^{38} +437.337 q^{39} +97.2548 q^{40} +22.4446 q^{41} +132.314 q^{42} -181.844 q^{43} +2.61343 q^{45} +513.121 q^{46} +300.530 q^{47} -404.113 q^{48} +49.0000 q^{49} -85.3455 q^{50} +197.810 q^{51} +453.395 q^{52} -31.8596 q^{53} -515.253 q^{54} -67.5231 q^{56} +658.201 q^{57} +426.958 q^{58} -68.3030 q^{59} -279.507 q^{60} +145.315 q^{61} +1238.07 q^{62} -1.81448 q^{63} -136.877 q^{64} -852.679 q^{65} -668.020 q^{67} +205.073 q^{68} +725.916 q^{69} -257.973 q^{70} +727.608 q^{71} +2.50040 q^{72} +416.982 q^{73} -275.394 q^{74} -120.739 q^{75} +682.370 q^{76} +1598.59 q^{78} -458.805 q^{79} +787.902 q^{80} -721.934 q^{81} +82.0412 q^{82} -355.737 q^{83} +194.059 q^{84} -385.671 q^{85} -664.690 q^{86} +604.022 q^{87} -1245.97 q^{89} +9.55281 q^{90} +592.007 q^{91} +752.571 q^{92} +1751.51 q^{93} +1098.52 q^{94} -1283.30 q^{95} -1078.09 q^{96} -935.338 q^{97} +179.108 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 12 q^{3} + 22 q^{4} - 18 q^{5} - 2 q^{6} + 28 q^{7} + 60 q^{8} + 66 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} - 12 q^{3} + 22 q^{4} - 18 q^{5} - 2 q^{6} + 28 q^{7} + 60 q^{8} + 66 q^{9} + 92 q^{10} - 186 q^{12} + 134 q^{13} + 28 q^{14} - 62 q^{15} - 6 q^{16} + 74 q^{17} + 256 q^{18} + 164 q^{19} + 116 q^{20} - 84 q^{21} + 194 q^{23} - 570 q^{24} + 38 q^{25} + 734 q^{26} - 510 q^{27} + 154 q^{28} + 108 q^{29} - 1252 q^{30} - 412 q^{31} + 4 q^{32} - 346 q^{34} - 126 q^{35} + 1518 q^{36} + 286 q^{37} + 224 q^{38} + 256 q^{39} + 540 q^{40} + 18 q^{41} - 14 q^{42} + 496 q^{43} + 580 q^{45} + 284 q^{46} + 62 q^{47} - 862 q^{48} + 196 q^{49} - 212 q^{50} + 508 q^{51} + 822 q^{52} - 828 q^{53} - 2420 q^{54} + 420 q^{56} - 700 q^{57} + 1388 q^{58} - 1224 q^{59} - 1776 q^{60} + 350 q^{61} + 878 q^{62} + 462 q^{63} - 718 q^{64} + 396 q^{65} - 1498 q^{67} - 1058 q^{68} - 386 q^{69} + 644 q^{70} + 2326 q^{71} + 3000 q^{72} + 1630 q^{73} + 1156 q^{74} - 1362 q^{75} + 3152 q^{76} - 2464 q^{78} + 1020 q^{79} + 3072 q^{80} + 1128 q^{81} + 2118 q^{82} + 1920 q^{83} - 1302 q^{84} - 2008 q^{85} + 1056 q^{86} - 1640 q^{87} + 1550 q^{89} + 5780 q^{90} + 938 q^{91} + 2592 q^{92} + 6046 q^{93} + 1042 q^{94} - 2332 q^{95} - 4082 q^{96} - 2202 q^{97} + 196 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.65527 1.29233 0.646167 0.763196i \(-0.276371\pi\)
0.646167 + 0.763196i \(0.276371\pi\)
\(3\) 5.17115 0.995188 0.497594 0.867410i \(-0.334217\pi\)
0.497594 + 0.867410i \(0.334217\pi\)
\(4\) 5.36103 0.670129
\(5\) −10.0822 −0.901782 −0.450891 0.892579i \(-0.648894\pi\)
−0.450891 + 0.892579i \(0.648894\pi\)
\(6\) 18.9020 1.28612
\(7\) 7.00000 0.377964
\(8\) −9.64616 −0.426304
\(9\) −0.259212 −0.00960043
\(10\) −36.8533 −1.16540
\(11\) 0 0
\(12\) 27.7227 0.666904
\(13\) 84.5724 1.80432 0.902161 0.431400i \(-0.141980\pi\)
0.902161 + 0.431400i \(0.141980\pi\)
\(14\) 25.5869 0.488457
\(15\) −52.1367 −0.897443
\(16\) −78.1476 −1.22106
\(17\) 38.2525 0.545741 0.272871 0.962051i \(-0.412027\pi\)
0.272871 + 0.962051i \(0.412027\pi\)
\(18\) −0.947489 −0.0124070
\(19\) 127.283 1.53688 0.768442 0.639919i \(-0.221032\pi\)
0.768442 + 0.639919i \(0.221032\pi\)
\(20\) −54.0511 −0.604310
\(21\) 36.1980 0.376146
\(22\) 0 0
\(23\) 140.378 1.27265 0.636323 0.771423i \(-0.280455\pi\)
0.636323 + 0.771423i \(0.280455\pi\)
\(24\) −49.8817 −0.424253
\(25\) −23.3486 −0.186789
\(26\) 309.135 2.33179
\(27\) −140.961 −1.00474
\(28\) 37.5272 0.253285
\(29\) 116.806 0.747943 0.373971 0.927440i \(-0.377996\pi\)
0.373971 + 0.927440i \(0.377996\pi\)
\(30\) −190.574 −1.15980
\(31\) 338.709 1.96238 0.981192 0.193034i \(-0.0618327\pi\)
0.981192 + 0.193034i \(0.0618327\pi\)
\(32\) −208.482 −1.15171
\(33\) 0 0
\(34\) 139.823 0.705280
\(35\) −70.5756 −0.340842
\(36\) −1.38964 −0.00643352
\(37\) −75.3416 −0.334759 −0.167379 0.985893i \(-0.553531\pi\)
−0.167379 + 0.985893i \(0.553531\pi\)
\(38\) 465.256 1.98617
\(39\) 437.337 1.79564
\(40\) 97.2548 0.384434
\(41\) 22.4446 0.0854941 0.0427471 0.999086i \(-0.486389\pi\)
0.0427471 + 0.999086i \(0.486389\pi\)
\(42\) 132.314 0.486106
\(43\) −181.844 −0.644906 −0.322453 0.946585i \(-0.604508\pi\)
−0.322453 + 0.946585i \(0.604508\pi\)
\(44\) 0 0
\(45\) 2.61343 0.00865749
\(46\) 513.121 1.64468
\(47\) 300.530 0.932698 0.466349 0.884601i \(-0.345569\pi\)
0.466349 + 0.884601i \(0.345569\pi\)
\(48\) −404.113 −1.21518
\(49\) 49.0000 0.142857
\(50\) −85.3455 −0.241394
\(51\) 197.810 0.543115
\(52\) 453.395 1.20913
\(53\) −31.8596 −0.0825708 −0.0412854 0.999147i \(-0.513145\pi\)
−0.0412854 + 0.999147i \(0.513145\pi\)
\(54\) −515.253 −1.29846
\(55\) 0 0
\(56\) −67.5231 −0.161128
\(57\) 658.201 1.52949
\(58\) 426.958 0.966593
\(59\) −68.3030 −0.150717 −0.0753584 0.997157i \(-0.524010\pi\)
−0.0753584 + 0.997157i \(0.524010\pi\)
\(60\) −279.507 −0.601402
\(61\) 145.315 0.305012 0.152506 0.988303i \(-0.451266\pi\)
0.152506 + 0.988303i \(0.451266\pi\)
\(62\) 1238.07 2.53606
\(63\) −1.81448 −0.00362862
\(64\) −136.877 −0.267337
\(65\) −852.679 −1.62710
\(66\) 0 0
\(67\) −668.020 −1.21808 −0.609042 0.793138i \(-0.708446\pi\)
−0.609042 + 0.793138i \(0.708446\pi\)
\(68\) 205.073 0.365717
\(69\) 725.916 1.26652
\(70\) −257.973 −0.440481
\(71\) 727.608 1.21621 0.608107 0.793855i \(-0.291929\pi\)
0.608107 + 0.793855i \(0.291929\pi\)
\(72\) 2.50040 0.00409270
\(73\) 416.982 0.668548 0.334274 0.942476i \(-0.391509\pi\)
0.334274 + 0.942476i \(0.391509\pi\)
\(74\) −275.394 −0.432621
\(75\) −120.739 −0.185890
\(76\) 682.370 1.02991
\(77\) 0 0
\(78\) 1598.59 2.32057
\(79\) −458.805 −0.653413 −0.326707 0.945126i \(-0.605939\pi\)
−0.326707 + 0.945126i \(0.605939\pi\)
\(80\) 787.902 1.10113
\(81\) −721.934 −0.990307
\(82\) 82.0412 0.110487
\(83\) −355.737 −0.470449 −0.235224 0.971941i \(-0.575582\pi\)
−0.235224 + 0.971941i \(0.575582\pi\)
\(84\) 194.059 0.252066
\(85\) −385.671 −0.492140
\(86\) −664.690 −0.833435
\(87\) 604.022 0.744344
\(88\) 0 0
\(89\) −1245.97 −1.48396 −0.741980 0.670422i \(-0.766113\pi\)
−0.741980 + 0.670422i \(0.766113\pi\)
\(90\) 9.55281 0.0111884
\(91\) 592.007 0.681969
\(92\) 752.571 0.852837
\(93\) 1751.51 1.95294
\(94\) 1098.52 1.20536
\(95\) −1283.30 −1.38594
\(96\) −1078.09 −1.14617
\(97\) −935.338 −0.979063 −0.489532 0.871986i \(-0.662832\pi\)
−0.489532 + 0.871986i \(0.662832\pi\)
\(98\) 179.108 0.184619
\(99\) 0 0
\(100\) −125.173 −0.125173
\(101\) 533.395 0.525493 0.262747 0.964865i \(-0.415372\pi\)
0.262747 + 0.964865i \(0.415372\pi\)
\(102\) 723.048 0.701887
\(103\) −738.096 −0.706086 −0.353043 0.935607i \(-0.614853\pi\)
−0.353043 + 0.935607i \(0.614853\pi\)
\(104\) −815.800 −0.769190
\(105\) −364.957 −0.339202
\(106\) −116.456 −0.106709
\(107\) 2039.07 1.84228 0.921141 0.389229i \(-0.127259\pi\)
0.921141 + 0.389229i \(0.127259\pi\)
\(108\) −755.699 −0.673307
\(109\) −1488.69 −1.30817 −0.654085 0.756421i \(-0.726946\pi\)
−0.654085 + 0.756421i \(0.726946\pi\)
\(110\) 0 0
\(111\) −389.603 −0.333148
\(112\) −547.033 −0.461516
\(113\) −532.743 −0.443507 −0.221753 0.975103i \(-0.571178\pi\)
−0.221753 + 0.975103i \(0.571178\pi\)
\(114\) 2405.91 1.97661
\(115\) −1415.32 −1.14765
\(116\) 626.201 0.501218
\(117\) −21.9222 −0.0173223
\(118\) −249.666 −0.194776
\(119\) 267.768 0.206271
\(120\) 502.919 0.382584
\(121\) 0 0
\(122\) 531.167 0.394177
\(123\) 116.064 0.0850828
\(124\) 1815.83 1.31505
\(125\) 1495.68 1.07023
\(126\) −6.63242 −0.00468939
\(127\) 2257.44 1.57729 0.788645 0.614849i \(-0.210783\pi\)
0.788645 + 0.614849i \(0.210783\pi\)
\(128\) 1167.53 0.806220
\(129\) −940.343 −0.641803
\(130\) −3116.78 −2.10276
\(131\) −1174.21 −0.783142 −0.391571 0.920148i \(-0.628068\pi\)
−0.391571 + 0.920148i \(0.628068\pi\)
\(132\) 0 0
\(133\) 890.984 0.580888
\(134\) −2441.79 −1.57417
\(135\) 1421.21 0.906059
\(136\) −368.990 −0.232652
\(137\) 2690.08 1.67758 0.838792 0.544451i \(-0.183262\pi\)
0.838792 + 0.544451i \(0.183262\pi\)
\(138\) 2653.42 1.63677
\(139\) −17.7500 −0.0108312 −0.00541559 0.999985i \(-0.501724\pi\)
−0.00541559 + 0.999985i \(0.501724\pi\)
\(140\) −378.358 −0.228408
\(141\) 1554.09 0.928210
\(142\) 2659.61 1.57175
\(143\) 0 0
\(144\) 20.2568 0.0117227
\(145\) −1177.67 −0.674482
\(146\) 1524.18 0.863988
\(147\) 253.386 0.142170
\(148\) −403.908 −0.224332
\(149\) −1517.86 −0.834550 −0.417275 0.908780i \(-0.637015\pi\)
−0.417275 + 0.908780i \(0.637015\pi\)
\(150\) −441.335 −0.240232
\(151\) −1948.86 −1.05031 −0.525153 0.851008i \(-0.675992\pi\)
−0.525153 + 0.851008i \(0.675992\pi\)
\(152\) −1227.80 −0.655180
\(153\) −9.91550 −0.00523935
\(154\) 0 0
\(155\) −3414.94 −1.76964
\(156\) 2344.58 1.20331
\(157\) −1554.20 −0.790055 −0.395027 0.918669i \(-0.629265\pi\)
−0.395027 + 0.918669i \(0.629265\pi\)
\(158\) −1677.06 −0.844428
\(159\) −164.751 −0.0821735
\(160\) 2101.96 1.03859
\(161\) 982.647 0.481015
\(162\) −2638.87 −1.27981
\(163\) −3472.71 −1.66873 −0.834367 0.551209i \(-0.814167\pi\)
−0.834367 + 0.551209i \(0.814167\pi\)
\(164\) 120.326 0.0572921
\(165\) 0 0
\(166\) −1300.32 −0.607977
\(167\) 2228.90 1.03280 0.516400 0.856347i \(-0.327272\pi\)
0.516400 + 0.856347i \(0.327272\pi\)
\(168\) −349.172 −0.160353
\(169\) 4955.50 2.25558
\(170\) −1409.73 −0.636009
\(171\) −32.9933 −0.0147547
\(172\) −974.872 −0.432170
\(173\) 1008.04 0.443005 0.221502 0.975160i \(-0.428904\pi\)
0.221502 + 0.975160i \(0.428904\pi\)
\(174\) 2207.87 0.961942
\(175\) −163.440 −0.0705995
\(176\) 0 0
\(177\) −353.205 −0.149992
\(178\) −4554.36 −1.91777
\(179\) −746.246 −0.311603 −0.155802 0.987788i \(-0.549796\pi\)
−0.155802 + 0.987788i \(0.549796\pi\)
\(180\) 14.0107 0.00580163
\(181\) −2787.76 −1.14482 −0.572410 0.819968i \(-0.693991\pi\)
−0.572410 + 0.819968i \(0.693991\pi\)
\(182\) 2163.95 0.881333
\(183\) 751.447 0.303544
\(184\) −1354.11 −0.542534
\(185\) 759.611 0.301880
\(186\) 6402.27 2.52385
\(187\) 0 0
\(188\) 1611.15 0.625028
\(189\) −986.730 −0.379757
\(190\) −4690.82 −1.79109
\(191\) −911.917 −0.345466 −0.172733 0.984969i \(-0.555260\pi\)
−0.172733 + 0.984969i \(0.555260\pi\)
\(192\) −707.810 −0.266051
\(193\) −4454.66 −1.66142 −0.830709 0.556707i \(-0.812065\pi\)
−0.830709 + 0.556707i \(0.812065\pi\)
\(194\) −3418.92 −1.26528
\(195\) −4409.33 −1.61928
\(196\) 262.690 0.0957327
\(197\) 1377.46 0.498171 0.249086 0.968481i \(-0.419870\pi\)
0.249086 + 0.968481i \(0.419870\pi\)
\(198\) 0 0
\(199\) −94.3572 −0.0336121 −0.0168060 0.999859i \(-0.505350\pi\)
−0.0168060 + 0.999859i \(0.505350\pi\)
\(200\) 225.224 0.0796288
\(201\) −3454.43 −1.21222
\(202\) 1949.71 0.679113
\(203\) 817.643 0.282696
\(204\) 1060.46 0.363957
\(205\) −226.292 −0.0770971
\(206\) −2697.95 −0.912499
\(207\) −36.3876 −0.0122179
\(208\) −6609.13 −2.20318
\(209\) 0 0
\(210\) −1334.02 −0.438362
\(211\) −1174.19 −0.383101 −0.191550 0.981483i \(-0.561352\pi\)
−0.191550 + 0.981483i \(0.561352\pi\)
\(212\) −170.800 −0.0553330
\(213\) 3762.57 1.21036
\(214\) 7453.35 2.38084
\(215\) 1833.40 0.581565
\(216\) 1359.74 0.428326
\(217\) 2370.96 0.741712
\(218\) −5441.56 −1.69059
\(219\) 2156.27 0.665331
\(220\) 0 0
\(221\) 3235.11 0.984692
\(222\) −1424.10 −0.430539
\(223\) 88.5875 0.0266021 0.0133010 0.999912i \(-0.495766\pi\)
0.0133010 + 0.999912i \(0.495766\pi\)
\(224\) −1459.37 −0.435305
\(225\) 6.05223 0.00179325
\(226\) −1947.32 −0.573159
\(227\) −883.312 −0.258271 −0.129135 0.991627i \(-0.541220\pi\)
−0.129135 + 0.991627i \(0.541220\pi\)
\(228\) 3528.64 1.02495
\(229\) 1240.26 0.357898 0.178949 0.983858i \(-0.442730\pi\)
0.178949 + 0.983858i \(0.442730\pi\)
\(230\) −5173.40 −1.48315
\(231\) 0 0
\(232\) −1126.73 −0.318851
\(233\) 5479.93 1.54078 0.770392 0.637571i \(-0.220061\pi\)
0.770392 + 0.637571i \(0.220061\pi\)
\(234\) −80.1315 −0.0223861
\(235\) −3030.01 −0.841090
\(236\) −366.174 −0.101000
\(237\) −2372.55 −0.650269
\(238\) 978.764 0.266571
\(239\) −594.006 −0.160766 −0.0803830 0.996764i \(-0.525614\pi\)
−0.0803830 + 0.996764i \(0.525614\pi\)
\(240\) 4074.36 1.09583
\(241\) −308.785 −0.0825336 −0.0412668 0.999148i \(-0.513139\pi\)
−0.0412668 + 0.999148i \(0.513139\pi\)
\(242\) 0 0
\(243\) 72.7302 0.0192002
\(244\) 779.039 0.204397
\(245\) −494.029 −0.128826
\(246\) 424.247 0.109955
\(247\) 10764.7 2.77303
\(248\) −3267.24 −0.836573
\(249\) −1839.57 −0.468185
\(250\) 5467.14 1.38309
\(251\) 3487.59 0.877031 0.438515 0.898724i \(-0.355505\pi\)
0.438515 + 0.898724i \(0.355505\pi\)
\(252\) −9.72748 −0.00243164
\(253\) 0 0
\(254\) 8251.58 2.03839
\(255\) −1994.36 −0.489772
\(256\) 5362.66 1.30924
\(257\) 451.445 0.109574 0.0547868 0.998498i \(-0.482552\pi\)
0.0547868 + 0.998498i \(0.482552\pi\)
\(258\) −3437.21 −0.829425
\(259\) −527.391 −0.126527
\(260\) −4571.24 −1.09037
\(261\) −30.2775 −0.00718057
\(262\) −4292.08 −1.01208
\(263\) 5878.61 1.37829 0.689146 0.724622i \(-0.257986\pi\)
0.689146 + 0.724622i \(0.257986\pi\)
\(264\) 0 0
\(265\) 321.216 0.0744609
\(266\) 3256.79 0.750701
\(267\) −6443.09 −1.47682
\(268\) −3581.27 −0.816272
\(269\) −52.8516 −0.0119792 −0.00598962 0.999982i \(-0.501907\pi\)
−0.00598962 + 0.999982i \(0.501907\pi\)
\(270\) 5194.90 1.17093
\(271\) 6822.19 1.52922 0.764610 0.644493i \(-0.222931\pi\)
0.764610 + 0.644493i \(0.222931\pi\)
\(272\) −2989.34 −0.666381
\(273\) 3061.36 0.678688
\(274\) 9832.98 2.16800
\(275\) 0 0
\(276\) 3891.66 0.848733
\(277\) −469.032 −0.101738 −0.0508689 0.998705i \(-0.516199\pi\)
−0.0508689 + 0.998705i \(0.516199\pi\)
\(278\) −64.8810 −0.0139975
\(279\) −87.7972 −0.0188397
\(280\) 680.784 0.145302
\(281\) 2305.05 0.489352 0.244676 0.969605i \(-0.421318\pi\)
0.244676 + 0.969605i \(0.421318\pi\)
\(282\) 5680.61 1.19956
\(283\) 7370.80 1.54823 0.774114 0.633046i \(-0.218195\pi\)
0.774114 + 0.633046i \(0.218195\pi\)
\(284\) 3900.73 0.815020
\(285\) −6636.14 −1.37927
\(286\) 0 0
\(287\) 157.112 0.0323137
\(288\) 54.0408 0.0110569
\(289\) −3449.74 −0.702167
\(290\) −4304.69 −0.871656
\(291\) −4836.77 −0.974352
\(292\) 2235.45 0.448013
\(293\) −1758.90 −0.350702 −0.175351 0.984506i \(-0.556106\pi\)
−0.175351 + 0.984506i \(0.556106\pi\)
\(294\) 926.197 0.183731
\(295\) 688.646 0.135914
\(296\) 726.757 0.142709
\(297\) 0 0
\(298\) −5548.20 −1.07852
\(299\) 11872.1 2.29626
\(300\) −647.286 −0.124570
\(301\) −1272.91 −0.243752
\(302\) −7123.63 −1.35735
\(303\) 2758.27 0.522965
\(304\) −9946.89 −1.87662
\(305\) −1465.10 −0.275054
\(306\) −36.2439 −0.00677099
\(307\) −3468.10 −0.644739 −0.322369 0.946614i \(-0.604479\pi\)
−0.322369 + 0.946614i \(0.604479\pi\)
\(308\) 0 0
\(309\) −3816.81 −0.702688
\(310\) −12482.5 −2.28697
\(311\) 1983.98 0.361741 0.180870 0.983507i \(-0.442109\pi\)
0.180870 + 0.983507i \(0.442109\pi\)
\(312\) −4218.62 −0.765488
\(313\) −10094.2 −1.82287 −0.911436 0.411443i \(-0.865025\pi\)
−0.911436 + 0.411443i \(0.865025\pi\)
\(314\) −5681.03 −1.02102
\(315\) 18.2940 0.00327223
\(316\) −2459.67 −0.437871
\(317\) −3051.34 −0.540633 −0.270316 0.962772i \(-0.587128\pi\)
−0.270316 + 0.962772i \(0.587128\pi\)
\(318\) −602.209 −0.106196
\(319\) 0 0
\(320\) 1380.02 0.241080
\(321\) 10544.3 1.83342
\(322\) 3591.84 0.621632
\(323\) 4868.91 0.838741
\(324\) −3870.31 −0.663633
\(325\) −1974.65 −0.337027
\(326\) −12693.7 −2.15656
\(327\) −7698.23 −1.30187
\(328\) −216.504 −0.0364465
\(329\) 2103.71 0.352527
\(330\) 0 0
\(331\) −26.9826 −0.00448066 −0.00224033 0.999997i \(-0.500713\pi\)
−0.00224033 + 0.999997i \(0.500713\pi\)
\(332\) −1907.12 −0.315261
\(333\) 19.5294 0.00321383
\(334\) 8147.25 1.33472
\(335\) 6735.13 1.09845
\(336\) −2828.79 −0.459295
\(337\) −6818.62 −1.10218 −0.551089 0.834447i \(-0.685787\pi\)
−0.551089 + 0.834447i \(0.685787\pi\)
\(338\) 18113.7 2.91496
\(339\) −2754.90 −0.441373
\(340\) −2067.59 −0.329797
\(341\) 0 0
\(342\) −120.600 −0.0190681
\(343\) 343.000 0.0539949
\(344\) 1754.10 0.274926
\(345\) −7318.86 −1.14213
\(346\) 3684.66 0.572510
\(347\) −11907.0 −1.84208 −0.921038 0.389473i \(-0.872657\pi\)
−0.921038 + 0.389473i \(0.872657\pi\)
\(348\) 3238.18 0.498806
\(349\) 4352.72 0.667609 0.333805 0.942642i \(-0.391667\pi\)
0.333805 + 0.942642i \(0.391667\pi\)
\(350\) −597.419 −0.0912382
\(351\) −11921.5 −1.81288
\(352\) 0 0
\(353\) −1326.31 −0.199978 −0.0999891 0.994989i \(-0.531881\pi\)
−0.0999891 + 0.994989i \(0.531881\pi\)
\(354\) −1291.06 −0.193839
\(355\) −7335.91 −1.09676
\(356\) −6679.68 −0.994444
\(357\) 1384.67 0.205278
\(358\) −2727.73 −0.402696
\(359\) 8292.92 1.21917 0.609587 0.792719i \(-0.291335\pi\)
0.609587 + 0.792719i \(0.291335\pi\)
\(360\) −25.2096 −0.00369073
\(361\) 9342.06 1.36201
\(362\) −10190.0 −1.47949
\(363\) 0 0
\(364\) 3173.77 0.457007
\(365\) −4204.10 −0.602885
\(366\) 2746.74 0.392280
\(367\) −11027.5 −1.56848 −0.784241 0.620457i \(-0.786947\pi\)
−0.784241 + 0.620457i \(0.786947\pi\)
\(368\) −10970.2 −1.55397
\(369\) −5.81790 −0.000820780 0
\(370\) 2776.59 0.390130
\(371\) −223.017 −0.0312088
\(372\) 9389.92 1.30872
\(373\) −8245.72 −1.14463 −0.572316 0.820034i \(-0.693955\pi\)
−0.572316 + 0.820034i \(0.693955\pi\)
\(374\) 0 0
\(375\) 7734.41 1.06508
\(376\) −2898.96 −0.397613
\(377\) 9878.58 1.34953
\(378\) −3606.77 −0.490773
\(379\) 10163.4 1.37747 0.688734 0.725014i \(-0.258167\pi\)
0.688734 + 0.725014i \(0.258167\pi\)
\(380\) −6879.81 −0.928755
\(381\) 11673.6 1.56970
\(382\) −3333.31 −0.446458
\(383\) 14338.9 1.91301 0.956506 0.291714i \(-0.0942255\pi\)
0.956506 + 0.291714i \(0.0942255\pi\)
\(384\) 6037.48 0.802341
\(385\) 0 0
\(386\) −16283.0 −2.14711
\(387\) 47.1361 0.00619138
\(388\) −5014.37 −0.656098
\(389\) −2382.91 −0.310587 −0.155294 0.987868i \(-0.549632\pi\)
−0.155294 + 0.987868i \(0.549632\pi\)
\(390\) −16117.3 −2.09265
\(391\) 5369.82 0.694535
\(392\) −472.662 −0.0609006
\(393\) −6072.04 −0.779374
\(394\) 5034.98 0.643804
\(395\) 4625.78 0.589236
\(396\) 0 0
\(397\) −9868.22 −1.24754 −0.623768 0.781609i \(-0.714399\pi\)
−0.623768 + 0.781609i \(0.714399\pi\)
\(398\) −344.901 −0.0434380
\(399\) 4607.41 0.578093
\(400\) 1824.64 0.228080
\(401\) −5879.12 −0.732143 −0.366072 0.930587i \(-0.619298\pi\)
−0.366072 + 0.930587i \(0.619298\pi\)
\(402\) −12626.9 −1.56660
\(403\) 28645.4 3.54077
\(404\) 2859.55 0.352148
\(405\) 7278.71 0.893042
\(406\) 2988.71 0.365338
\(407\) 0 0
\(408\) −1908.10 −0.231532
\(409\) −5680.84 −0.686796 −0.343398 0.939190i \(-0.611578\pi\)
−0.343398 + 0.939190i \(0.611578\pi\)
\(410\) −827.158 −0.0996352
\(411\) 13910.8 1.66951
\(412\) −3956.96 −0.473168
\(413\) −478.121 −0.0569656
\(414\) −133.007 −0.0157897
\(415\) 3586.62 0.424242
\(416\) −17631.8 −2.07805
\(417\) −91.7878 −0.0107791
\(418\) 0 0
\(419\) −1098.50 −0.128079 −0.0640395 0.997947i \(-0.520398\pi\)
−0.0640395 + 0.997947i \(0.520398\pi\)
\(420\) −1956.55 −0.227309
\(421\) −5265.06 −0.609509 −0.304754 0.952431i \(-0.598574\pi\)
−0.304754 + 0.952431i \(0.598574\pi\)
\(422\) −4291.97 −0.495095
\(423\) −77.9008 −0.00895430
\(424\) 307.323 0.0352003
\(425\) −893.143 −0.101938
\(426\) 13753.2 1.56419
\(427\) 1017.21 0.115284
\(428\) 10931.5 1.23457
\(429\) 0 0
\(430\) 6701.56 0.751577
\(431\) −4273.45 −0.477598 −0.238799 0.971069i \(-0.576754\pi\)
−0.238799 + 0.971069i \(0.576754\pi\)
\(432\) 11015.8 1.22685
\(433\) −8560.19 −0.950061 −0.475031 0.879969i \(-0.657563\pi\)
−0.475031 + 0.879969i \(0.657563\pi\)
\(434\) 8666.52 0.958539
\(435\) −6089.89 −0.671236
\(436\) −7980.90 −0.876642
\(437\) 17867.8 1.95591
\(438\) 7881.77 0.859830
\(439\) −12664.2 −1.37684 −0.688419 0.725314i \(-0.741695\pi\)
−0.688419 + 0.725314i \(0.741695\pi\)
\(440\) 0 0
\(441\) −12.7014 −0.00137149
\(442\) 11825.2 1.27255
\(443\) 12368.9 1.32656 0.663279 0.748372i \(-0.269164\pi\)
0.663279 + 0.748372i \(0.269164\pi\)
\(444\) −2088.67 −0.223252
\(445\) 12562.2 1.33821
\(446\) 323.812 0.0343788
\(447\) −7849.09 −0.830535
\(448\) −958.136 −0.101044
\(449\) −2092.69 −0.219956 −0.109978 0.993934i \(-0.535078\pi\)
−0.109978 + 0.993934i \(0.535078\pi\)
\(450\) 22.1225 0.00231748
\(451\) 0 0
\(452\) −2856.05 −0.297207
\(453\) −10077.9 −1.04525
\(454\) −3228.75 −0.333772
\(455\) −5968.75 −0.614988
\(456\) −6349.12 −0.652028
\(457\) −7825.71 −0.801031 −0.400515 0.916290i \(-0.631169\pi\)
−0.400515 + 0.916290i \(0.631169\pi\)
\(458\) 4533.49 0.462525
\(459\) −5392.13 −0.548329
\(460\) −7587.60 −0.769073
\(461\) −4775.60 −0.482477 −0.241238 0.970466i \(-0.577554\pi\)
−0.241238 + 0.970466i \(0.577554\pi\)
\(462\) 0 0
\(463\) 11518.3 1.15615 0.578077 0.815982i \(-0.303803\pi\)
0.578077 + 0.815982i \(0.303803\pi\)
\(464\) −9128.12 −0.913280
\(465\) −17659.2 −1.76113
\(466\) 20030.7 1.99121
\(467\) −7420.17 −0.735256 −0.367628 0.929973i \(-0.619830\pi\)
−0.367628 + 0.929973i \(0.619830\pi\)
\(468\) −117.525 −0.0116081
\(469\) −4676.14 −0.460392
\(470\) −11075.5 −1.08697
\(471\) −8037.00 −0.786253
\(472\) 658.861 0.0642512
\(473\) 0 0
\(474\) −8672.32 −0.840365
\(475\) −2971.89 −0.287073
\(476\) 1435.51 0.138228
\(477\) 8.25837 0.000792715 0
\(478\) −2171.26 −0.207764
\(479\) −10159.2 −0.969076 −0.484538 0.874770i \(-0.661012\pi\)
−0.484538 + 0.874770i \(0.661012\pi\)
\(480\) 10869.5 1.03359
\(481\) −6371.82 −0.604013
\(482\) −1128.69 −0.106661
\(483\) 5081.41 0.478701
\(484\) 0 0
\(485\) 9430.29 0.882902
\(486\) 265.849 0.0248131
\(487\) −12344.9 −1.14866 −0.574331 0.818623i \(-0.694738\pi\)
−0.574331 + 0.818623i \(0.694738\pi\)
\(488\) −1401.73 −0.130028
\(489\) −17957.9 −1.66070
\(490\) −1805.81 −0.166486
\(491\) −15344.9 −1.41040 −0.705200 0.709009i \(-0.749143\pi\)
−0.705200 + 0.709009i \(0.749143\pi\)
\(492\) 622.225 0.0570164
\(493\) 4468.13 0.408183
\(494\) 39347.8 3.58369
\(495\) 0 0
\(496\) −26469.3 −2.39618
\(497\) 5093.26 0.459686
\(498\) −6724.13 −0.605051
\(499\) −5022.76 −0.450601 −0.225300 0.974289i \(-0.572336\pi\)
−0.225300 + 0.974289i \(0.572336\pi\)
\(500\) 8018.41 0.717188
\(501\) 11526.0 1.02783
\(502\) 12748.1 1.13342
\(503\) −8735.90 −0.774383 −0.387191 0.921999i \(-0.626555\pi\)
−0.387191 + 0.921999i \(0.626555\pi\)
\(504\) 17.5028 0.00154690
\(505\) −5377.82 −0.473881
\(506\) 0 0
\(507\) 25625.6 2.24472
\(508\) 12102.2 1.05699
\(509\) −21805.5 −1.89884 −0.949420 0.314008i \(-0.898328\pi\)
−0.949420 + 0.314008i \(0.898328\pi\)
\(510\) −7289.94 −0.632949
\(511\) 2918.87 0.252687
\(512\) 10261.7 0.885760
\(513\) −17942.1 −1.54417
\(514\) 1650.16 0.141606
\(515\) 7441.66 0.636735
\(516\) −5041.21 −0.430091
\(517\) 0 0
\(518\) −1927.76 −0.163515
\(519\) 5212.72 0.440873
\(520\) 8225.08 0.693642
\(521\) −4732.28 −0.397936 −0.198968 0.980006i \(-0.563759\pi\)
−0.198968 + 0.980006i \(0.563759\pi\)
\(522\) −110.673 −0.00927970
\(523\) 7511.23 0.627998 0.313999 0.949423i \(-0.398331\pi\)
0.313999 + 0.949423i \(0.398331\pi\)
\(524\) −6295.00 −0.524806
\(525\) −845.174 −0.0702598
\(526\) 21487.9 1.78121
\(527\) 12956.5 1.07095
\(528\) 0 0
\(529\) 7539.02 0.619629
\(530\) 1174.13 0.0962283
\(531\) 17.7049 0.00144695
\(532\) 4776.59 0.389270
\(533\) 1898.20 0.154259
\(534\) −23551.3 −1.90855
\(535\) −20558.4 −1.66134
\(536\) 6443.82 0.519274
\(537\) −3858.95 −0.310104
\(538\) −193.187 −0.0154812
\(539\) 0 0
\(540\) 7619.13 0.607176
\(541\) 598.410 0.0475557 0.0237779 0.999717i \(-0.492431\pi\)
0.0237779 + 0.999717i \(0.492431\pi\)
\(542\) 24937.0 1.97626
\(543\) −14415.9 −1.13931
\(544\) −7974.95 −0.628535
\(545\) 15009.3 1.17968
\(546\) 11190.1 0.877092
\(547\) 14042.3 1.09763 0.548816 0.835943i \(-0.315079\pi\)
0.548816 + 0.835943i \(0.315079\pi\)
\(548\) 14421.6 1.12420
\(549\) −37.6674 −0.00292824
\(550\) 0 0
\(551\) 14867.5 1.14950
\(552\) −7002.31 −0.539924
\(553\) −3211.64 −0.246967
\(554\) −1714.44 −0.131479
\(555\) 3928.06 0.300427
\(556\) −95.1581 −0.00725828
\(557\) −4965.87 −0.377757 −0.188878 0.982000i \(-0.560485\pi\)
−0.188878 + 0.982000i \(0.560485\pi\)
\(558\) −320.923 −0.0243472
\(559\) −15379.0 −1.16362
\(560\) 5515.32 0.416187
\(561\) 0 0
\(562\) 8425.60 0.632406
\(563\) 15362.4 1.14999 0.574997 0.818155i \(-0.305003\pi\)
0.574997 + 0.818155i \(0.305003\pi\)
\(564\) 8331.50 0.622020
\(565\) 5371.24 0.399947
\(566\) 26942.3 2.00083
\(567\) −5053.54 −0.374301
\(568\) −7018.62 −0.518477
\(569\) −17735.3 −1.30668 −0.653341 0.757064i \(-0.726633\pi\)
−0.653341 + 0.757064i \(0.726633\pi\)
\(570\) −24256.9 −1.78247
\(571\) 19818.8 1.45252 0.726262 0.687418i \(-0.241256\pi\)
0.726262 + 0.687418i \(0.241256\pi\)
\(572\) 0 0
\(573\) −4715.66 −0.343804
\(574\) 574.288 0.0417602
\(575\) −3277.63 −0.237716
\(576\) 35.4800 0.00256655
\(577\) 6579.03 0.474677 0.237339 0.971427i \(-0.423725\pi\)
0.237339 + 0.971427i \(0.423725\pi\)
\(578\) −12609.8 −0.907434
\(579\) −23035.7 −1.65342
\(580\) −6313.50 −0.451989
\(581\) −2490.16 −0.177813
\(582\) −17679.7 −1.25919
\(583\) 0 0
\(584\) −4022.27 −0.285005
\(585\) 221.024 0.0156209
\(586\) −6429.25 −0.453225
\(587\) 13901.5 0.977470 0.488735 0.872432i \(-0.337459\pi\)
0.488735 + 0.872432i \(0.337459\pi\)
\(588\) 1358.41 0.0952720
\(589\) 43112.0 3.01596
\(590\) 2517.19 0.175646
\(591\) 7123.03 0.495774
\(592\) 5887.76 0.408760
\(593\) −23928.0 −1.65700 −0.828502 0.559986i \(-0.810807\pi\)
−0.828502 + 0.559986i \(0.810807\pi\)
\(594\) 0 0
\(595\) −2699.70 −0.186011
\(596\) −8137.30 −0.559256
\(597\) −487.935 −0.0334503
\(598\) 43395.9 2.96754
\(599\) 24078.9 1.64247 0.821233 0.570594i \(-0.193287\pi\)
0.821233 + 0.570594i \(0.193287\pi\)
\(600\) 1164.67 0.0792457
\(601\) 11806.6 0.801336 0.400668 0.916223i \(-0.368778\pi\)
0.400668 + 0.916223i \(0.368778\pi\)
\(602\) −4652.83 −0.315009
\(603\) 173.158 0.0116941
\(604\) −10447.9 −0.703840
\(605\) 0 0
\(606\) 10082.2 0.675846
\(607\) −1957.71 −0.130908 −0.0654539 0.997856i \(-0.520850\pi\)
−0.0654539 + 0.997856i \(0.520850\pi\)
\(608\) −26536.2 −1.77004
\(609\) 4228.15 0.281336
\(610\) −5355.35 −0.355462
\(611\) 25416.6 1.68289
\(612\) −53.1573 −0.00351104
\(613\) 16029.2 1.05614 0.528069 0.849201i \(-0.322916\pi\)
0.528069 + 0.849201i \(0.322916\pi\)
\(614\) −12676.9 −0.833218
\(615\) −1170.19 −0.0767261
\(616\) 0 0
\(617\) −7153.99 −0.466789 −0.233394 0.972382i \(-0.574983\pi\)
−0.233394 + 0.972382i \(0.574983\pi\)
\(618\) −13951.5 −0.908108
\(619\) −11035.9 −0.716590 −0.358295 0.933608i \(-0.616642\pi\)
−0.358295 + 0.933608i \(0.616642\pi\)
\(620\) −18307.6 −1.18589
\(621\) −19787.9 −1.27868
\(622\) 7252.00 0.467490
\(623\) −8721.78 −0.560884
\(624\) −34176.8 −2.19258
\(625\) −12161.3 −0.778321
\(626\) −36897.1 −2.35576
\(627\) 0 0
\(628\) −8332.11 −0.529438
\(629\) −2882.01 −0.182692
\(630\) 66.8696 0.00422881
\(631\) −4311.46 −0.272007 −0.136004 0.990708i \(-0.543426\pi\)
−0.136004 + 0.990708i \(0.543426\pi\)
\(632\) 4425.71 0.278553
\(633\) −6071.89 −0.381258
\(634\) −11153.5 −0.698678
\(635\) −22760.1 −1.42237
\(636\) −883.233 −0.0550668
\(637\) 4144.05 0.257760
\(638\) 0 0
\(639\) −188.604 −0.0116762
\(640\) −11771.3 −0.727035
\(641\) 2692.13 0.165886 0.0829429 0.996554i \(-0.473568\pi\)
0.0829429 + 0.996554i \(0.473568\pi\)
\(642\) 38542.4 2.36939
\(643\) 19694.3 1.20788 0.603941 0.797029i \(-0.293596\pi\)
0.603941 + 0.797029i \(0.293596\pi\)
\(644\) 5268.00 0.322342
\(645\) 9480.76 0.578767
\(646\) 17797.2 1.08393
\(647\) −21225.5 −1.28974 −0.644870 0.764292i \(-0.723089\pi\)
−0.644870 + 0.764292i \(0.723089\pi\)
\(648\) 6963.89 0.422172
\(649\) 0 0
\(650\) −7217.88 −0.435552
\(651\) 12260.6 0.738143
\(652\) −18617.3 −1.11827
\(653\) −12929.7 −0.774850 −0.387425 0.921901i \(-0.626635\pi\)
−0.387425 + 0.921901i \(0.626635\pi\)
\(654\) −28139.1 −1.68246
\(655\) 11838.7 0.706224
\(656\) −1753.99 −0.104393
\(657\) −108.086 −0.00641835
\(658\) 7689.64 0.455582
\(659\) 20835.3 1.23161 0.615803 0.787900i \(-0.288832\pi\)
0.615803 + 0.787900i \(0.288832\pi\)
\(660\) 0 0
\(661\) −1451.06 −0.0853850 −0.0426925 0.999088i \(-0.513594\pi\)
−0.0426925 + 0.999088i \(0.513594\pi\)
\(662\) −98.6288 −0.00579051
\(663\) 16729.2 0.979954
\(664\) 3431.50 0.200554
\(665\) −8983.10 −0.523834
\(666\) 71.3853 0.00415334
\(667\) 16397.0 0.951867
\(668\) 11949.2 0.692109
\(669\) 458.099 0.0264741
\(670\) 24618.7 1.41956
\(671\) 0 0
\(672\) −7546.63 −0.433211
\(673\) 28986.0 1.66022 0.830111 0.557598i \(-0.188277\pi\)
0.830111 + 0.557598i \(0.188277\pi\)
\(674\) −24923.9 −1.42438
\(675\) 3291.25 0.187675
\(676\) 26566.6 1.51153
\(677\) −24818.6 −1.40895 −0.704474 0.709730i \(-0.748817\pi\)
−0.704474 + 0.709730i \(0.748817\pi\)
\(678\) −10069.9 −0.570401
\(679\) −6547.36 −0.370051
\(680\) 3720.24 0.209801
\(681\) −4567.74 −0.257028
\(682\) 0 0
\(683\) −7450.70 −0.417413 −0.208706 0.977978i \(-0.566925\pi\)
−0.208706 + 0.977978i \(0.566925\pi\)
\(684\) −176.878 −0.00988758
\(685\) −27122.0 −1.51282
\(686\) 1253.76 0.0697795
\(687\) 6413.57 0.356176
\(688\) 14210.7 0.787467
\(689\) −2694.44 −0.148984
\(690\) −26752.4 −1.47601
\(691\) −28469.1 −1.56731 −0.783657 0.621193i \(-0.786648\pi\)
−0.783657 + 0.621193i \(0.786648\pi\)
\(692\) 5404.13 0.296870
\(693\) 0 0
\(694\) −43523.3 −2.38058
\(695\) 178.959 0.00976736
\(696\) −5826.49 −0.317317
\(697\) 858.563 0.0466577
\(698\) 15910.4 0.862775
\(699\) 28337.6 1.53337
\(700\) −876.208 −0.0473108
\(701\) −20045.7 −1.08005 −0.540027 0.841648i \(-0.681586\pi\)
−0.540027 + 0.841648i \(0.681586\pi\)
\(702\) −43576.2 −2.34285
\(703\) −9589.73 −0.514486
\(704\) 0 0
\(705\) −15668.6 −0.837043
\(706\) −4848.02 −0.258439
\(707\) 3733.77 0.198618
\(708\) −1893.54 −0.100514
\(709\) 15326.9 0.811868 0.405934 0.913902i \(-0.366946\pi\)
0.405934 + 0.913902i \(0.366946\pi\)
\(710\) −26814.8 −1.41738
\(711\) 118.928 0.00627304
\(712\) 12018.8 0.632618
\(713\) 47547.3 2.49742
\(714\) 5061.34 0.265288
\(715\) 0 0
\(716\) −4000.64 −0.208814
\(717\) −3071.70 −0.159992
\(718\) 30312.9 1.57558
\(719\) −11023.4 −0.571770 −0.285885 0.958264i \(-0.592288\pi\)
−0.285885 + 0.958264i \(0.592288\pi\)
\(720\) −204.233 −0.0105713
\(721\) −5166.68 −0.266875
\(722\) 34147.8 1.76018
\(723\) −1596.77 −0.0821365
\(724\) −14945.3 −0.767177
\(725\) −2727.26 −0.139707
\(726\) 0 0
\(727\) 28755.9 1.46698 0.733492 0.679699i \(-0.237889\pi\)
0.733492 + 0.679699i \(0.237889\pi\)
\(728\) −5710.60 −0.290726
\(729\) 19868.3 1.00942
\(730\) −15367.2 −0.779129
\(731\) −6956.00 −0.351952
\(732\) 4028.53 0.203413
\(733\) −21500.9 −1.08343 −0.541714 0.840563i \(-0.682225\pi\)
−0.541714 + 0.840563i \(0.682225\pi\)
\(734\) −40308.7 −2.02700
\(735\) −2554.70 −0.128206
\(736\) −29266.3 −1.46572
\(737\) 0 0
\(738\) −21.2660 −0.00106072
\(739\) 2598.63 0.129353 0.0646767 0.997906i \(-0.479398\pi\)
0.0646767 + 0.997906i \(0.479398\pi\)
\(740\) 4072.30 0.202298
\(741\) 55665.7 2.75969
\(742\) −815.189 −0.0403322
\(743\) −29920.5 −1.47736 −0.738678 0.674058i \(-0.764550\pi\)
−0.738678 + 0.674058i \(0.764550\pi\)
\(744\) −16895.4 −0.832547
\(745\) 15303.4 0.752583
\(746\) −30140.4 −1.47925
\(747\) 92.2112 0.00451651
\(748\) 0 0
\(749\) 14273.5 0.696317
\(750\) 28271.4 1.37643
\(751\) 17763.1 0.863096 0.431548 0.902090i \(-0.357968\pi\)
0.431548 + 0.902090i \(0.357968\pi\)
\(752\) −23485.7 −1.13888
\(753\) 18034.8 0.872810
\(754\) 36108.9 1.74404
\(755\) 19648.9 0.947147
\(756\) −5289.89 −0.254486
\(757\) 6472.04 0.310740 0.155370 0.987856i \(-0.450343\pi\)
0.155370 + 0.987856i \(0.450343\pi\)
\(758\) 37150.1 1.78015
\(759\) 0 0
\(760\) 12378.9 0.590830
\(761\) 33720.2 1.60625 0.803126 0.595809i \(-0.203169\pi\)
0.803126 + 0.595809i \(0.203169\pi\)
\(762\) 42670.1 2.02858
\(763\) −10420.8 −0.494441
\(764\) −4888.81 −0.231507
\(765\) 99.9703 0.00472475
\(766\) 52412.6 2.47225
\(767\) −5776.55 −0.271941
\(768\) 27731.1 1.30294
\(769\) 9361.49 0.438991 0.219495 0.975614i \(-0.429559\pi\)
0.219495 + 0.975614i \(0.429559\pi\)
\(770\) 0 0
\(771\) 2334.49 0.109046
\(772\) −23881.6 −1.11336
\(773\) 34886.0 1.62324 0.811618 0.584188i \(-0.198587\pi\)
0.811618 + 0.584188i \(0.198587\pi\)
\(774\) 172.295 0.00800133
\(775\) −7908.38 −0.366551
\(776\) 9022.42 0.417379
\(777\) −2727.22 −0.125918
\(778\) −8710.20 −0.401383
\(779\) 2856.83 0.131395
\(780\) −23638.6 −1.08512
\(781\) 0 0
\(782\) 19628.2 0.897572
\(783\) −16465.2 −0.751490
\(784\) −3829.23 −0.174437
\(785\) 15669.8 0.712458
\(786\) −22195.0 −1.00721
\(787\) 9526.64 0.431497 0.215748 0.976449i \(-0.430781\pi\)
0.215748 + 0.976449i \(0.430781\pi\)
\(788\) 7384.58 0.333839
\(789\) 30399.2 1.37166
\(790\) 16908.5 0.761490
\(791\) −3729.20 −0.167630
\(792\) 0 0
\(793\) 12289.7 0.550339
\(794\) −36071.1 −1.61223
\(795\) 1661.05 0.0741026
\(796\) −505.852 −0.0225244
\(797\) −33267.9 −1.47856 −0.739278 0.673400i \(-0.764833\pi\)
−0.739278 + 0.673400i \(0.764833\pi\)
\(798\) 16841.3 0.747089
\(799\) 11496.0 0.509012
\(800\) 4867.75 0.215126
\(801\) 322.970 0.0142467
\(802\) −21489.8 −0.946174
\(803\) 0 0
\(804\) −18519.3 −0.812345
\(805\) −9907.27 −0.433771
\(806\) 104707. 4.57586
\(807\) −273.303 −0.0119216
\(808\) −5145.22 −0.224020
\(809\) −17949.6 −0.780069 −0.390035 0.920800i \(-0.627537\pi\)
−0.390035 + 0.920800i \(0.627537\pi\)
\(810\) 26605.7 1.15411
\(811\) −10877.9 −0.470991 −0.235495 0.971875i \(-0.575671\pi\)
−0.235495 + 0.971875i \(0.575671\pi\)
\(812\) 4383.41 0.189443
\(813\) 35278.6 1.52186
\(814\) 0 0
\(815\) 35012.7 1.50484
\(816\) −15458.3 −0.663174
\(817\) −23145.7 −0.991147
\(818\) −20765.0 −0.887570
\(819\) −153.455 −0.00654720
\(820\) −1213.16 −0.0516650
\(821\) 4519.04 0.192102 0.0960509 0.995376i \(-0.469379\pi\)
0.0960509 + 0.995376i \(0.469379\pi\)
\(822\) 50847.8 2.15757
\(823\) 36987.7 1.56660 0.783300 0.621644i \(-0.213535\pi\)
0.783300 + 0.621644i \(0.213535\pi\)
\(824\) 7119.80 0.301007
\(825\) 0 0
\(826\) −1747.66 −0.0736186
\(827\) −15325.3 −0.644392 −0.322196 0.946673i \(-0.604421\pi\)
−0.322196 + 0.946673i \(0.604421\pi\)
\(828\) −195.075 −0.00818760
\(829\) 26546.3 1.11217 0.556087 0.831124i \(-0.312302\pi\)
0.556087 + 0.831124i \(0.312302\pi\)
\(830\) 13110.1 0.548263
\(831\) −2425.43 −0.101248
\(832\) −11576.0 −0.482362
\(833\) 1874.37 0.0779630
\(834\) −335.509 −0.0139301
\(835\) −22472.3 −0.931361
\(836\) 0 0
\(837\) −47744.9 −1.97169
\(838\) −4015.31 −0.165521
\(839\) 11906.5 0.489938 0.244969 0.969531i \(-0.421222\pi\)
0.244969 + 0.969531i \(0.421222\pi\)
\(840\) 3520.44 0.144603
\(841\) −10745.3 −0.440581
\(842\) −19245.2 −0.787689
\(843\) 11919.8 0.486997
\(844\) −6294.85 −0.256727
\(845\) −49962.5 −2.03404
\(846\) −284.749 −0.0115719
\(847\) 0 0
\(848\) 2489.75 0.100824
\(849\) 38115.5 1.54078
\(850\) −3264.68 −0.131738
\(851\) −10576.3 −0.426030
\(852\) 20171.2 0.811098
\(853\) 6859.53 0.275341 0.137670 0.990478i \(-0.456039\pi\)
0.137670 + 0.990478i \(0.456039\pi\)
\(854\) 3718.17 0.148985
\(855\) 332.646 0.0133056
\(856\) −19669.2 −0.785372
\(857\) −5193.59 −0.207013 −0.103506 0.994629i \(-0.533006\pi\)
−0.103506 + 0.994629i \(0.533006\pi\)
\(858\) 0 0
\(859\) 5265.73 0.209155 0.104578 0.994517i \(-0.466651\pi\)
0.104578 + 0.994517i \(0.466651\pi\)
\(860\) 9828.89 0.389724
\(861\) 812.451 0.0321583
\(862\) −15620.6 −0.617216
\(863\) −16016.7 −0.631767 −0.315884 0.948798i \(-0.602301\pi\)
−0.315884 + 0.948798i \(0.602301\pi\)
\(864\) 29387.9 1.15717
\(865\) −10163.3 −0.399494
\(866\) −31289.8 −1.22780
\(867\) −17839.1 −0.698788
\(868\) 12710.8 0.497042
\(869\) 0 0
\(870\) −22260.2 −0.867462
\(871\) −56496.0 −2.19781
\(872\) 14360.1 0.557678
\(873\) 242.450 0.00939943
\(874\) 65311.7 2.52769
\(875\) 10469.8 0.404507
\(876\) 11559.8 0.445857
\(877\) 11195.5 0.431065 0.215533 0.976497i \(-0.430851\pi\)
0.215533 + 0.976497i \(0.430851\pi\)
\(878\) −46291.3 −1.77933
\(879\) −9095.51 −0.349015
\(880\) 0 0
\(881\) 45542.5 1.74162 0.870809 0.491621i \(-0.163595\pi\)
0.870809 + 0.491621i \(0.163595\pi\)
\(882\) −46.4270 −0.00177242
\(883\) 10394.9 0.396167 0.198083 0.980185i \(-0.436528\pi\)
0.198083 + 0.980185i \(0.436528\pi\)
\(884\) 17343.5 0.659871
\(885\) 3561.09 0.135260
\(886\) 45211.8 1.71436
\(887\) 4020.51 0.152193 0.0760967 0.997100i \(-0.475754\pi\)
0.0760967 + 0.997100i \(0.475754\pi\)
\(888\) 3758.17 0.142022
\(889\) 15802.1 0.596159
\(890\) 45918.1 1.72941
\(891\) 0 0
\(892\) 474.920 0.0178268
\(893\) 38252.5 1.43345
\(894\) −28690.6 −1.07333
\(895\) 7523.82 0.280998
\(896\) 8172.72 0.304723
\(897\) 61392.5 2.28521
\(898\) −7649.36 −0.284257
\(899\) 39563.3 1.46775
\(900\) 32.4462 0.00120171
\(901\) −1218.71 −0.0450623
\(902\) 0 0
\(903\) −6582.40 −0.242579
\(904\) 5138.93 0.189069
\(905\) 28106.8 1.03238
\(906\) −36837.3 −1.35082
\(907\) −23907.5 −0.875231 −0.437615 0.899162i \(-0.644177\pi\)
−0.437615 + 0.899162i \(0.644177\pi\)
\(908\) −4735.46 −0.173075
\(909\) −138.262 −0.00504496
\(910\) −21817.4 −0.794770
\(911\) 40571.4 1.47551 0.737755 0.675069i \(-0.235886\pi\)
0.737755 + 0.675069i \(0.235886\pi\)
\(912\) −51436.9 −1.86759
\(913\) 0 0
\(914\) −28605.1 −1.03520
\(915\) −7576.26 −0.273731
\(916\) 6649.07 0.239838
\(917\) −8219.50 −0.296000
\(918\) −19709.7 −0.708625
\(919\) −20551.0 −0.737667 −0.368834 0.929495i \(-0.620243\pi\)
−0.368834 + 0.929495i \(0.620243\pi\)
\(920\) 13652.5 0.489248
\(921\) −17934.1 −0.641637
\(922\) −17456.1 −0.623521
\(923\) 61535.6 2.19444
\(924\) 0 0
\(925\) 1759.12 0.0625292
\(926\) 42102.4 1.49414
\(927\) 191.323 0.00677872
\(928\) −24351.9 −0.861413
\(929\) 34068.4 1.20317 0.601587 0.798807i \(-0.294535\pi\)
0.601587 + 0.798807i \(0.294535\pi\)
\(930\) −64549.1 −2.27597
\(931\) 6236.89 0.219555
\(932\) 29378.1 1.03252
\(933\) 10259.5 0.360000
\(934\) −27122.8 −0.950197
\(935\) 0 0
\(936\) 211.465 0.00738455
\(937\) −15597.9 −0.543824 −0.271912 0.962322i \(-0.587656\pi\)
−0.271912 + 0.962322i \(0.587656\pi\)
\(938\) −17092.6 −0.594981
\(939\) −52198.7 −1.81410
\(940\) −16244.0 −0.563639
\(941\) 22855.3 0.791775 0.395887 0.918299i \(-0.370437\pi\)
0.395887 + 0.918299i \(0.370437\pi\)
\(942\) −29377.4 −1.01610
\(943\) 3150.73 0.108804
\(944\) 5337.71 0.184034
\(945\) 9948.44 0.342458
\(946\) 0 0
\(947\) 36670.7 1.25833 0.629164 0.777272i \(-0.283397\pi\)
0.629164 + 0.777272i \(0.283397\pi\)
\(948\) −12719.3 −0.435764
\(949\) 35265.1 1.20628
\(950\) −10863.1 −0.370994
\(951\) −15779.0 −0.538031
\(952\) −2582.93 −0.0879341
\(953\) 19922.8 0.677192 0.338596 0.940932i \(-0.390048\pi\)
0.338596 + 0.940932i \(0.390048\pi\)
\(954\) 30.1866 0.00102445
\(955\) 9194.16 0.311535
\(956\) −3184.49 −0.107734
\(957\) 0 0
\(958\) −37134.8 −1.25237
\(959\) 18830.6 0.634068
\(960\) 7136.30 0.239920
\(961\) 84932.7 2.85095
\(962\) −23290.8 −0.780587
\(963\) −528.550 −0.0176867
\(964\) −1655.41 −0.0553081
\(965\) 44913.0 1.49824
\(966\) 18574.0 0.618641
\(967\) −24523.8 −0.815545 −0.407772 0.913084i \(-0.633694\pi\)
−0.407772 + 0.913084i \(0.633694\pi\)
\(968\) 0 0
\(969\) 25177.9 0.834705
\(970\) 34470.3 1.14100
\(971\) 4493.82 0.148520 0.0742602 0.997239i \(-0.476340\pi\)
0.0742602 + 0.997239i \(0.476340\pi\)
\(972\) 389.909 0.0128666
\(973\) −124.250 −0.00409380
\(974\) −45123.8 −1.48446
\(975\) −10211.2 −0.335405
\(976\) −11356.0 −0.372436
\(977\) −18285.3 −0.598771 −0.299385 0.954132i \(-0.596782\pi\)
−0.299385 + 0.954132i \(0.596782\pi\)
\(978\) −65641.1 −2.14619
\(979\) 0 0
\(980\) −2648.51 −0.0863300
\(981\) 385.885 0.0125590
\(982\) −56089.9 −1.82271
\(983\) −25850.8 −0.838772 −0.419386 0.907808i \(-0.637755\pi\)
−0.419386 + 0.907808i \(0.637755\pi\)
\(984\) −1119.58 −0.0362711
\(985\) −13887.8 −0.449242
\(986\) 16332.2 0.527509
\(987\) 10878.6 0.350830
\(988\) 57709.7 1.85829
\(989\) −25526.9 −0.820738
\(990\) 0 0
\(991\) −26842.1 −0.860412 −0.430206 0.902731i \(-0.641559\pi\)
−0.430206 + 0.902731i \(0.641559\pi\)
\(992\) −70614.6 −2.26010
\(993\) −139.531 −0.00445910
\(994\) 18617.2 0.594068
\(995\) 951.331 0.0303108
\(996\) −9861.99 −0.313744
\(997\) 10468.1 0.332526 0.166263 0.986081i \(-0.446830\pi\)
0.166263 + 0.986081i \(0.446830\pi\)
\(998\) −18359.6 −0.582327
\(999\) 10620.3 0.336347
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 847.4.a.e.1.3 4
11.10 odd 2 77.4.a.c.1.2 4
33.32 even 2 693.4.a.m.1.3 4
44.43 even 2 1232.4.a.w.1.1 4
55.54 odd 2 1925.4.a.q.1.3 4
77.76 even 2 539.4.a.f.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.c.1.2 4 11.10 odd 2
539.4.a.f.1.2 4 77.76 even 2
693.4.a.m.1.3 4 33.32 even 2
847.4.a.e.1.3 4 1.1 even 1 trivial
1232.4.a.w.1.1 4 44.43 even 2
1925.4.a.q.1.3 4 55.54 odd 2