Newspace parameters
| Level: | \( N \) | \(=\) | \( 847 = 7 \cdot 11^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 847.n (of order \(15\), degree \(8\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(6.76332905120\) |
| Analytic rank: | \(0\) |
| Dimension: | \(48\) |
| Relative dimension: | \(6\) over \(\Q(\zeta_{15})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{15}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9.1 | −1.57025 | − | 1.74394i | −2.08758 | − | 0.929451i | −0.366583 | + | 3.48781i | 3.43038 | + | 0.729150i | 1.65712 | + | 5.10009i | −1.84410 | − | 1.89718i | 2.86111 | − | 2.07872i | 1.48673 | + | 1.65118i | −4.11497 | − | 7.12733i |
| 9.2 | −0.892261 | − | 0.990956i | 2.29028 | + | 1.01970i | 0.0231924 | − | 0.220661i | −0.217028 | − | 0.0461306i | −1.03305 | − | 3.17940i | −0.899665 | − | 2.48809i | −2.39695 | + | 1.74148i | 2.19819 | + | 2.44134i | 0.147932 | + | 0.256225i |
| 9.3 | −0.565745 | − | 0.628323i | −1.11624 | − | 0.496982i | 0.134334 | − | 1.27810i | −1.25706 | − | 0.267196i | 0.319241 | + | 0.982524i | −0.993961 | + | 2.45195i | −2.24710 | + | 1.63261i | −1.00839 | − | 1.11993i | 0.543289 | + | 0.941004i |
| 9.4 | 0.565745 | + | 0.628323i | −1.11624 | − | 0.496982i | 0.134334 | − | 1.27810i | −1.25706 | − | 0.267196i | −0.319241 | − | 0.982524i | 0.993961 | − | 2.45195i | 2.24710 | − | 1.63261i | −1.00839 | − | 1.11993i | −0.543289 | − | 0.941004i |
| 9.5 | 0.892261 | + | 0.990956i | 2.29028 | + | 1.01970i | 0.0231924 | − | 0.220661i | −0.217028 | − | 0.0461306i | 1.03305 | + | 3.17940i | 0.899665 | + | 2.48809i | 2.39695 | − | 1.74148i | 2.19819 | + | 2.44134i | −0.147932 | − | 0.256225i |
| 9.6 | 1.57025 | + | 1.74394i | −2.08758 | − | 0.929451i | −0.366583 | + | 3.48781i | 3.43038 | + | 0.729150i | −1.65712 | − | 5.10009i | 1.84410 | + | 1.89718i | −2.86111 | + | 2.07872i | 1.48673 | + | 1.65118i | 4.11497 | + | 7.12733i |
| 81.1 | −0.245297 | + | 2.33385i | −1.52906 | − | 1.69819i | −3.43038 | − | 0.729150i | −3.20382 | − | 1.42643i | 4.33840 | − | 3.15203i | −1.23447 | − | 2.34010i | 1.09285 | − | 3.36344i | −0.232249 | + | 2.20970i | 4.11497 | − | 7.12733i |
| 81.2 | −0.139385 | + | 1.32616i | 1.67752 | + | 1.86308i | 0.217028 | + | 0.0461306i | 0.202694 | + | 0.0902452i | −2.70456 | + | 1.96498i | −2.08830 | − | 1.62449i | −0.915552 | + | 2.81778i | −0.343391 | + | 3.26715i | −0.147932 | + | 0.256225i |
| 81.3 | −0.0883780 | + | 0.840861i | −0.817595 | − | 0.908031i | 1.25706 | + | 0.267196i | 1.17404 | + | 0.522715i | 0.835785 | − | 0.607233i | 2.63909 | − | 0.187620i | −0.858314 | + | 2.64162i | 0.157526 | − | 1.49876i | −0.543289 | + | 0.941004i |
| 81.4 | 0.0883780 | − | 0.840861i | −0.817595 | − | 0.908031i | 1.25706 | + | 0.267196i | 1.17404 | + | 0.522715i | −0.835785 | + | 0.607233i | −2.63909 | + | 0.187620i | 0.858314 | − | 2.64162i | 0.157526 | − | 1.49876i | 0.543289 | − | 0.941004i |
| 81.5 | 0.139385 | − | 1.32616i | 1.67752 | + | 1.86308i | 0.217028 | + | 0.0461306i | 0.202694 | + | 0.0902452i | 2.70456 | − | 1.96498i | 2.08830 | + | 1.62449i | 0.915552 | − | 2.81778i | −0.343391 | + | 3.26715i | 0.147932 | − | 0.256225i |
| 81.6 | 0.245297 | − | 2.33385i | −1.52906 | − | 1.69819i | −3.43038 | − | 0.729150i | −3.20382 | − | 1.42643i | −4.33840 | + | 3.15203i | 1.23447 | + | 2.34010i | −1.09285 | + | 3.36344i | −0.232249 | + | 2.20970i | −4.11497 | + | 7.12733i |
| 130.1 | −2.29542 | + | 0.487907i | 0.238862 | + | 2.27262i | 3.20382 | − | 1.42643i | −2.34665 | + | 2.60622i | −1.65712 | − | 5.10009i | 2.37419 | + | 1.16758i | −2.86111 | + | 2.07872i | −2.17332 | + | 0.461954i | 4.11497 | − | 7.12733i |
| 130.2 | −1.30432 | + | 0.277243i | −0.262055 | − | 2.49328i | −0.202694 | + | 0.0902452i | 0.148464 | − | 0.164886i | 1.03305 | + | 3.17940i | 2.64433 | + | 0.0867694i | 2.39695 | − | 1.74148i | −3.21335 | + | 0.683020i | −0.147932 | + | 0.256225i |
| 130.3 | −0.827016 | + | 0.175788i | 0.127721 | + | 1.21518i | −1.17404 | + | 0.522715i | 0.859928 | − | 0.955047i | −0.319241 | − | 0.982524i | −2.02479 | + | 1.70301i | 2.24710 | − | 1.63261i | 1.47409 | − | 0.313327i | −0.543289 | + | 0.941004i |
| 130.4 | 0.827016 | − | 0.175788i | 0.127721 | + | 1.21518i | −1.17404 | + | 0.522715i | 0.859928 | − | 0.955047i | 0.319241 | + | 0.982524i | 2.02479 | − | 1.70301i | −2.24710 | + | 1.63261i | 1.47409 | − | 0.313327i | 0.543289 | − | 0.941004i |
| 130.5 | 1.30432 | − | 0.277243i | −0.262055 | − | 2.49328i | −0.202694 | + | 0.0902452i | 0.148464 | − | 0.164886i | −1.03305 | − | 3.17940i | −2.64433 | − | 0.0867694i | −2.39695 | + | 1.74148i | −3.21335 | + | 0.683020i | 0.147932 | − | 0.256225i |
| 130.6 | 2.29542 | − | 0.487907i | 0.238862 | + | 2.27262i | 3.20382 | − | 1.42643i | −2.34665 | + | 2.60622i | 1.65712 | + | 5.10009i | −2.37419 | − | 1.16758i | 2.86111 | − | 2.07872i | −2.17332 | + | 0.461954i | −4.11497 | + | 7.12733i |
| 366.1 | −0.245297 | − | 2.33385i | −1.52906 | + | 1.69819i | −3.43038 | + | 0.729150i | −3.20382 | + | 1.42643i | 4.33840 | + | 3.15203i | −1.23447 | + | 2.34010i | 1.09285 | + | 3.36344i | −0.232249 | − | 2.20970i | 4.11497 | + | 7.12733i |
| 366.2 | −0.139385 | − | 1.32616i | 1.67752 | − | 1.86308i | 0.217028 | − | 0.0461306i | 0.202694 | − | 0.0902452i | −2.70456 | − | 1.96498i | −2.08830 | + | 1.62449i | −0.915552 | − | 2.81778i | −0.343391 | − | 3.26715i | −0.147932 | − | 0.256225i |
| See all 48 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 7.c | even | 3 | 1 | inner |
| 11.b | odd | 2 | 1 | inner |
| 11.c | even | 5 | 3 | inner |
| 11.d | odd | 10 | 3 | inner |
| 77.h | odd | 6 | 1 | inner |
| 77.m | even | 15 | 3 | inner |
| 77.o | odd | 30 | 3 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 847.2.n.k | 48 | |
| 7.c | even | 3 | 1 | inner | 847.2.n.k | 48 | |
| 11.b | odd | 2 | 1 | inner | 847.2.n.k | 48 | |
| 11.c | even | 5 | 1 | 847.2.e.e | ✓ | 12 | |
| 11.c | even | 5 | 3 | inner | 847.2.n.k | 48 | |
| 11.d | odd | 10 | 1 | 847.2.e.e | ✓ | 12 | |
| 11.d | odd | 10 | 3 | inner | 847.2.n.k | 48 | |
| 77.h | odd | 6 | 1 | inner | 847.2.n.k | 48 | |
| 77.m | even | 15 | 1 | 847.2.e.e | ✓ | 12 | |
| 77.m | even | 15 | 3 | inner | 847.2.n.k | 48 | |
| 77.m | even | 15 | 1 | 5929.2.a.bk | 6 | ||
| 77.n | even | 30 | 1 | 5929.2.a.bl | 6 | ||
| 77.o | odd | 30 | 1 | 847.2.e.e | ✓ | 12 | |
| 77.o | odd | 30 | 3 | inner | 847.2.n.k | 48 | |
| 77.o | odd | 30 | 1 | 5929.2.a.bk | 6 | ||
| 77.p | odd | 30 | 1 | 5929.2.a.bl | 6 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 847.2.e.e | ✓ | 12 | 11.c | even | 5 | 1 | |
| 847.2.e.e | ✓ | 12 | 11.d | odd | 10 | 1 | |
| 847.2.e.e | ✓ | 12 | 77.m | even | 15 | 1 | |
| 847.2.e.e | ✓ | 12 | 77.o | odd | 30 | 1 | |
| 847.2.n.k | 48 | 1.a | even | 1 | 1 | trivial | |
| 847.2.n.k | 48 | 7.c | even | 3 | 1 | inner | |
| 847.2.n.k | 48 | 11.b | odd | 2 | 1 | inner | |
| 847.2.n.k | 48 | 11.c | even | 5 | 3 | inner | |
| 847.2.n.k | 48 | 11.d | odd | 10 | 3 | inner | |
| 847.2.n.k | 48 | 77.h | odd | 6 | 1 | inner | |
| 847.2.n.k | 48 | 77.m | even | 15 | 3 | inner | |
| 847.2.n.k | 48 | 77.o | odd | 30 | 3 | inner | |
| 5929.2.a.bk | 6 | 77.m | even | 15 | 1 | ||
| 5929.2.a.bk | 6 | 77.o | odd | 30 | 1 | ||
| 5929.2.a.bl | 6 | 77.n | even | 30 | 1 | ||
| 5929.2.a.bl | 6 | 77.p | odd | 30 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{48} - 8 T_{2}^{46} + 15 T_{2}^{44} + 166 T_{2}^{42} - 1384 T_{2}^{40} + 7678 T_{2}^{38} + \cdots + 5764801 \)
acting on \(S_{2}^{\mathrm{new}}(847, [\chi])\).