Properties

Label 847.4.a.d.1.4
Level $847$
Weight $4$
Character 847.1
Self dual yes
Analytic conductor $49.975$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [847,4,Mod(1,847)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(847, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("847.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 847.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.9746177749\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.522072.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 12x^{2} + 5x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-3.20317\) of defining polynomial
Character \(\chi\) \(=\) 847.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.89098 q^{2} +6.57251 q^{3} +15.9217 q^{4} +15.5514 q^{5} +32.1460 q^{6} +7.00000 q^{7} +38.7449 q^{8} +16.1978 q^{9} +76.0614 q^{10} +104.646 q^{12} -74.3459 q^{13} +34.2369 q^{14} +102.211 q^{15} +62.1271 q^{16} +94.0836 q^{17} +79.2234 q^{18} -135.682 q^{19} +247.604 q^{20} +46.0075 q^{21} +81.1793 q^{23} +254.651 q^{24} +116.845 q^{25} -363.625 q^{26} -70.9972 q^{27} +111.452 q^{28} +53.4259 q^{29} +499.914 q^{30} -9.50536 q^{31} -6.09673 q^{32} +460.161 q^{34} +108.860 q^{35} +257.897 q^{36} -9.14224 q^{37} -663.620 q^{38} -488.639 q^{39} +602.536 q^{40} +339.461 q^{41} +225.022 q^{42} -433.078 q^{43} +251.899 q^{45} +397.046 q^{46} -54.4784 q^{47} +408.331 q^{48} +49.0000 q^{49} +571.486 q^{50} +618.365 q^{51} -1183.71 q^{52} +123.830 q^{53} -347.246 q^{54} +271.215 q^{56} -891.773 q^{57} +261.305 q^{58} -534.396 q^{59} +1627.38 q^{60} +358.624 q^{61} -46.4905 q^{62} +113.385 q^{63} -526.836 q^{64} -1156.18 q^{65} -694.318 q^{67} +1497.97 q^{68} +533.551 q^{69} +532.430 q^{70} -278.330 q^{71} +627.585 q^{72} +886.688 q^{73} -44.7145 q^{74} +767.963 q^{75} -2160.29 q^{76} -2389.93 q^{78} +185.631 q^{79} +966.162 q^{80} -903.972 q^{81} +1660.30 q^{82} +122.624 q^{83} +732.519 q^{84} +1463.13 q^{85} -2118.18 q^{86} +351.142 q^{87} -847.086 q^{89} +1232.03 q^{90} -520.422 q^{91} +1292.51 q^{92} -62.4740 q^{93} -266.453 q^{94} -2110.04 q^{95} -40.0708 q^{96} +1002.49 q^{97} +239.658 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 14 q^{3} + 26 q^{4} + 10 q^{5} - 14 q^{6} + 28 q^{7} + 18 q^{8} + 76 q^{9} + 2 q^{10} + 70 q^{12} - 58 q^{13} + 14 q^{14} + 284 q^{15} + 2 q^{16} - 4 q^{17} + 62 q^{18} - 258 q^{19} + 182 q^{20}+ \cdots + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.89098 1.72922 0.864612 0.502441i \(-0.167564\pi\)
0.864612 + 0.502441i \(0.167564\pi\)
\(3\) 6.57251 1.26488 0.632440 0.774610i \(-0.282054\pi\)
0.632440 + 0.774610i \(0.282054\pi\)
\(4\) 15.9217 1.99021
\(5\) 15.5514 1.39096 0.695478 0.718547i \(-0.255193\pi\)
0.695478 + 0.718547i \(0.255193\pi\)
\(6\) 32.1460 2.18726
\(7\) 7.00000 0.377964
\(8\) 38.7449 1.71230
\(9\) 16.1978 0.599920
\(10\) 76.0614 2.40527
\(11\) 0 0
\(12\) 104.646 2.51738
\(13\) −74.3459 −1.58614 −0.793071 0.609129i \(-0.791519\pi\)
−0.793071 + 0.609129i \(0.791519\pi\)
\(14\) 34.2369 0.653585
\(15\) 102.211 1.75939
\(16\) 62.1271 0.970737
\(17\) 94.0836 1.34227 0.671136 0.741334i \(-0.265807\pi\)
0.671136 + 0.741334i \(0.265807\pi\)
\(18\) 79.2234 1.03740
\(19\) −135.682 −1.63830 −0.819149 0.573581i \(-0.805554\pi\)
−0.819149 + 0.573581i \(0.805554\pi\)
\(20\) 247.604 2.76830
\(21\) 46.0075 0.478080
\(22\) 0 0
\(23\) 81.1793 0.735959 0.367979 0.929834i \(-0.380050\pi\)
0.367979 + 0.929834i \(0.380050\pi\)
\(24\) 254.651 2.16585
\(25\) 116.845 0.934758
\(26\) −363.625 −2.74279
\(27\) −70.9972 −0.506053
\(28\) 111.452 0.752230
\(29\) 53.4259 0.342102 0.171051 0.985262i \(-0.445284\pi\)
0.171051 + 0.985262i \(0.445284\pi\)
\(30\) 499.914 3.04238
\(31\) −9.50536 −0.0550714 −0.0275357 0.999621i \(-0.508766\pi\)
−0.0275357 + 0.999621i \(0.508766\pi\)
\(32\) −6.09673 −0.0336800
\(33\) 0 0
\(34\) 460.161 2.32109
\(35\) 108.860 0.525732
\(36\) 257.897 1.19397
\(37\) −9.14224 −0.0406209 −0.0203105 0.999794i \(-0.506465\pi\)
−0.0203105 + 0.999794i \(0.506465\pi\)
\(38\) −663.620 −2.83298
\(39\) −488.639 −2.00628
\(40\) 602.536 2.38173
\(41\) 339.461 1.29305 0.646523 0.762894i \(-0.276222\pi\)
0.646523 + 0.762894i \(0.276222\pi\)
\(42\) 225.022 0.826706
\(43\) −433.078 −1.53590 −0.767950 0.640509i \(-0.778723\pi\)
−0.767950 + 0.640509i \(0.778723\pi\)
\(44\) 0 0
\(45\) 251.899 0.834463
\(46\) 397.046 1.27264
\(47\) −54.4784 −0.169074 −0.0845371 0.996420i \(-0.526941\pi\)
−0.0845371 + 0.996420i \(0.526941\pi\)
\(48\) 408.331 1.22786
\(49\) 49.0000 0.142857
\(50\) 571.486 1.61641
\(51\) 618.365 1.69781
\(52\) −1183.71 −3.15676
\(53\) 123.830 0.320932 0.160466 0.987041i \(-0.448700\pi\)
0.160466 + 0.987041i \(0.448700\pi\)
\(54\) −347.246 −0.875078
\(55\) 0 0
\(56\) 271.215 0.647189
\(57\) −891.773 −2.07225
\(58\) 261.305 0.591570
\(59\) −534.396 −1.17919 −0.589596 0.807698i \(-0.700713\pi\)
−0.589596 + 0.807698i \(0.700713\pi\)
\(60\) 1627.38 3.50157
\(61\) 358.624 0.752740 0.376370 0.926469i \(-0.377172\pi\)
0.376370 + 0.926469i \(0.377172\pi\)
\(62\) −46.4905 −0.0952307
\(63\) 113.385 0.226749
\(64\) −526.836 −1.02898
\(65\) −1156.18 −2.20625
\(66\) 0 0
\(67\) −694.318 −1.26604 −0.633019 0.774137i \(-0.718184\pi\)
−0.633019 + 0.774137i \(0.718184\pi\)
\(68\) 1497.97 2.67141
\(69\) 533.551 0.930899
\(70\) 532.430 0.909108
\(71\) −278.330 −0.465236 −0.232618 0.972568i \(-0.574729\pi\)
−0.232618 + 0.972568i \(0.574729\pi\)
\(72\) 627.585 1.02724
\(73\) 886.688 1.42163 0.710815 0.703379i \(-0.248326\pi\)
0.710815 + 0.703379i \(0.248326\pi\)
\(74\) −44.7145 −0.0702427
\(75\) 767.963 1.18236
\(76\) −2160.29 −3.26056
\(77\) 0 0
\(78\) −2389.93 −3.46931
\(79\) 185.631 0.264369 0.132184 0.991225i \(-0.457801\pi\)
0.132184 + 0.991225i \(0.457801\pi\)
\(80\) 966.162 1.35025
\(81\) −903.972 −1.24002
\(82\) 1660.30 2.23597
\(83\) 122.624 0.162166 0.0810830 0.996707i \(-0.474162\pi\)
0.0810830 + 0.996707i \(0.474162\pi\)
\(84\) 732.519 0.951480
\(85\) 1463.13 1.86704
\(86\) −2118.18 −2.65592
\(87\) 351.142 0.432717
\(88\) 0 0
\(89\) −847.086 −1.00889 −0.504443 0.863445i \(-0.668302\pi\)
−0.504443 + 0.863445i \(0.668302\pi\)
\(90\) 1232.03 1.44297
\(91\) −520.422 −0.599506
\(92\) 1292.51 1.46471
\(93\) −62.4740 −0.0696586
\(94\) −266.453 −0.292367
\(95\) −2110.04 −2.27880
\(96\) −40.0708 −0.0426011
\(97\) 1002.49 1.04935 0.524676 0.851302i \(-0.324186\pi\)
0.524676 + 0.851302i \(0.324186\pi\)
\(98\) 239.658 0.247032
\(99\) 0 0
\(100\) 1860.37 1.86037
\(101\) −1124.79 −1.10812 −0.554062 0.832476i \(-0.686923\pi\)
−0.554062 + 0.832476i \(0.686923\pi\)
\(102\) 3024.41 2.93590
\(103\) 966.118 0.924218 0.462109 0.886823i \(-0.347093\pi\)
0.462109 + 0.886823i \(0.347093\pi\)
\(104\) −2880.53 −2.71595
\(105\) 715.480 0.664988
\(106\) 605.652 0.554963
\(107\) 144.202 0.130286 0.0651428 0.997876i \(-0.479250\pi\)
0.0651428 + 0.997876i \(0.479250\pi\)
\(108\) −1130.40 −1.00715
\(109\) 1875.32 1.64792 0.823961 0.566647i \(-0.191760\pi\)
0.823961 + 0.566647i \(0.191760\pi\)
\(110\) 0 0
\(111\) −60.0874 −0.0513806
\(112\) 434.890 0.366904
\(113\) 1207.46 1.00521 0.502603 0.864517i \(-0.332376\pi\)
0.502603 + 0.864517i \(0.332376\pi\)
\(114\) −4361.64 −3.58338
\(115\) 1262.45 1.02369
\(116\) 850.632 0.680855
\(117\) −1204.24 −0.951559
\(118\) −2613.72 −2.03909
\(119\) 658.585 0.507331
\(120\) 3960.18 3.01261
\(121\) 0 0
\(122\) 1754.03 1.30166
\(123\) 2231.11 1.63555
\(124\) −151.342 −0.109604
\(125\) −126.825 −0.0907483
\(126\) 554.564 0.392099
\(127\) −1143.56 −0.799009 −0.399504 0.916731i \(-0.630818\pi\)
−0.399504 + 0.916731i \(0.630818\pi\)
\(128\) −2527.97 −1.74565
\(129\) −2846.41 −1.94273
\(130\) −5654.86 −3.81511
\(131\) −2478.40 −1.65297 −0.826484 0.562961i \(-0.809662\pi\)
−0.826484 + 0.562961i \(0.809662\pi\)
\(132\) 0 0
\(133\) −949.776 −0.619218
\(134\) −3395.90 −2.18926
\(135\) −1104.10 −0.703897
\(136\) 3645.26 2.29837
\(137\) −835.661 −0.521134 −0.260567 0.965456i \(-0.583909\pi\)
−0.260567 + 0.965456i \(0.583909\pi\)
\(138\) 2609.59 1.60973
\(139\) 1726.99 1.05382 0.526912 0.849920i \(-0.323350\pi\)
0.526912 + 0.849920i \(0.323350\pi\)
\(140\) 1733.23 1.04632
\(141\) −358.060 −0.213859
\(142\) −1361.31 −0.804497
\(143\) 0 0
\(144\) 1006.33 0.582365
\(145\) 830.846 0.475848
\(146\) 4336.78 2.45832
\(147\) 322.053 0.180697
\(148\) −145.560 −0.0808443
\(149\) 3454.95 1.89960 0.949799 0.312859i \(-0.101287\pi\)
0.949799 + 0.312859i \(0.101287\pi\)
\(150\) 3756.09 2.04456
\(151\) 2468.17 1.33018 0.665089 0.746764i \(-0.268394\pi\)
0.665089 + 0.746764i \(0.268394\pi\)
\(152\) −5257.00 −2.80526
\(153\) 1523.95 0.805256
\(154\) 0 0
\(155\) −147.821 −0.0766018
\(156\) −7779.97 −3.99292
\(157\) −1561.27 −0.793649 −0.396824 0.917895i \(-0.629888\pi\)
−0.396824 + 0.917895i \(0.629888\pi\)
\(158\) 907.919 0.457153
\(159\) 813.875 0.405940
\(160\) −94.8125 −0.0468474
\(161\) 568.255 0.278166
\(162\) −4421.31 −2.14426
\(163\) 3458.59 1.66195 0.830973 0.556312i \(-0.187784\pi\)
0.830973 + 0.556312i \(0.187784\pi\)
\(164\) 5404.80 2.57344
\(165\) 0 0
\(166\) 599.754 0.280421
\(167\) 972.527 0.450637 0.225319 0.974285i \(-0.427658\pi\)
0.225319 + 0.974285i \(0.427658\pi\)
\(168\) 1782.56 0.818616
\(169\) 3330.32 1.51585
\(170\) 7156.13 3.22853
\(171\) −2197.76 −0.982848
\(172\) −6895.34 −3.05677
\(173\) 1154.18 0.507230 0.253615 0.967305i \(-0.418380\pi\)
0.253615 + 0.967305i \(0.418380\pi\)
\(174\) 1717.43 0.748265
\(175\) 817.914 0.353305
\(176\) 0 0
\(177\) −3512.32 −1.49154
\(178\) −4143.08 −1.74459
\(179\) 259.234 0.108246 0.0541231 0.998534i \(-0.482764\pi\)
0.0541231 + 0.998534i \(0.482764\pi\)
\(180\) 4010.66 1.66076
\(181\) −2121.49 −0.871209 −0.435604 0.900138i \(-0.643465\pi\)
−0.435604 + 0.900138i \(0.643465\pi\)
\(182\) −2545.37 −1.03668
\(183\) 2357.06 0.952126
\(184\) 3145.29 1.26018
\(185\) −142.174 −0.0565019
\(186\) −305.559 −0.120455
\(187\) 0 0
\(188\) −867.389 −0.336494
\(189\) −496.981 −0.191270
\(190\) −10320.2 −3.94055
\(191\) 2918.27 1.10554 0.552772 0.833332i \(-0.313570\pi\)
0.552772 + 0.833332i \(0.313570\pi\)
\(192\) −3462.63 −1.30153
\(193\) −3757.48 −1.40139 −0.700697 0.713459i \(-0.747128\pi\)
−0.700697 + 0.713459i \(0.747128\pi\)
\(194\) 4903.15 1.81456
\(195\) −7599.00 −2.79065
\(196\) 780.164 0.284316
\(197\) −1608.39 −0.581689 −0.290845 0.956770i \(-0.593936\pi\)
−0.290845 + 0.956770i \(0.593936\pi\)
\(198\) 0 0
\(199\) 2865.53 1.02076 0.510382 0.859948i \(-0.329504\pi\)
0.510382 + 0.859948i \(0.329504\pi\)
\(200\) 4527.14 1.60059
\(201\) −4563.41 −1.60138
\(202\) −5501.31 −1.91619
\(203\) 373.981 0.129302
\(204\) 9845.43 3.37901
\(205\) 5279.08 1.79857
\(206\) 4725.27 1.59818
\(207\) 1314.93 0.441517
\(208\) −4618.90 −1.53973
\(209\) 0 0
\(210\) 3499.40 1.14991
\(211\) −821.996 −0.268192 −0.134096 0.990968i \(-0.542813\pi\)
−0.134096 + 0.990968i \(0.542813\pi\)
\(212\) 1971.59 0.638723
\(213\) −1829.33 −0.588467
\(214\) 705.290 0.225293
\(215\) −6734.95 −2.13637
\(216\) −2750.78 −0.866514
\(217\) −66.5375 −0.0208150
\(218\) 9172.18 2.84963
\(219\) 5827.76 1.79819
\(220\) 0 0
\(221\) −6994.73 −2.12903
\(222\) −293.887 −0.0888485
\(223\) 109.532 0.0328916 0.0164458 0.999865i \(-0.494765\pi\)
0.0164458 + 0.999865i \(0.494765\pi\)
\(224\) −42.6771 −0.0127298
\(225\) 1892.63 0.560780
\(226\) 5905.67 1.73823
\(227\) −3023.03 −0.883900 −0.441950 0.897040i \(-0.645713\pi\)
−0.441950 + 0.897040i \(0.645713\pi\)
\(228\) −14198.5 −4.12422
\(229\) −2278.75 −0.657571 −0.328786 0.944405i \(-0.606639\pi\)
−0.328786 + 0.944405i \(0.606639\pi\)
\(230\) 6174.61 1.77018
\(231\) 0 0
\(232\) 2069.98 0.585781
\(233\) 1864.08 0.524121 0.262061 0.965051i \(-0.415598\pi\)
0.262061 + 0.965051i \(0.415598\pi\)
\(234\) −5889.94 −1.64546
\(235\) −847.213 −0.235175
\(236\) −8508.49 −2.34685
\(237\) 1220.06 0.334395
\(238\) 3221.13 0.877289
\(239\) −1404.69 −0.380174 −0.190087 0.981767i \(-0.560877\pi\)
−0.190087 + 0.981767i \(0.560877\pi\)
\(240\) 6350.10 1.70791
\(241\) −3879.32 −1.03688 −0.518442 0.855113i \(-0.673488\pi\)
−0.518442 + 0.855113i \(0.673488\pi\)
\(242\) 0 0
\(243\) −4024.43 −1.06242
\(244\) 5709.91 1.49811
\(245\) 762.017 0.198708
\(246\) 10912.3 2.82823
\(247\) 10087.4 2.59857
\(248\) −368.284 −0.0942987
\(249\) 805.950 0.205121
\(250\) −620.297 −0.156924
\(251\) −2143.54 −0.539040 −0.269520 0.962995i \(-0.586865\pi\)
−0.269520 + 0.962995i \(0.586865\pi\)
\(252\) 1805.28 0.451278
\(253\) 0 0
\(254\) −5593.11 −1.38166
\(255\) 9616.42 2.36158
\(256\) −8149.58 −1.98964
\(257\) 7288.62 1.76907 0.884537 0.466471i \(-0.154475\pi\)
0.884537 + 0.466471i \(0.154475\pi\)
\(258\) −13921.7 −3.35941
\(259\) −63.9957 −0.0153533
\(260\) −18408.4 −4.39092
\(261\) 865.385 0.205234
\(262\) −12121.8 −2.85835
\(263\) −2670.52 −0.626127 −0.313064 0.949732i \(-0.601355\pi\)
−0.313064 + 0.949732i \(0.601355\pi\)
\(264\) 0 0
\(265\) 1925.73 0.446402
\(266\) −4645.34 −1.07077
\(267\) −5567.48 −1.27612
\(268\) −11054.7 −2.51968
\(269\) 1073.80 0.243387 0.121693 0.992568i \(-0.461168\pi\)
0.121693 + 0.992568i \(0.461168\pi\)
\(270\) −5400.15 −1.21720
\(271\) −3624.88 −0.812530 −0.406265 0.913755i \(-0.633169\pi\)
−0.406265 + 0.913755i \(0.633169\pi\)
\(272\) 5845.14 1.30299
\(273\) −3420.47 −0.758302
\(274\) −4087.20 −0.901157
\(275\) 0 0
\(276\) 8495.05 1.85269
\(277\) 4905.35 1.06402 0.532010 0.846738i \(-0.321437\pi\)
0.532010 + 0.846738i \(0.321437\pi\)
\(278\) 8446.68 1.82230
\(279\) −153.966 −0.0330384
\(280\) 4217.76 0.900211
\(281\) 2661.90 0.565109 0.282555 0.959251i \(-0.408818\pi\)
0.282555 + 0.959251i \(0.408818\pi\)
\(282\) −1751.26 −0.369809
\(283\) 4367.36 0.917359 0.458680 0.888602i \(-0.348323\pi\)
0.458680 + 0.888602i \(0.348323\pi\)
\(284\) −4431.50 −0.925919
\(285\) −13868.3 −2.88241
\(286\) 0 0
\(287\) 2376.23 0.488726
\(288\) −98.7539 −0.0202053
\(289\) 3938.72 0.801693
\(290\) 4063.65 0.822848
\(291\) 6588.86 1.32730
\(292\) 14117.6 2.82935
\(293\) −1992.30 −0.397240 −0.198620 0.980077i \(-0.563646\pi\)
−0.198620 + 0.980077i \(0.563646\pi\)
\(294\) 1575.15 0.312466
\(295\) −8310.58 −1.64021
\(296\) −354.215 −0.0695553
\(297\) 0 0
\(298\) 16898.1 3.28483
\(299\) −6035.35 −1.16734
\(300\) 12227.3 2.35314
\(301\) −3031.54 −0.580516
\(302\) 12071.8 2.30018
\(303\) −7392.67 −1.40164
\(304\) −8429.55 −1.59036
\(305\) 5577.10 1.04703
\(306\) 7453.62 1.39247
\(307\) −7633.53 −1.41912 −0.709558 0.704647i \(-0.751105\pi\)
−0.709558 + 0.704647i \(0.751105\pi\)
\(308\) 0 0
\(309\) 6349.82 1.16902
\(310\) −722.991 −0.132462
\(311\) 1453.52 0.265020 0.132510 0.991182i \(-0.457696\pi\)
0.132510 + 0.991182i \(0.457696\pi\)
\(312\) −18932.3 −3.43535
\(313\) 1936.27 0.349663 0.174831 0.984598i \(-0.444062\pi\)
0.174831 + 0.984598i \(0.444062\pi\)
\(314\) −7636.14 −1.37240
\(315\) 1763.29 0.315397
\(316\) 2955.56 0.526150
\(317\) −1534.36 −0.271856 −0.135928 0.990719i \(-0.543402\pi\)
−0.135928 + 0.990719i \(0.543402\pi\)
\(318\) 3980.65 0.701961
\(319\) 0 0
\(320\) −8193.02 −1.43126
\(321\) 947.770 0.164795
\(322\) 2779.32 0.481012
\(323\) −12765.5 −2.19904
\(324\) −14392.8 −2.46790
\(325\) −8686.94 −1.48266
\(326\) 16915.9 2.87388
\(327\) 12325.6 2.08442
\(328\) 13152.4 2.21408
\(329\) −381.349 −0.0639041
\(330\) 0 0
\(331\) 3807.42 0.632251 0.316125 0.948717i \(-0.397618\pi\)
0.316125 + 0.948717i \(0.397618\pi\)
\(332\) 1952.39 0.322745
\(333\) −148.085 −0.0243693
\(334\) 4756.61 0.779252
\(335\) −10797.6 −1.76100
\(336\) 2858.32 0.464089
\(337\) 4724.09 0.763614 0.381807 0.924242i \(-0.375302\pi\)
0.381807 + 0.924242i \(0.375302\pi\)
\(338\) 16288.5 2.62124
\(339\) 7936.05 1.27147
\(340\) 23295.5 3.71581
\(341\) 0 0
\(342\) −10749.2 −1.69956
\(343\) 343.000 0.0539949
\(344\) −16779.6 −2.62992
\(345\) 8297.45 1.29484
\(346\) 5645.08 0.877113
\(347\) −6122.41 −0.947171 −0.473586 0.880748i \(-0.657041\pi\)
−0.473586 + 0.880748i \(0.657041\pi\)
\(348\) 5590.79 0.861200
\(349\) −6778.93 −1.03974 −0.519868 0.854247i \(-0.674019\pi\)
−0.519868 + 0.854247i \(0.674019\pi\)
\(350\) 4000.40 0.610944
\(351\) 5278.35 0.802672
\(352\) 0 0
\(353\) −3486.98 −0.525760 −0.262880 0.964829i \(-0.584672\pi\)
−0.262880 + 0.964829i \(0.584672\pi\)
\(354\) −17178.7 −2.57920
\(355\) −4328.42 −0.647123
\(356\) −13487.1 −2.00790
\(357\) 4328.55 0.641713
\(358\) 1267.91 0.187182
\(359\) −3230.16 −0.474878 −0.237439 0.971402i \(-0.576308\pi\)
−0.237439 + 0.971402i \(0.576308\pi\)
\(360\) 9759.79 1.42885
\(361\) 11550.7 1.68402
\(362\) −10376.2 −1.50651
\(363\) 0 0
\(364\) −8286.00 −1.19314
\(365\) 13789.2 1.97742
\(366\) 11528.3 1.64644
\(367\) −8190.16 −1.16491 −0.582456 0.812862i \(-0.697908\pi\)
−0.582456 + 0.812862i \(0.697908\pi\)
\(368\) 5043.44 0.714422
\(369\) 5498.54 0.775725
\(370\) −695.372 −0.0977045
\(371\) 866.812 0.121301
\(372\) −994.693 −0.138636
\(373\) −5008.53 −0.695260 −0.347630 0.937632i \(-0.613013\pi\)
−0.347630 + 0.937632i \(0.613013\pi\)
\(374\) 0 0
\(375\) −833.556 −0.114786
\(376\) −2110.76 −0.289506
\(377\) −3972.00 −0.542622
\(378\) −2430.72 −0.330748
\(379\) 1522.26 0.206314 0.103157 0.994665i \(-0.467106\pi\)
0.103157 + 0.994665i \(0.467106\pi\)
\(380\) −33595.5 −4.53530
\(381\) −7516.02 −1.01065
\(382\) 14273.2 1.91173
\(383\) 8520.08 1.13670 0.568349 0.822787i \(-0.307582\pi\)
0.568349 + 0.822787i \(0.307582\pi\)
\(384\) −16615.1 −2.20804
\(385\) 0 0
\(386\) −18377.8 −2.42332
\(387\) −7014.93 −0.921418
\(388\) 15961.3 2.08844
\(389\) 1588.83 0.207088 0.103544 0.994625i \(-0.466982\pi\)
0.103544 + 0.994625i \(0.466982\pi\)
\(390\) −37166.6 −4.82565
\(391\) 7637.64 0.987856
\(392\) 1898.50 0.244614
\(393\) −16289.3 −2.09080
\(394\) −7866.59 −1.00587
\(395\) 2886.82 0.367725
\(396\) 0 0
\(397\) −1483.46 −0.187539 −0.0937694 0.995594i \(-0.529892\pi\)
−0.0937694 + 0.995594i \(0.529892\pi\)
\(398\) 14015.3 1.76513
\(399\) −6242.41 −0.783236
\(400\) 7259.23 0.907404
\(401\) 10189.5 1.26892 0.634460 0.772956i \(-0.281222\pi\)
0.634460 + 0.772956i \(0.281222\pi\)
\(402\) −22319.6 −2.76915
\(403\) 706.685 0.0873510
\(404\) −17908.5 −2.20540
\(405\) −14058.0 −1.72481
\(406\) 1829.14 0.223592
\(407\) 0 0
\(408\) 23958.5 2.90716
\(409\) −3465.96 −0.419024 −0.209512 0.977806i \(-0.567188\pi\)
−0.209512 + 0.977806i \(0.567188\pi\)
\(410\) 25819.9 3.11013
\(411\) −5492.39 −0.659171
\(412\) 15382.2 1.83939
\(413\) −3740.77 −0.445693
\(414\) 6431.30 0.763481
\(415\) 1906.98 0.225566
\(416\) 453.267 0.0534213
\(417\) 11350.7 1.33296
\(418\) 0 0
\(419\) 2754.83 0.321199 0.160599 0.987020i \(-0.448657\pi\)
0.160599 + 0.987020i \(0.448657\pi\)
\(420\) 11391.7 1.32347
\(421\) −3140.19 −0.363524 −0.181762 0.983343i \(-0.558180\pi\)
−0.181762 + 0.983343i \(0.558180\pi\)
\(422\) −4020.37 −0.463764
\(423\) −882.433 −0.101431
\(424\) 4797.80 0.549532
\(425\) 10993.2 1.25470
\(426\) −8947.21 −1.01759
\(427\) 2510.37 0.284509
\(428\) 2295.94 0.259296
\(429\) 0 0
\(430\) −32940.5 −3.69426
\(431\) 4476.22 0.500260 0.250130 0.968212i \(-0.419527\pi\)
0.250130 + 0.968212i \(0.419527\pi\)
\(432\) −4410.85 −0.491244
\(433\) 1646.00 0.182683 0.0913416 0.995820i \(-0.470884\pi\)
0.0913416 + 0.995820i \(0.470884\pi\)
\(434\) −325.434 −0.0359938
\(435\) 5460.74 0.601891
\(436\) 29858.4 3.27972
\(437\) −11014.6 −1.20572
\(438\) 28503.5 3.10947
\(439\) 7241.05 0.787236 0.393618 0.919274i \(-0.371223\pi\)
0.393618 + 0.919274i \(0.371223\pi\)
\(440\) 0 0
\(441\) 793.695 0.0857029
\(442\) −34211.1 −3.68158
\(443\) 5887.27 0.631405 0.315703 0.948858i \(-0.397760\pi\)
0.315703 + 0.948858i \(0.397760\pi\)
\(444\) −956.695 −0.102258
\(445\) −13173.3 −1.40332
\(446\) 535.721 0.0568770
\(447\) 22707.7 2.40276
\(448\) −3687.85 −0.388917
\(449\) 6378.42 0.670415 0.335207 0.942144i \(-0.391194\pi\)
0.335207 + 0.942144i \(0.391194\pi\)
\(450\) 9256.84 0.969715
\(451\) 0 0
\(452\) 19224.8 2.00058
\(453\) 16222.1 1.68252
\(454\) −14785.6 −1.52846
\(455\) −8093.26 −0.833886
\(456\) −34551.7 −3.54831
\(457\) 18368.0 1.88013 0.940064 0.340998i \(-0.110765\pi\)
0.940064 + 0.340998i \(0.110765\pi\)
\(458\) −11145.3 −1.13709
\(459\) −6679.67 −0.679260
\(460\) 20100.3 2.03735
\(461\) −17510.6 −1.76909 −0.884546 0.466453i \(-0.845532\pi\)
−0.884546 + 0.466453i \(0.845532\pi\)
\(462\) 0 0
\(463\) −12732.5 −1.27803 −0.639016 0.769193i \(-0.720658\pi\)
−0.639016 + 0.769193i \(0.720658\pi\)
\(464\) 3319.20 0.332091
\(465\) −971.556 −0.0968921
\(466\) 9117.20 0.906323
\(467\) −4997.23 −0.495170 −0.247585 0.968866i \(-0.579637\pi\)
−0.247585 + 0.968866i \(0.579637\pi\)
\(468\) −19173.6 −1.89381
\(469\) −4860.23 −0.478517
\(470\) −4143.70 −0.406670
\(471\) −10261.5 −1.00387
\(472\) −20705.1 −2.01913
\(473\) 0 0
\(474\) 5967.30 0.578243
\(475\) −15853.8 −1.53141
\(476\) 10485.8 1.00970
\(477\) 2005.78 0.192534
\(478\) −6870.30 −0.657406
\(479\) 9075.53 0.865703 0.432851 0.901465i \(-0.357507\pi\)
0.432851 + 0.901465i \(0.357507\pi\)
\(480\) −623.156 −0.0592563
\(481\) 679.688 0.0644306
\(482\) −18973.7 −1.79300
\(483\) 3734.86 0.351847
\(484\) 0 0
\(485\) 15590.0 1.45960
\(486\) −19683.4 −1.83716
\(487\) −3867.63 −0.359875 −0.179937 0.983678i \(-0.557590\pi\)
−0.179937 + 0.983678i \(0.557590\pi\)
\(488\) 13894.9 1.28892
\(489\) 22731.6 2.10216
\(490\) 3727.01 0.343611
\(491\) −7334.24 −0.674113 −0.337057 0.941484i \(-0.609431\pi\)
−0.337057 + 0.941484i \(0.609431\pi\)
\(492\) 35523.1 3.25509
\(493\) 5026.50 0.459193
\(494\) 49337.4 4.49351
\(495\) 0 0
\(496\) −590.541 −0.0534598
\(497\) −1948.31 −0.175843
\(498\) 3941.89 0.354699
\(499\) −4365.93 −0.391675 −0.195838 0.980636i \(-0.562743\pi\)
−0.195838 + 0.980636i \(0.562743\pi\)
\(500\) −2019.26 −0.180609
\(501\) 6391.94 0.570002
\(502\) −10484.0 −0.932120
\(503\) 16352.6 1.44956 0.724779 0.688981i \(-0.241942\pi\)
0.724779 + 0.688981i \(0.241942\pi\)
\(504\) 4393.09 0.388262
\(505\) −17492.0 −1.54135
\(506\) 0 0
\(507\) 21888.5 1.91737
\(508\) −18207.4 −1.59020
\(509\) −12108.2 −1.05440 −0.527199 0.849742i \(-0.676758\pi\)
−0.527199 + 0.849742i \(0.676758\pi\)
\(510\) 47033.7 4.08370
\(511\) 6206.82 0.537326
\(512\) −19635.7 −1.69489
\(513\) 9633.06 0.829065
\(514\) 35648.5 3.05912
\(515\) 15024.4 1.28555
\(516\) −45319.7 −3.86645
\(517\) 0 0
\(518\) −313.002 −0.0265492
\(519\) 7585.86 0.641584
\(520\) −44796.1 −3.77777
\(521\) −5625.67 −0.473062 −0.236531 0.971624i \(-0.576010\pi\)
−0.236531 + 0.971624i \(0.576010\pi\)
\(522\) 4232.58 0.354895
\(523\) 3280.32 0.274261 0.137130 0.990553i \(-0.456212\pi\)
0.137130 + 0.990553i \(0.456212\pi\)
\(524\) −39460.3 −3.28976
\(525\) 5375.74 0.446889
\(526\) −13061.5 −1.08271
\(527\) −894.298 −0.0739207
\(528\) 0 0
\(529\) −5576.93 −0.458365
\(530\) 9418.70 0.771929
\(531\) −8656.06 −0.707422
\(532\) −15122.1 −1.23238
\(533\) −25237.6 −2.05096
\(534\) −27230.4 −2.20670
\(535\) 2242.54 0.181221
\(536\) −26901.3 −2.16784
\(537\) 1703.82 0.136918
\(538\) 5251.96 0.420870
\(539\) 0 0
\(540\) −17579.2 −1.40091
\(541\) 7772.10 0.617650 0.308825 0.951119i \(-0.400064\pi\)
0.308825 + 0.951119i \(0.400064\pi\)
\(542\) −17729.2 −1.40505
\(543\) −13943.5 −1.10197
\(544\) −573.602 −0.0452077
\(545\) 29163.8 2.29219
\(546\) −16729.5 −1.31127
\(547\) −10022.2 −0.783398 −0.391699 0.920094i \(-0.628112\pi\)
−0.391699 + 0.920094i \(0.628112\pi\)
\(548\) −13305.1 −1.03717
\(549\) 5808.94 0.451584
\(550\) 0 0
\(551\) −7248.95 −0.560464
\(552\) 20672.4 1.59398
\(553\) 1299.42 0.0999220
\(554\) 23992.0 1.83993
\(555\) −934.441 −0.0714681
\(556\) 27496.7 2.09733
\(557\) 10849.3 0.825310 0.412655 0.910887i \(-0.364601\pi\)
0.412655 + 0.910887i \(0.364601\pi\)
\(558\) −753.047 −0.0571308
\(559\) 32197.6 2.43616
\(560\) 6763.13 0.510347
\(561\) 0 0
\(562\) 13019.3 0.977200
\(563\) −22019.9 −1.64836 −0.824180 0.566328i \(-0.808363\pi\)
−0.824180 + 0.566328i \(0.808363\pi\)
\(564\) −5700.92 −0.425624
\(565\) 18777.7 1.39820
\(566\) 21360.7 1.58632
\(567\) −6327.80 −0.468682
\(568\) −10783.9 −0.796624
\(569\) −13742.9 −1.01253 −0.506267 0.862377i \(-0.668975\pi\)
−0.506267 + 0.862377i \(0.668975\pi\)
\(570\) −67829.5 −4.98432
\(571\) −19382.4 −1.42054 −0.710269 0.703931i \(-0.751427\pi\)
−0.710269 + 0.703931i \(0.751427\pi\)
\(572\) 0 0
\(573\) 19180.4 1.39838
\(574\) 11622.1 0.845116
\(575\) 9485.37 0.687943
\(576\) −8533.61 −0.617304
\(577\) −565.348 −0.0407899 −0.0203949 0.999792i \(-0.506492\pi\)
−0.0203949 + 0.999792i \(0.506492\pi\)
\(578\) 19264.2 1.38631
\(579\) −24696.0 −1.77260
\(580\) 13228.5 0.947040
\(581\) 858.371 0.0612930
\(582\) 32226.0 2.29521
\(583\) 0 0
\(584\) 34354.7 2.43426
\(585\) −18727.6 −1.32358
\(586\) −9744.30 −0.686917
\(587\) −20727.4 −1.45743 −0.728714 0.684818i \(-0.759882\pi\)
−0.728714 + 0.684818i \(0.759882\pi\)
\(588\) 5127.63 0.359626
\(589\) 1289.71 0.0902233
\(590\) −40646.9 −2.83628
\(591\) −10571.1 −0.735767
\(592\) −567.981 −0.0394322
\(593\) 2787.10 0.193006 0.0965030 0.995333i \(-0.469234\pi\)
0.0965030 + 0.995333i \(0.469234\pi\)
\(594\) 0 0
\(595\) 10241.9 0.705675
\(596\) 55008.7 3.78061
\(597\) 18833.7 1.29114
\(598\) −29518.8 −2.01858
\(599\) 18935.5 1.29162 0.645812 0.763497i \(-0.276519\pi\)
0.645812 + 0.763497i \(0.276519\pi\)
\(600\) 29754.7 2.02455
\(601\) −15821.3 −1.07382 −0.536908 0.843641i \(-0.680408\pi\)
−0.536908 + 0.843641i \(0.680408\pi\)
\(602\) −14827.2 −1.00384
\(603\) −11246.5 −0.759521
\(604\) 39297.5 2.64734
\(605\) 0 0
\(606\) −36157.4 −2.42375
\(607\) 2084.63 0.139394 0.0696972 0.997568i \(-0.477797\pi\)
0.0696972 + 0.997568i \(0.477797\pi\)
\(608\) 827.218 0.0551778
\(609\) 2458.00 0.163552
\(610\) 27277.5 1.81055
\(611\) 4050.25 0.268176
\(612\) 24263.9 1.60263
\(613\) 4395.15 0.289590 0.144795 0.989462i \(-0.453748\pi\)
0.144795 + 0.989462i \(0.453748\pi\)
\(614\) −37335.5 −2.45397
\(615\) 34696.8 2.27498
\(616\) 0 0
\(617\) −98.5856 −0.00643259 −0.00321629 0.999995i \(-0.501024\pi\)
−0.00321629 + 0.999995i \(0.501024\pi\)
\(618\) 31056.8 2.02150
\(619\) −16533.9 −1.07359 −0.536796 0.843712i \(-0.680366\pi\)
−0.536796 + 0.843712i \(0.680366\pi\)
\(620\) −2353.57 −0.152454
\(621\) −5763.50 −0.372434
\(622\) 7109.12 0.458280
\(623\) −5929.60 −0.381323
\(624\) −30357.8 −1.94757
\(625\) −16577.9 −1.06099
\(626\) 9470.27 0.604645
\(627\) 0 0
\(628\) −24858.1 −1.57953
\(629\) −860.135 −0.0545243
\(630\) 8624.22 0.545392
\(631\) 22032.9 1.39004 0.695022 0.718989i \(-0.255395\pi\)
0.695022 + 0.718989i \(0.255395\pi\)
\(632\) 7192.27 0.452679
\(633\) −5402.57 −0.339231
\(634\) −7504.54 −0.470100
\(635\) −17783.8 −1.11139
\(636\) 12958.3 0.807908
\(637\) −3642.95 −0.226592
\(638\) 0 0
\(639\) −4508.35 −0.279104
\(640\) −39313.4 −2.42812
\(641\) 434.281 0.0267598 0.0133799 0.999910i \(-0.495741\pi\)
0.0133799 + 0.999910i \(0.495741\pi\)
\(642\) 4635.52 0.284968
\(643\) 10963.1 0.672381 0.336190 0.941794i \(-0.390861\pi\)
0.336190 + 0.941794i \(0.390861\pi\)
\(644\) 9047.59 0.553610
\(645\) −44265.5 −2.70225
\(646\) −62435.7 −3.80263
\(647\) −452.083 −0.0274702 −0.0137351 0.999906i \(-0.504372\pi\)
−0.0137351 + 0.999906i \(0.504372\pi\)
\(648\) −35024.3 −2.12328
\(649\) 0 0
\(650\) −42487.6 −2.56385
\(651\) −437.318 −0.0263285
\(652\) 55066.6 3.30763
\(653\) −10438.7 −0.625572 −0.312786 0.949824i \(-0.601262\pi\)
−0.312786 + 0.949824i \(0.601262\pi\)
\(654\) 60284.2 3.60443
\(655\) −38542.5 −2.29920
\(656\) 21089.8 1.25521
\(657\) 14362.4 0.852865
\(658\) −1865.17 −0.110504
\(659\) 8738.79 0.516563 0.258281 0.966070i \(-0.416844\pi\)
0.258281 + 0.966070i \(0.416844\pi\)
\(660\) 0 0
\(661\) 12849.4 0.756102 0.378051 0.925785i \(-0.376594\pi\)
0.378051 + 0.925785i \(0.376594\pi\)
\(662\) 18622.0 1.09330
\(663\) −45972.9 −2.69297
\(664\) 4751.08 0.277677
\(665\) −14770.3 −0.861305
\(666\) −724.279 −0.0421400
\(667\) 4337.08 0.251773
\(668\) 15484.3 0.896864
\(669\) 719.903 0.0416040
\(670\) −52810.8 −3.04517
\(671\) 0 0
\(672\) −280.496 −0.0161017
\(673\) 22926.5 1.31315 0.656577 0.754259i \(-0.272004\pi\)
0.656577 + 0.754259i \(0.272004\pi\)
\(674\) 23105.5 1.32046
\(675\) −8295.66 −0.473037
\(676\) 53024.4 3.01686
\(677\) −13633.4 −0.773965 −0.386983 0.922087i \(-0.626483\pi\)
−0.386983 + 0.922087i \(0.626483\pi\)
\(678\) 38815.1 2.19865
\(679\) 7017.41 0.396618
\(680\) 56688.8 3.19694
\(681\) −19868.9 −1.11803
\(682\) 0 0
\(683\) 33307.5 1.86600 0.932998 0.359882i \(-0.117183\pi\)
0.932998 + 0.359882i \(0.117183\pi\)
\(684\) −34992.1 −1.95608
\(685\) −12995.7 −0.724874
\(686\) 1677.61 0.0933693
\(687\) −14977.1 −0.831748
\(688\) −26905.9 −1.49096
\(689\) −9206.28 −0.509044
\(690\) 40582.7 2.23907
\(691\) −10077.3 −0.554786 −0.277393 0.960757i \(-0.589470\pi\)
−0.277393 + 0.960757i \(0.589470\pi\)
\(692\) 18376.5 1.00950
\(693\) 0 0
\(694\) −29944.6 −1.63787
\(695\) 26857.1 1.46582
\(696\) 13605.0 0.740942
\(697\) 31937.7 1.73562
\(698\) −33155.6 −1.79794
\(699\) 12251.7 0.662950
\(700\) 13022.6 0.703153
\(701\) 4621.74 0.249017 0.124508 0.992219i \(-0.460265\pi\)
0.124508 + 0.992219i \(0.460265\pi\)
\(702\) 25816.3 1.38800
\(703\) 1240.44 0.0665492
\(704\) 0 0
\(705\) −5568.31 −0.297468
\(706\) −17054.8 −0.909157
\(707\) −7873.51 −0.418831
\(708\) −55922.1 −2.96848
\(709\) 17746.6 0.940038 0.470019 0.882656i \(-0.344247\pi\)
0.470019 + 0.882656i \(0.344247\pi\)
\(710\) −21170.2 −1.11902
\(711\) 3006.82 0.158600
\(712\) −32820.3 −1.72752
\(713\) −771.638 −0.0405302
\(714\) 21170.9 1.10966
\(715\) 0 0
\(716\) 4127.45 0.215433
\(717\) −9232.31 −0.480875
\(718\) −15798.6 −0.821170
\(719\) −31652.1 −1.64176 −0.820879 0.571103i \(-0.806516\pi\)
−0.820879 + 0.571103i \(0.806516\pi\)
\(720\) 15649.7 0.810044
\(721\) 6762.83 0.349322
\(722\) 56494.1 2.91204
\(723\) −25496.9 −1.31153
\(724\) −33777.7 −1.73389
\(725\) 6242.54 0.319782
\(726\) 0 0
\(727\) 21610.8 1.10248 0.551239 0.834348i \(-0.314155\pi\)
0.551239 + 0.834348i \(0.314155\pi\)
\(728\) −20163.7 −1.02653
\(729\) −2043.39 −0.103815
\(730\) 67442.8 3.41941
\(731\) −40745.5 −2.06160
\(732\) 37528.5 1.89493
\(733\) 7665.43 0.386261 0.193130 0.981173i \(-0.438136\pi\)
0.193130 + 0.981173i \(0.438136\pi\)
\(734\) −40057.9 −2.01439
\(735\) 5008.36 0.251342
\(736\) −494.928 −0.0247871
\(737\) 0 0
\(738\) 26893.3 1.34140
\(739\) 13841.5 0.688996 0.344498 0.938787i \(-0.388049\pi\)
0.344498 + 0.938787i \(0.388049\pi\)
\(740\) −2263.66 −0.112451
\(741\) 66299.7 3.28688
\(742\) 4239.56 0.209756
\(743\) 12136.3 0.599243 0.299621 0.954058i \(-0.403140\pi\)
0.299621 + 0.954058i \(0.403140\pi\)
\(744\) −2420.55 −0.119277
\(745\) 53729.1 2.64226
\(746\) −24496.6 −1.20226
\(747\) 1986.25 0.0972867
\(748\) 0 0
\(749\) 1009.42 0.0492433
\(750\) −4076.91 −0.198490
\(751\) 28866.7 1.40261 0.701305 0.712861i \(-0.252601\pi\)
0.701305 + 0.712861i \(0.252601\pi\)
\(752\) −3384.59 −0.164127
\(753\) −14088.4 −0.681820
\(754\) −19427.0 −0.938314
\(755\) 38383.4 1.85022
\(756\) −7912.78 −0.380668
\(757\) 8370.48 0.401889 0.200945 0.979603i \(-0.435599\pi\)
0.200945 + 0.979603i \(0.435599\pi\)
\(758\) 7445.33 0.356763
\(759\) 0 0
\(760\) −81753.5 −3.90199
\(761\) −30458.1 −1.45086 −0.725430 0.688296i \(-0.758359\pi\)
−0.725430 + 0.688296i \(0.758359\pi\)
\(762\) −36760.7 −1.74764
\(763\) 13127.3 0.622856
\(764\) 46463.9 2.20027
\(765\) 23699.5 1.12008
\(766\) 41671.5 1.96561
\(767\) 39730.1 1.87037
\(768\) −53563.2 −2.51666
\(769\) 32239.5 1.51182 0.755908 0.654678i \(-0.227196\pi\)
0.755908 + 0.654678i \(0.227196\pi\)
\(770\) 0 0
\(771\) 47904.5 2.23766
\(772\) −59825.5 −2.78907
\(773\) −7524.47 −0.350112 −0.175056 0.984559i \(-0.556011\pi\)
−0.175056 + 0.984559i \(0.556011\pi\)
\(774\) −34309.9 −1.59334
\(775\) −1110.65 −0.0514784
\(776\) 38841.3 1.79681
\(777\) −420.612 −0.0194200
\(778\) 7770.96 0.358101
\(779\) −46058.8 −2.11839
\(780\) −120989. −5.55398
\(781\) 0 0
\(782\) 37355.5 1.70822
\(783\) −3793.09 −0.173121
\(784\) 3044.23 0.138677
\(785\) −24279.9 −1.10393
\(786\) −79670.7 −3.61547
\(787\) −33196.6 −1.50360 −0.751798 0.659394i \(-0.770813\pi\)
−0.751798 + 0.659394i \(0.770813\pi\)
\(788\) −25608.3 −1.15769
\(789\) −17552.0 −0.791976
\(790\) 14119.4 0.635879
\(791\) 8452.23 0.379932
\(792\) 0 0
\(793\) −26662.3 −1.19395
\(794\) −7255.59 −0.324296
\(795\) 12656.9 0.564645
\(796\) 45624.1 2.03154
\(797\) 8817.06 0.391865 0.195932 0.980617i \(-0.437227\pi\)
0.195932 + 0.980617i \(0.437227\pi\)
\(798\) −30531.5 −1.35439
\(799\) −5125.52 −0.226944
\(800\) −712.371 −0.0314827
\(801\) −13721.0 −0.605252
\(802\) 49836.4 2.19425
\(803\) 0 0
\(804\) −72657.3 −3.18710
\(805\) 8837.14 0.386917
\(806\) 3456.38 0.151049
\(807\) 7057.59 0.307855
\(808\) −43579.8 −1.89744
\(809\) 28930.3 1.25727 0.628637 0.777699i \(-0.283613\pi\)
0.628637 + 0.777699i \(0.283613\pi\)
\(810\) −68757.4 −2.98258
\(811\) 45923.3 1.98839 0.994195 0.107594i \(-0.0343146\pi\)
0.994195 + 0.107594i \(0.0343146\pi\)
\(812\) 5954.42 0.257339
\(813\) −23824.5 −1.02775
\(814\) 0 0
\(815\) 53785.7 2.31169
\(816\) 38417.3 1.64813
\(817\) 58761.0 2.51626
\(818\) −16952.0 −0.724586
\(819\) −8429.71 −0.359656
\(820\) 84052.0 3.57954
\(821\) −16382.8 −0.696423 −0.348211 0.937416i \(-0.613211\pi\)
−0.348211 + 0.937416i \(0.613211\pi\)
\(822\) −26863.2 −1.13985
\(823\) −32395.3 −1.37209 −0.686045 0.727559i \(-0.740655\pi\)
−0.686045 + 0.727559i \(0.740655\pi\)
\(824\) 37432.2 1.58254
\(825\) 0 0
\(826\) −18296.0 −0.770703
\(827\) 14329.2 0.602508 0.301254 0.953544i \(-0.402595\pi\)
0.301254 + 0.953544i \(0.402595\pi\)
\(828\) 20935.9 0.878712
\(829\) 16445.8 0.689005 0.344503 0.938785i \(-0.388048\pi\)
0.344503 + 0.938785i \(0.388048\pi\)
\(830\) 9326.99 0.390054
\(831\) 32240.4 1.34586
\(832\) 39168.1 1.63210
\(833\) 4610.10 0.191753
\(834\) 55515.9 2.30499
\(835\) 15124.1 0.626816
\(836\) 0 0
\(837\) 674.854 0.0278690
\(838\) 13473.8 0.555424
\(839\) 40514.7 1.66713 0.833565 0.552422i \(-0.186296\pi\)
0.833565 + 0.552422i \(0.186296\pi\)
\(840\) 27721.2 1.13866
\(841\) −21534.7 −0.882967
\(842\) −15358.6 −0.628614
\(843\) 17495.4 0.714795
\(844\) −13087.6 −0.533760
\(845\) 51791.0 2.10848
\(846\) −4315.96 −0.175397
\(847\) 0 0
\(848\) 7693.22 0.311540
\(849\) 28704.5 1.16035
\(850\) 53767.4 2.16966
\(851\) −742.160 −0.0298953
\(852\) −29126.0 −1.17118
\(853\) 27962.7 1.12242 0.561211 0.827673i \(-0.310336\pi\)
0.561211 + 0.827673i \(0.310336\pi\)
\(854\) 12278.2 0.491980
\(855\) −34178.2 −1.36710
\(856\) 5587.10 0.223088
\(857\) 4639.52 0.184928 0.0924639 0.995716i \(-0.470526\pi\)
0.0924639 + 0.995716i \(0.470526\pi\)
\(858\) 0 0
\(859\) 18521.2 0.735663 0.367831 0.929892i \(-0.380100\pi\)
0.367831 + 0.929892i \(0.380100\pi\)
\(860\) −107232. −4.25183
\(861\) 15617.8 0.618179
\(862\) 21893.1 0.865061
\(863\) 40491.4 1.59715 0.798577 0.601893i \(-0.205587\pi\)
0.798577 + 0.601893i \(0.205587\pi\)
\(864\) 432.851 0.0170439
\(865\) 17949.1 0.705534
\(866\) 8050.57 0.315900
\(867\) 25887.3 1.01405
\(868\) −1059.39 −0.0414263
\(869\) 0 0
\(870\) 26708.4 1.04080
\(871\) 51619.8 2.00812
\(872\) 72659.3 2.82174
\(873\) 16238.1 0.629528
\(874\) −53872.1 −2.08496
\(875\) −887.772 −0.0342996
\(876\) 92788.0 3.57878
\(877\) 48530.3 1.86859 0.934295 0.356502i \(-0.116031\pi\)
0.934295 + 0.356502i \(0.116031\pi\)
\(878\) 35415.9 1.36131
\(879\) −13094.4 −0.502461
\(880\) 0 0
\(881\) −11590.0 −0.443219 −0.221609 0.975135i \(-0.571131\pi\)
−0.221609 + 0.975135i \(0.571131\pi\)
\(882\) 3881.95 0.148199
\(883\) 41900.7 1.59691 0.798455 0.602054i \(-0.205651\pi\)
0.798455 + 0.602054i \(0.205651\pi\)
\(884\) −111368. −4.23723
\(885\) −54621.3 −2.07466
\(886\) 28794.5 1.09184
\(887\) 17136.8 0.648700 0.324350 0.945937i \(-0.394854\pi\)
0.324350 + 0.945937i \(0.394854\pi\)
\(888\) −2328.08 −0.0879790
\(889\) −8004.89 −0.301997
\(890\) −64430.6 −2.42665
\(891\) 0 0
\(892\) 1743.94 0.0654614
\(893\) 7391.75 0.276994
\(894\) 111063. 4.15492
\(895\) 4031.44 0.150566
\(896\) −17695.8 −0.659794
\(897\) −39667.4 −1.47654
\(898\) 31196.7 1.15930
\(899\) −507.832 −0.0188400
\(900\) 30134.0 1.11607
\(901\) 11650.4 0.430778
\(902\) 0 0
\(903\) −19924.8 −0.734283
\(904\) 46783.0 1.72122
\(905\) −32992.0 −1.21181
\(906\) 79341.9 2.90944
\(907\) 40350.7 1.47720 0.738601 0.674143i \(-0.235487\pi\)
0.738601 + 0.674143i \(0.235487\pi\)
\(908\) −48131.8 −1.75915
\(909\) −18219.1 −0.664786
\(910\) −39584.0 −1.44197
\(911\) −32322.7 −1.17552 −0.587760 0.809035i \(-0.699990\pi\)
−0.587760 + 0.809035i \(0.699990\pi\)
\(912\) −55403.3 −2.01161
\(913\) 0 0
\(914\) 89837.5 3.25116
\(915\) 36655.5 1.32437
\(916\) −36281.5 −1.30871
\(917\) −17348.8 −0.624763
\(918\) −32670.2 −1.17459
\(919\) −2431.28 −0.0872694 −0.0436347 0.999048i \(-0.513894\pi\)
−0.0436347 + 0.999048i \(0.513894\pi\)
\(920\) 48913.5 1.75286
\(921\) −50171.4 −1.79501
\(922\) −85644.2 −3.05916
\(923\) 20692.7 0.737930
\(924\) 0 0
\(925\) −1068.22 −0.0379708
\(926\) −62274.4 −2.21000
\(927\) 15649.0 0.554457
\(928\) −325.724 −0.0115220
\(929\) 40221.0 1.42046 0.710230 0.703970i \(-0.248591\pi\)
0.710230 + 0.703970i \(0.248591\pi\)
\(930\) −4751.86 −0.167548
\(931\) −6648.43 −0.234042
\(932\) 29679.4 1.04311
\(933\) 9553.25 0.335219
\(934\) −24441.4 −0.856260
\(935\) 0 0
\(936\) −46658.4 −1.62936
\(937\) −41503.4 −1.44702 −0.723510 0.690314i \(-0.757472\pi\)
−0.723510 + 0.690314i \(0.757472\pi\)
\(938\) −23771.3 −0.827463
\(939\) 12726.2 0.442282
\(940\) −13489.1 −0.468048
\(941\) 9032.78 0.312923 0.156461 0.987684i \(-0.449991\pi\)
0.156461 + 0.987684i \(0.449991\pi\)
\(942\) −50188.6 −1.73592
\(943\) 27557.2 0.951629
\(944\) −33200.5 −1.14469
\(945\) −7728.72 −0.266048
\(946\) 0 0
\(947\) 5565.96 0.190992 0.0954960 0.995430i \(-0.469556\pi\)
0.0954960 + 0.995430i \(0.469556\pi\)
\(948\) 19425.5 0.665517
\(949\) −65921.7 −2.25491
\(950\) −77540.5 −2.64815
\(951\) −10084.6 −0.343865
\(952\) 25516.8 0.868703
\(953\) −32657.4 −1.11005 −0.555024 0.831834i \(-0.687291\pi\)
−0.555024 + 0.831834i \(0.687291\pi\)
\(954\) 9810.25 0.332934
\(955\) 45383.1 1.53776
\(956\) −22365.0 −0.756628
\(957\) 0 0
\(958\) 44388.3 1.49699
\(959\) −5849.63 −0.196970
\(960\) −53848.7 −1.81037
\(961\) −29700.6 −0.996967
\(962\) 3324.34 0.111415
\(963\) 2335.76 0.0781609
\(964\) −61765.4 −2.06362
\(965\) −58433.9 −1.94928
\(966\) 18267.1 0.608422
\(967\) 610.079 0.0202883 0.0101442 0.999949i \(-0.496771\pi\)
0.0101442 + 0.999949i \(0.496771\pi\)
\(968\) 0 0
\(969\) −83901.2 −2.78152
\(970\) 76250.6 2.52398
\(971\) −45371.4 −1.49952 −0.749762 0.661708i \(-0.769832\pi\)
−0.749762 + 0.661708i \(0.769832\pi\)
\(972\) −64075.9 −2.11444
\(973\) 12088.9 0.398308
\(974\) −18916.5 −0.622304
\(975\) −57094.9 −1.87539
\(976\) 22280.3 0.730713
\(977\) 27229.0 0.891639 0.445820 0.895123i \(-0.352912\pi\)
0.445820 + 0.895123i \(0.352912\pi\)
\(978\) 111180. 3.63511
\(979\) 0 0
\(980\) 12132.6 0.395471
\(981\) 30376.2 0.988622
\(982\) −35871.6 −1.16569
\(983\) 7458.49 0.242003 0.121002 0.992652i \(-0.461389\pi\)
0.121002 + 0.992652i \(0.461389\pi\)
\(984\) 86444.2 2.80055
\(985\) −25012.6 −0.809104
\(986\) 24584.5 0.794048
\(987\) −2506.42 −0.0808310
\(988\) 160609. 5.17171
\(989\) −35156.9 −1.13036
\(990\) 0 0
\(991\) −24357.8 −0.780778 −0.390389 0.920650i \(-0.627660\pi\)
−0.390389 + 0.920650i \(0.627660\pi\)
\(992\) 57.9516 0.00185480
\(993\) 25024.3 0.799721
\(994\) −9529.17 −0.304071
\(995\) 44562.9 1.41984
\(996\) 12832.1 0.408234
\(997\) −19954.3 −0.633862 −0.316931 0.948449i \(-0.602652\pi\)
−0.316931 + 0.948449i \(0.602652\pi\)
\(998\) −21353.7 −0.677294
\(999\) 649.074 0.0205563
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 847.4.a.d.1.4 4
11.10 odd 2 77.4.a.d.1.1 4
33.32 even 2 693.4.a.l.1.4 4
44.43 even 2 1232.4.a.s.1.2 4
55.54 odd 2 1925.4.a.p.1.4 4
77.76 even 2 539.4.a.g.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.d.1.1 4 11.10 odd 2
539.4.a.g.1.1 4 77.76 even 2
693.4.a.l.1.4 4 33.32 even 2
847.4.a.d.1.4 4 1.1 even 1 trivial
1232.4.a.s.1.2 4 44.43 even 2
1925.4.a.p.1.4 4 55.54 odd 2