Properties

Label 847.2.f.t.323.3
Level $847$
Weight $2$
Character 847.323
Analytic conductor $6.763$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [847,2,Mod(148,847)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("847.148"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(847, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 847.f (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-2,1,-8,-1,-12,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.76332905120\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 7 x^{10} - 15 x^{9} + 59 x^{8} + 118 x^{7} + 266 x^{6} + 324 x^{5} + 1036 x^{4} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 323.3
Root \(-0.965643 - 2.97194i\) of defining polynomial
Character \(\chi\) \(=\) 847.323
Dual form 847.2.f.t.729.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.71907 + 1.24898i) q^{2} +(-0.965643 + 2.97194i) q^{3} +(0.777220 + 2.39204i) q^{4} +(-0.392262 + 0.284995i) q^{5} +(-5.37189 + 3.90291i) q^{6} +(0.309017 + 0.951057i) q^{7} +(-0.338253 + 1.04104i) q^{8} +(-5.47293 - 3.97631i) q^{9} -1.03028 q^{10} -7.85952 q^{12} +(-4.53838 - 3.29733i) q^{13} +(-0.656626 + 2.02089i) q^{14} +(-0.468203 - 1.44098i) q^{15} +(2.18787 - 1.58958i) q^{16} +(-4.53838 + 3.29733i) q^{17} +(-4.44201 - 13.6711i) q^{18} +(-1.63162 + 5.02162i) q^{19} +(-0.986592 - 0.716801i) q^{20} -3.12489 q^{21} +2.48486 q^{23} +(-2.76727 - 2.01054i) q^{24} +(-1.47244 + 4.53170i) q^{25} +(-3.68350 - 11.3367i) q^{26} +(9.51801 - 6.91524i) q^{27} +(-2.03479 + 1.47836i) q^{28} +(1.63162 + 5.02162i) q^{29} +(0.994879 - 3.06192i) q^{30} +(5.76415 + 4.18790i) q^{31} +7.93567 q^{32} -11.9201 q^{34} +(-0.392262 - 0.284995i) q^{35} +(5.25783 - 16.1819i) q^{36} +(-0.0726471 - 0.223585i) q^{37} +(-9.07676 + 6.59465i) q^{38} +(14.1819 - 10.3038i) q^{39} +(-0.164006 - 0.504758i) q^{40} +(0.738629 - 2.27327i) q^{41} +(-5.37189 - 3.90291i) q^{42} +1.03028 q^{43} +3.28005 q^{45} +(4.27165 + 3.10353i) q^{46} +(-0.497439 + 1.53096i) q^{47} +(2.61144 + 8.03719i) q^{48} +(-0.809017 + 0.587785i) q^{49} +(-8.19120 + 5.95126i) q^{50} +(-5.41701 - 16.6718i) q^{51} +(4.36001 - 13.4187i) q^{52} +(2.45154 + 1.78115i) q^{53} +24.9991 q^{54} -1.09461 q^{56} +(-13.3484 - 9.69819i) q^{57} +(-3.46701 + 10.6704i) q^{58} +(0.965643 + 2.97194i) q^{59} +(3.08299 - 2.23992i) q^{60} +(1.93375 - 1.40496i) q^{61} +(4.67838 + 14.3986i) q^{62} +(2.09047 - 6.43381i) q^{63} +(9.26621 + 6.73230i) q^{64} +2.71995 q^{65} +10.0147 q^{67} +(-11.4147 - 8.29323i) q^{68} +(-2.39949 + 7.38487i) q^{69} +(-0.318373 - 0.979851i) q^{70} +(-9.76907 + 7.09764i) q^{71} +(5.99072 - 4.35251i) q^{72} +(0.738629 + 2.27327i) q^{73} +(0.154367 - 0.475092i) q^{74} +(-12.0461 - 8.75200i) q^{75} -13.2800 q^{76} +37.2489 q^{78} +(-7.30565 - 5.30786i) q^{79} +(-0.405195 + 1.24706i) q^{80} +(5.08928 + 15.6632i) q^{81} +(4.10901 - 2.98537i) q^{82} +(2.60463 - 1.89237i) q^{83} +(-2.42872 - 7.47485i) q^{84} +(0.840512 - 2.58683i) q^{85} +(1.77112 + 1.28679i) q^{86} -16.4995 q^{87} -1.26537 q^{89} +(5.63863 + 4.09670i) q^{90} +(1.73351 - 5.33519i) q^{91} +(1.93129 + 5.94389i) q^{92} +(-18.0123 + 13.0867i) q^{93} +(-2.76727 + 2.01054i) q^{94} +(-0.791113 - 2.43479i) q^{95} +(-7.66302 + 23.5843i) q^{96} +(7.11545 + 5.16968i) q^{97} -2.12489 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} + q^{3} - 8 q^{4} - q^{5} - 12 q^{6} - 3 q^{7} - 6 q^{8} - 4 q^{9} - 16 q^{10} + 8 q^{12} - 8 q^{13} - 2 q^{14} + 5 q^{15} - 10 q^{16} - 8 q^{17} + 18 q^{18} + 14 q^{20} - 4 q^{21} + 28 q^{23}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/847\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(365\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.71907 + 1.24898i 1.21556 + 0.883160i 0.995724 0.0923762i \(-0.0294462\pi\)
0.219841 + 0.975536i \(0.429446\pi\)
\(3\) −0.965643 + 2.97194i −0.557514 + 1.71585i 0.131696 + 0.991290i \(0.457958\pi\)
−0.689210 + 0.724562i \(0.742042\pi\)
\(4\) 0.777220 + 2.39204i 0.388610 + 1.19602i
\(5\) −0.392262 + 0.284995i −0.175425 + 0.127454i −0.672033 0.740521i \(-0.734579\pi\)
0.496608 + 0.867975i \(0.334579\pi\)
\(6\) −5.37189 + 3.90291i −2.19307 + 1.59336i
\(7\) 0.309017 + 0.951057i 0.116797 + 0.359466i
\(8\) −0.338253 + 1.04104i −0.119590 + 0.368062i
\(9\) −5.47293 3.97631i −1.82431 1.32544i
\(10\) −1.03028 −0.325802
\(11\) 0 0
\(12\) −7.85952 −2.26885
\(13\) −4.53838 3.29733i −1.25872 0.914514i −0.260026 0.965602i \(-0.583731\pi\)
−0.998694 + 0.0510876i \(0.983731\pi\)
\(14\) −0.656626 + 2.02089i −0.175491 + 0.540105i
\(15\) −0.468203 1.44098i −0.120890 0.372060i
\(16\) 2.18787 1.58958i 0.546968 0.397395i
\(17\) −4.53838 + 3.29733i −1.10072 + 0.799719i −0.981177 0.193110i \(-0.938143\pi\)
−0.119542 + 0.992829i \(0.538143\pi\)
\(18\) −4.44201 13.6711i −1.04699 3.22231i
\(19\) −1.63162 + 5.02162i −0.374320 + 1.15204i 0.569616 + 0.821911i \(0.307092\pi\)
−0.943936 + 0.330128i \(0.892908\pi\)
\(20\) −0.986592 0.716801i −0.220609 0.160282i
\(21\) −3.12489 −0.681906
\(22\) 0 0
\(23\) 2.48486 0.518130 0.259065 0.965860i \(-0.416586\pi\)
0.259065 + 0.965860i \(0.416586\pi\)
\(24\) −2.76727 2.01054i −0.564866 0.410399i
\(25\) −1.47244 + 4.53170i −0.294488 + 0.906340i
\(26\) −3.68350 11.3367i −0.722395 2.22330i
\(27\) 9.51801 6.91524i 1.83174 1.33084i
\(28\) −2.03479 + 1.47836i −0.384539 + 0.279384i
\(29\) 1.63162 + 5.02162i 0.302985 + 0.932492i 0.980421 + 0.196911i \(0.0630909\pi\)
−0.677436 + 0.735581i \(0.736909\pi\)
\(30\) 0.994879 3.06192i 0.181639 0.559028i
\(31\) 5.76415 + 4.18790i 1.03527 + 0.752170i 0.969357 0.245656i \(-0.0790033\pi\)
0.0659154 + 0.997825i \(0.479003\pi\)
\(32\) 7.93567 1.40284
\(33\) 0 0
\(34\) −11.9201 −2.04428
\(35\) −0.392262 0.284995i −0.0663043 0.0481729i
\(36\) 5.25783 16.1819i 0.876304 2.69699i
\(37\) −0.0726471 0.223585i −0.0119431 0.0367571i 0.944907 0.327338i \(-0.106152\pi\)
−0.956850 + 0.290581i \(0.906152\pi\)
\(38\) −9.07676 + 6.59465i −1.47245 + 1.06979i
\(39\) 14.1819 10.3038i 2.27092 1.64992i
\(40\) −0.164006 0.504758i −0.0259316 0.0798093i
\(41\) 0.738629 2.27327i 0.115354 0.355024i −0.876666 0.481099i \(-0.840238\pi\)
0.992021 + 0.126074i \(0.0402378\pi\)
\(42\) −5.37189 3.90291i −0.828901 0.602232i
\(43\) 1.03028 0.157116 0.0785578 0.996910i \(-0.474968\pi\)
0.0785578 + 0.996910i \(0.474968\pi\)
\(44\) 0 0
\(45\) 3.28005 0.488961
\(46\) 4.27165 + 3.10353i 0.629820 + 0.457591i
\(47\) −0.497439 + 1.53096i −0.0725590 + 0.223314i −0.980759 0.195223i \(-0.937457\pi\)
0.908200 + 0.418537i \(0.137457\pi\)
\(48\) 2.61144 + 8.03719i 0.376929 + 1.16007i
\(49\) −0.809017 + 0.587785i −0.115574 + 0.0839693i
\(50\) −8.19120 + 5.95126i −1.15841 + 0.841635i
\(51\) −5.41701 16.6718i −0.758533 2.33453i
\(52\) 4.36001 13.4187i 0.604625 1.86084i
\(53\) 2.45154 + 1.78115i 0.336746 + 0.244660i 0.743287 0.668972i \(-0.233265\pi\)
−0.406542 + 0.913632i \(0.633265\pi\)
\(54\) 24.9991 3.40194
\(55\) 0 0
\(56\) −1.09461 −0.146273
\(57\) −13.3484 9.69819i −1.76804 1.28456i
\(58\) −3.46701 + 10.6704i −0.455241 + 1.40109i
\(59\) 0.965643 + 2.97194i 0.125716 + 0.386914i 0.994031 0.109099i \(-0.0347967\pi\)
−0.868315 + 0.496013i \(0.834797\pi\)
\(60\) 3.08299 2.23992i 0.398012 0.289173i
\(61\) 1.93375 1.40496i 0.247592 0.179886i −0.457067 0.889432i \(-0.651100\pi\)
0.704659 + 0.709546i \(0.251100\pi\)
\(62\) 4.67838 + 14.3986i 0.594155 + 1.82862i
\(63\) 2.09047 6.43381i 0.263375 0.810584i
\(64\) 9.26621 + 6.73230i 1.15828 + 0.841537i
\(65\) 2.71995 0.337369
\(66\) 0 0
\(67\) 10.0147 1.22349 0.611744 0.791056i \(-0.290468\pi\)
0.611744 + 0.791056i \(0.290468\pi\)
\(68\) −11.4147 8.29323i −1.38423 1.00570i
\(69\) −2.39949 + 7.38487i −0.288865 + 0.889034i
\(70\) −0.318373 0.979851i −0.0380528 0.117115i
\(71\) −9.76907 + 7.09764i −1.15938 + 0.842335i −0.989699 0.143165i \(-0.954272\pi\)
−0.169676 + 0.985500i \(0.554272\pi\)
\(72\) 5.99072 4.35251i 0.706013 0.512948i
\(73\) 0.738629 + 2.27327i 0.0864499 + 0.266066i 0.984931 0.172946i \(-0.0553287\pi\)
−0.898481 + 0.439012i \(0.855329\pi\)
\(74\) 0.154367 0.475092i 0.0179448 0.0552284i
\(75\) −12.0461 8.75200i −1.39096 1.01059i
\(76\) −13.2800 −1.52333
\(77\) 0 0
\(78\) 37.2489 4.21760
\(79\) −7.30565 5.30786i −0.821949 0.597181i 0.0953208 0.995447i \(-0.469612\pi\)
−0.917270 + 0.398265i \(0.869612\pi\)
\(80\) −0.405195 + 1.24706i −0.0453022 + 0.139426i
\(81\) 5.08928 + 15.6632i 0.565476 + 1.74036i
\(82\) 4.10901 2.98537i 0.453764 0.329679i
\(83\) 2.60463 1.89237i 0.285895 0.207715i −0.435590 0.900145i \(-0.643460\pi\)
0.721484 + 0.692431i \(0.243460\pi\)
\(84\) −2.42872 7.47485i −0.264996 0.815573i
\(85\) 0.840512 2.58683i 0.0911663 0.280581i
\(86\) 1.77112 + 1.28679i 0.190984 + 0.138758i
\(87\) −16.4995 −1.76894
\(88\) 0 0
\(89\) −1.26537 −0.134129 −0.0670643 0.997749i \(-0.521363\pi\)
−0.0670643 + 0.997749i \(0.521363\pi\)
\(90\) 5.63863 + 4.09670i 0.594363 + 0.431830i
\(91\) 1.73351 5.33519i 0.181721 0.559280i
\(92\) 1.93129 + 5.94389i 0.201350 + 0.619693i
\(93\) −18.0123 + 13.0867i −1.86779 + 1.35703i
\(94\) −2.76727 + 2.01054i −0.285422 + 0.207371i
\(95\) −0.791113 2.43479i −0.0811664 0.249805i
\(96\) −7.66302 + 23.5843i −0.782104 + 2.40707i
\(97\) 7.11545 + 5.16968i 0.722465 + 0.524901i 0.887171 0.461441i \(-0.152667\pi\)
−0.164706 + 0.986343i \(0.552667\pi\)
\(98\) −2.12489 −0.214646
\(99\) 0 0
\(100\) −11.9844 −1.19844
\(101\) 10.4771 + 7.61202i 1.04251 + 0.757425i 0.970773 0.239999i \(-0.0771472\pi\)
0.0717324 + 0.997424i \(0.477147\pi\)
\(102\) 11.5105 35.4258i 1.13971 3.50767i
\(103\) 3.76069 + 11.5742i 0.370552 + 1.14044i 0.946431 + 0.322906i \(0.104660\pi\)
−0.575880 + 0.817535i \(0.695340\pi\)
\(104\) 4.96775 3.60928i 0.487128 0.353919i
\(105\) 1.22577 0.890576i 0.119623 0.0869113i
\(106\) 1.98976 + 6.12384i 0.193262 + 0.594800i
\(107\) 3.26325 10.0432i 0.315470 0.970917i −0.660090 0.751186i \(-0.729482\pi\)
0.975560 0.219731i \(-0.0705180\pi\)
\(108\) 23.9391 + 17.3928i 2.30354 + 1.67362i
\(109\) −7.34060 −0.703102 −0.351551 0.936169i \(-0.614346\pi\)
−0.351551 + 0.936169i \(0.614346\pi\)
\(110\) 0 0
\(111\) 0.734633 0.0697283
\(112\) 2.18787 + 1.58958i 0.206734 + 0.150201i
\(113\) 4.25359 13.0912i 0.400144 1.23152i −0.524738 0.851264i \(-0.675837\pi\)
0.924882 0.380253i \(-0.124163\pi\)
\(114\) −10.8340 33.3437i −1.01470 3.12292i
\(115\) −0.974716 + 0.708172i −0.0908927 + 0.0660374i
\(116\) −10.7438 + 7.80582i −0.997535 + 0.724752i
\(117\) 11.7270 + 36.0921i 1.08416 + 3.33671i
\(118\) −2.05188 + 6.31504i −0.188891 + 0.581346i
\(119\) −4.53838 3.29733i −0.416033 0.302265i
\(120\) 1.65848 0.151398
\(121\) 0 0
\(122\) 5.07901 0.459832
\(123\) 6.04276 + 4.39032i 0.544858 + 0.395862i
\(124\) −5.53761 + 17.0430i −0.497292 + 1.53051i
\(125\) −1.46308 4.50290i −0.130862 0.402752i
\(126\) 11.6293 8.44921i 1.03602 0.752716i
\(127\) −2.07116 + 1.50479i −0.183786 + 0.133528i −0.675874 0.737017i \(-0.736234\pi\)
0.492088 + 0.870545i \(0.336234\pi\)
\(128\) 2.61626 + 8.05203i 0.231247 + 0.711705i
\(129\) −0.994879 + 3.06192i −0.0875942 + 0.269587i
\(130\) 4.67579 + 3.39716i 0.410094 + 0.297950i
\(131\) −2.71995 −0.237643 −0.118822 0.992916i \(-0.537912\pi\)
−0.118822 + 0.992916i \(0.537912\pi\)
\(132\) 0 0
\(133\) −5.28005 −0.457838
\(134\) 17.2159 + 12.5081i 1.48723 + 1.08054i
\(135\) −1.76274 + 5.42517i −0.151713 + 0.466924i
\(136\) −1.89751 5.83995i −0.162710 0.500771i
\(137\) 7.85099 5.70408i 0.670755 0.487332i −0.199523 0.979893i \(-0.563939\pi\)
0.870278 + 0.492561i \(0.163939\pi\)
\(138\) −13.3484 + 9.69819i −1.13629 + 0.825565i
\(139\) −6.09352 18.7539i −0.516845 1.59069i −0.779899 0.625905i \(-0.784730\pi\)
0.263054 0.964781i \(-0.415270\pi\)
\(140\) 0.376845 1.15981i 0.0318492 0.0980217i
\(141\) −4.06958 2.95672i −0.342720 0.249001i
\(142\) −25.6585 −2.15321
\(143\) 0 0
\(144\) −18.2947 −1.52456
\(145\) −2.07116 1.50479i −0.172000 0.124966i
\(146\) −1.56950 + 4.83043i −0.129893 + 0.399769i
\(147\) −0.965643 2.97194i −0.0796449 0.245122i
\(148\) 0.478361 0.347550i 0.0393210 0.0285684i
\(149\) −8.54330 + 6.20707i −0.699894 + 0.508503i −0.879898 0.475163i \(-0.842389\pi\)
0.180004 + 0.983666i \(0.442389\pi\)
\(150\) −9.77702 30.0906i −0.798290 2.45689i
\(151\) 4.78027 14.7121i 0.389013 1.19726i −0.544515 0.838751i \(-0.683286\pi\)
0.933527 0.358506i \(-0.116714\pi\)
\(152\) −4.67579 3.39716i −0.379256 0.275546i
\(153\) 37.9494 3.06803
\(154\) 0 0
\(155\) −3.45459 −0.277479
\(156\) 35.6695 + 25.9154i 2.85584 + 2.07489i
\(157\) 2.81376 8.65985i 0.224562 0.691131i −0.773774 0.633462i \(-0.781633\pi\)
0.998336 0.0576691i \(-0.0183668\pi\)
\(158\) −5.92951 18.2492i −0.471727 1.45183i
\(159\) −7.66080 + 5.56589i −0.607541 + 0.441404i
\(160\) −3.11286 + 2.26162i −0.246093 + 0.178797i
\(161\) 0.767865 + 2.36324i 0.0605162 + 0.186250i
\(162\) −10.8141 + 33.2825i −0.849639 + 2.61492i
\(163\) 10.7438 + 7.80582i 0.841518 + 0.611399i 0.922794 0.385293i \(-0.125900\pi\)
−0.0812762 + 0.996692i \(0.525900\pi\)
\(164\) 6.01182 0.469444
\(165\) 0 0
\(166\) 6.84106 0.530969
\(167\) −8.13916 5.91344i −0.629827 0.457596i 0.226513 0.974008i \(-0.427267\pi\)
−0.856340 + 0.516412i \(0.827267\pi\)
\(168\) 1.05700 3.25312i 0.0815494 0.250983i
\(169\) 5.70732 + 17.5653i 0.439024 + 1.35118i
\(170\) 4.67579 3.39716i 0.358616 0.260550i
\(171\) 28.8973 20.9951i 2.20983 1.60554i
\(172\) 0.800752 + 2.46446i 0.0610567 + 0.187913i
\(173\) −2.52462 + 7.76998i −0.191943 + 0.590741i 0.808055 + 0.589107i \(0.200520\pi\)
−0.999999 + 0.00163416i \(0.999480\pi\)
\(174\) −28.3638 20.6075i −2.15026 1.56225i
\(175\) −4.76491 −0.360193
\(176\) 0 0
\(177\) −9.76491 −0.733975
\(178\) −2.17525 1.58041i −0.163042 0.118457i
\(179\) −3.78992 + 11.6642i −0.283272 + 0.871822i 0.703639 + 0.710558i \(0.251557\pi\)
−0.986911 + 0.161265i \(0.948443\pi\)
\(180\) 2.54932 + 7.84600i 0.190015 + 0.584806i
\(181\) 5.69949 4.14092i 0.423640 0.307792i −0.355461 0.934691i \(-0.615676\pi\)
0.779101 + 0.626899i \(0.215676\pi\)
\(182\) 9.64354 7.00644i 0.714827 0.519352i
\(183\) 2.30813 + 7.10369i 0.170622 + 0.525120i
\(184\) −0.840512 + 2.58683i −0.0619633 + 0.190704i
\(185\) 0.0922172 + 0.0669997i 0.00677994 + 0.00492592i
\(186\) −47.3094 −3.46889
\(187\) 0 0
\(188\) −4.04874 −0.295284
\(189\) 9.51801 + 6.91524i 0.692333 + 0.503010i
\(190\) 1.68102 5.17366i 0.121954 0.375337i
\(191\) 5.80803 + 17.8753i 0.420254 + 1.29341i 0.907466 + 0.420126i \(0.138014\pi\)
−0.487211 + 0.873284i \(0.661986\pi\)
\(192\) −28.9559 + 21.0377i −2.08971 + 1.51826i
\(193\) −13.3484 + 9.69819i −0.960840 + 0.698091i −0.953346 0.301881i \(-0.902385\pi\)
−0.00749397 + 0.999972i \(0.502385\pi\)
\(194\) 5.77514 + 17.7741i 0.414631 + 1.27610i
\(195\) −2.62650 + 8.08354i −0.188088 + 0.578875i
\(196\) −2.03479 1.47836i −0.145342 0.105597i
\(197\) 24.4995 1.74552 0.872760 0.488149i \(-0.162328\pi\)
0.872760 + 0.488149i \(0.162328\pi\)
\(198\) 0 0
\(199\) −15.3893 −1.09092 −0.545461 0.838136i \(-0.683645\pi\)
−0.545461 + 0.838136i \(0.683645\pi\)
\(200\) −4.21960 3.06572i −0.298371 0.216779i
\(201\) −9.67060 + 29.7631i −0.682112 + 2.09932i
\(202\) 8.50353 + 26.1712i 0.598306 + 1.84140i
\(203\) −4.27165 + 3.10353i −0.299811 + 0.217825i
\(204\) 35.6695 25.9154i 2.49736 1.81444i
\(205\) 0.358133 + 1.10222i 0.0250131 + 0.0769824i
\(206\) −7.99103 + 24.5939i −0.556761 + 1.71354i
\(207\) −13.5995 9.88059i −0.945228 0.686749i
\(208\) −15.1708 −1.05190
\(209\) 0 0
\(210\) 3.21949 0.222166
\(211\) 11.6814 + 8.48703i 0.804180 + 0.584271i 0.912137 0.409885i \(-0.134431\pi\)
−0.107957 + 0.994156i \(0.534431\pi\)
\(212\) −2.35519 + 7.24854i −0.161755 + 0.497832i
\(213\) −11.6604 35.8869i −0.798955 2.45893i
\(214\) 18.1535 13.1893i 1.24095 0.901602i
\(215\) −0.404138 + 0.293623i −0.0275620 + 0.0200249i
\(216\) 3.97951 + 12.2477i 0.270772 + 0.833349i
\(217\) −2.20171 + 6.77617i −0.149462 + 0.459996i
\(218\) −12.6190 9.16823i −0.854666 0.620951i
\(219\) −7.46927 −0.504726
\(220\) 0 0
\(221\) 31.4693 2.11685
\(222\) 1.26288 + 0.917539i 0.0847592 + 0.0615812i
\(223\) 5.33164 16.4091i 0.357033 1.09883i −0.597788 0.801654i \(-0.703954\pi\)
0.954821 0.297181i \(-0.0960464\pi\)
\(224\) 2.45226 + 7.54727i 0.163848 + 0.504273i
\(225\) 26.0780 18.9468i 1.73853 1.26312i
\(226\) 23.6628 17.1920i 1.57403 1.14360i
\(227\) 3.31265 + 10.1953i 0.219868 + 0.676685i 0.998772 + 0.0495413i \(0.0157759\pi\)
−0.778904 + 0.627143i \(0.784224\pi\)
\(228\) 12.8238 39.4675i 0.849276 2.61380i
\(229\) −4.41285 3.20613i −0.291610 0.211867i 0.432356 0.901703i \(-0.357682\pi\)
−0.723965 + 0.689836i \(0.757682\pi\)
\(230\) −2.56009 −0.168808
\(231\) 0 0
\(232\) −5.77959 −0.379449
\(233\) −24.0922 17.5040i −1.57833 1.14673i −0.918575 0.395246i \(-0.870659\pi\)
−0.659757 0.751479i \(-0.729341\pi\)
\(234\) −24.9186 + 76.6915i −1.62898 + 5.01348i
\(235\) −0.241189 0.742305i −0.0157335 0.0484226i
\(236\) −6.35848 + 4.61971i −0.413902 + 0.300717i
\(237\) 22.8293 16.5865i 1.48292 1.07741i
\(238\) −3.68350 11.3367i −0.238766 0.734847i
\(239\) 0.791113 2.43479i 0.0511728 0.157494i −0.922204 0.386703i \(-0.873614\pi\)
0.973377 + 0.229209i \(0.0736139\pi\)
\(240\) −3.31493 2.40843i −0.213978 0.155464i
\(241\) 27.3893 1.76430 0.882151 0.470966i \(-0.156095\pi\)
0.882151 + 0.470966i \(0.156095\pi\)
\(242\) 0 0
\(243\) −16.1698 −1.03730
\(244\) 4.86366 + 3.53366i 0.311364 + 0.226219i
\(245\) 0.149831 0.461131i 0.00957232 0.0294606i
\(246\) 4.90451 + 15.0945i 0.312700 + 0.962392i
\(247\) 23.9629 17.4100i 1.52472 1.10777i
\(248\) −6.30950 + 4.58412i −0.400653 + 0.291092i
\(249\) 3.10888 + 9.56815i 0.197017 + 0.606357i
\(250\) 3.10888 9.56815i 0.196623 0.605143i
\(251\) −7.96464 5.78665i −0.502724 0.365250i 0.307333 0.951602i \(-0.400564\pi\)
−0.810056 + 0.586352i \(0.800564\pi\)
\(252\) 17.0147 1.07182
\(253\) 0 0
\(254\) −5.43991 −0.341330
\(255\) 6.87627 + 4.99591i 0.430609 + 0.312856i
\(256\) 1.51950 4.67654i 0.0949688 0.292284i
\(257\) −6.95274 21.3983i −0.433700 1.33479i −0.894413 0.447242i \(-0.852406\pi\)
0.460713 0.887549i \(-0.347594\pi\)
\(258\) −5.53453 + 4.02107i −0.344565 + 0.250341i
\(259\) 0.190193 0.138183i 0.0118180 0.00858628i
\(260\) 2.11400 + 6.50623i 0.131105 + 0.403499i
\(261\) 11.0378 33.9708i 0.683222 2.10274i
\(262\) −4.67579 3.39716i −0.288871 0.209877i
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) −1.46927 −0.0902563
\(266\) −9.07676 6.59465i −0.556532 0.404344i
\(267\) 1.22189 3.76060i 0.0747786 0.230145i
\(268\) 7.78361 + 23.9555i 0.475460 + 1.46331i
\(269\) −7.45873 + 5.41908i −0.454767 + 0.330407i −0.791475 0.611202i \(-0.790686\pi\)
0.336708 + 0.941609i \(0.390686\pi\)
\(270\) −9.80618 + 7.12461i −0.596785 + 0.433590i
\(271\) 3.26325 + 10.0432i 0.198228 + 0.610084i 0.999924 + 0.0123511i \(0.00393157\pi\)
−0.801695 + 0.597733i \(0.796068\pi\)
\(272\) −4.68802 + 14.4282i −0.284253 + 0.874841i
\(273\) 14.1819 + 10.3038i 0.858329 + 0.623612i
\(274\) 20.6206 1.24574
\(275\) 0 0
\(276\) −19.5298 −1.17556
\(277\) 15.0154 + 10.9093i 0.902190 + 0.655479i 0.939028 0.343842i \(-0.111728\pi\)
−0.0368377 + 0.999321i \(0.511728\pi\)
\(278\) 12.9480 39.8499i 0.776571 2.39004i
\(279\) −14.8944 45.8402i −0.891703 2.74438i
\(280\) 0.429373 0.311958i 0.0256600 0.0186430i
\(281\) −20.7581 + 15.0817i −1.23833 + 0.899698i −0.997486 0.0708669i \(-0.977423\pi\)
−0.240842 + 0.970564i \(0.577423\pi\)
\(282\) −3.30301 10.1656i −0.196691 0.605354i
\(283\) 9.35677 28.7972i 0.556202 1.71181i −0.136546 0.990634i \(-0.543600\pi\)
0.692748 0.721180i \(-0.256400\pi\)
\(284\) −24.5706 17.8516i −1.45799 1.05929i
\(285\) 8.00000 0.473879
\(286\) 0 0
\(287\) 2.39025 0.141092
\(288\) −43.4313 31.5547i −2.55922 1.85938i
\(289\) 4.47125 13.7611i 0.263015 0.809476i
\(290\) −1.68102 5.17366i −0.0987131 0.303808i
\(291\) −22.2350 + 16.1547i −1.30344 + 0.947003i
\(292\) −4.86366 + 3.53366i −0.284624 + 0.206792i
\(293\) 0.942395 + 2.90039i 0.0550553 + 0.169443i 0.974803 0.223067i \(-0.0716069\pi\)
−0.919748 + 0.392510i \(0.871607\pi\)
\(294\) 2.05188 6.31504i 0.119668 0.368300i
\(295\) −1.22577 0.890576i −0.0713672 0.0518513i
\(296\) 0.257333 0.0149572
\(297\) 0 0
\(298\) −22.4390 −1.29986
\(299\) −11.2773 8.19340i −0.652180 0.473837i
\(300\) 11.5727 35.6170i 0.668147 2.05635i
\(301\) 0.318373 + 0.979851i 0.0183507 + 0.0564777i
\(302\) 26.5927 19.3207i 1.53024 1.11178i
\(303\) −32.7396 + 23.7867i −1.88084 + 1.36651i
\(304\) 4.41249 + 13.5803i 0.253074 + 0.778881i
\(305\) −0.358133 + 1.10222i −0.0205066 + 0.0631129i
\(306\) 65.2377 + 47.3979i 3.72939 + 2.70956i
\(307\) 3.71904 0.212257 0.106128 0.994352i \(-0.466155\pi\)
0.106128 + 0.994352i \(0.466155\pi\)
\(308\) 0 0
\(309\) −38.0294 −2.16341
\(310\) −5.93867 4.31470i −0.337294 0.245058i
\(311\) 1.28855 3.96575i 0.0730671 0.224877i −0.907853 0.419288i \(-0.862280\pi\)
0.980920 + 0.194411i \(0.0622796\pi\)
\(312\) 5.92951 + 18.2492i 0.335692 + 1.03316i
\(313\) 9.46902 6.87965i 0.535221 0.388861i −0.287086 0.957905i \(-0.592687\pi\)
0.822307 + 0.569044i \(0.192687\pi\)
\(314\) 15.6530 11.3726i 0.883349 0.641791i
\(315\) 1.01359 + 3.11951i 0.0571093 + 0.175764i
\(316\) 7.01851 21.6008i 0.394822 1.21514i
\(317\) 1.80823 + 1.31375i 0.101560 + 0.0737878i 0.637406 0.770528i \(-0.280007\pi\)
−0.535846 + 0.844316i \(0.680007\pi\)
\(318\) −20.1211 −1.12834
\(319\) 0 0
\(320\) −5.55345 −0.310447
\(321\) 26.6968 + 19.3964i 1.49007 + 1.08260i
\(322\) −1.63162 + 5.02162i −0.0909269 + 0.279844i
\(323\) −9.15300 28.1700i −0.509287 1.56742i
\(324\) −33.5115 + 24.3475i −1.86175 + 1.35264i
\(325\) 21.6250 15.7115i 1.19954 0.871515i
\(326\) 8.72002 + 26.8375i 0.482957 + 1.48639i
\(327\) 7.08840 21.8158i 0.391989 1.20642i
\(328\) 2.11671 + 1.53788i 0.116876 + 0.0849151i
\(329\) −1.60975 −0.0887482
\(330\) 0 0
\(331\) 22.3250 1.22709 0.613547 0.789659i \(-0.289742\pi\)
0.613547 + 0.789659i \(0.289742\pi\)
\(332\) 6.55099 + 4.75958i 0.359532 + 0.261216i
\(333\) −0.491451 + 1.51253i −0.0269314 + 0.0828862i
\(334\) −6.60602 20.3312i −0.361465 1.11248i
\(335\) −3.92837 + 2.85413i −0.214630 + 0.155938i
\(336\) −6.83684 + 4.96726i −0.372980 + 0.270986i
\(337\) −4.10376 12.6301i −0.223546 0.688004i −0.998436 0.0559078i \(-0.982195\pi\)
0.774890 0.632096i \(-0.217805\pi\)
\(338\) −12.1274 + 37.3243i −0.659643 + 2.03017i
\(339\) 34.7989 + 25.2829i 1.89001 + 1.37318i
\(340\) 6.84106 0.371008
\(341\) 0 0
\(342\) 75.8989 4.10414
\(343\) −0.809017 0.587785i −0.0436828 0.0317374i
\(344\) −0.348494 + 1.07255i −0.0187895 + 0.0578282i
\(345\) −1.16342 3.58064i −0.0626365 0.192775i
\(346\) −14.0445 + 10.2039i −0.755038 + 0.548567i
\(347\) 14.5861 10.5974i 0.783021 0.568898i −0.122863 0.992424i \(-0.539208\pi\)
0.905884 + 0.423526i \(0.139208\pi\)
\(348\) −12.8238 39.4675i −0.687427 2.11568i
\(349\) −6.78275 + 20.8751i −0.363072 + 1.11742i 0.588107 + 0.808783i \(0.299873\pi\)
−0.951180 + 0.308638i \(0.900127\pi\)
\(350\) −8.19120 5.95126i −0.437838 0.318108i
\(351\) −65.9982 −3.52272
\(352\) 0 0
\(353\) 18.8557 1.00359 0.501795 0.864987i \(-0.332673\pi\)
0.501795 + 0.864987i \(0.332673\pi\)
\(354\) −16.7865 12.1961i −0.892195 0.648218i
\(355\) 1.80924 5.56827i 0.0960244 0.295533i
\(356\) −0.983469 3.02681i −0.0521238 0.160420i
\(357\) 14.1819 10.3038i 0.750587 0.545333i
\(358\) −21.0834 + 15.3180i −1.11429 + 0.809582i
\(359\) 0.472740 + 1.45494i 0.0249502 + 0.0767890i 0.962756 0.270371i \(-0.0871462\pi\)
−0.937806 + 0.347160i \(0.887146\pi\)
\(360\) −1.10949 + 3.41464i −0.0584750 + 0.179968i
\(361\) −7.18318 5.21888i −0.378062 0.274678i
\(362\) 14.9697 0.786791
\(363\) 0 0
\(364\) 14.1093 0.739528
\(365\) −0.937604 0.681209i −0.0490764 0.0356561i
\(366\) −4.90451 + 15.0945i −0.256363 + 0.789004i
\(367\) 4.52855 + 13.9375i 0.236389 + 0.727529i 0.996934 + 0.0782446i \(0.0249315\pi\)
−0.760546 + 0.649284i \(0.775068\pi\)
\(368\) 5.43656 3.94989i 0.283400 0.205902i
\(369\) −13.0817 + 9.50439i −0.681005 + 0.494779i
\(370\) 0.0748466 + 0.230354i 0.00389109 + 0.0119755i
\(371\) −0.936407 + 2.88196i −0.0486158 + 0.149624i
\(372\) −45.3035 32.9149i −2.34888 1.70656i
\(373\) 10.0606 0.520916 0.260458 0.965485i \(-0.416127\pi\)
0.260458 + 0.965485i \(0.416127\pi\)
\(374\) 0 0
\(375\) 14.7952 0.764020
\(376\) −1.42552 1.03570i −0.0735158 0.0534123i
\(377\) 9.15300 28.1700i 0.471403 1.45083i
\(378\) 7.72514 + 23.7755i 0.397338 + 1.22288i
\(379\) 14.4762 10.5176i 0.743593 0.540252i −0.150241 0.988649i \(-0.548005\pi\)
0.893834 + 0.448398i \(0.148005\pi\)
\(380\) 5.20925 3.78474i 0.267229 0.194153i
\(381\) −2.47214 7.60845i −0.126651 0.389793i
\(382\) −12.3414 + 37.9829i −0.631441 + 1.94338i
\(383\) 15.3430 + 11.1474i 0.783992 + 0.569604i 0.906174 0.422904i \(-0.138989\pi\)
−0.122182 + 0.992508i \(0.538989\pi\)
\(384\) −26.4565 −1.35010
\(385\) 0 0
\(386\) −35.0596 −1.78449
\(387\) −5.63863 4.09670i −0.286627 0.208247i
\(388\) −6.83580 + 21.0384i −0.347035 + 1.06806i
\(389\) 10.5883 + 32.5874i 0.536848 + 1.65225i 0.739622 + 0.673023i \(0.235004\pi\)
−0.202774 + 0.979226i \(0.564996\pi\)
\(390\) −14.6113 + 10.6157i −0.739872 + 0.537548i
\(391\) −11.2773 + 8.19340i −0.570315 + 0.414358i
\(392\) −0.338253 1.04104i −0.0170844 0.0525802i
\(393\) 2.62650 8.08354i 0.132490 0.407761i
\(394\) 42.1164 + 30.5993i 2.12179 + 1.54157i
\(395\) 4.37844 0.220303
\(396\) 0 0
\(397\) 16.2791 0.817026 0.408513 0.912752i \(-0.366047\pi\)
0.408513 + 0.912752i \(0.366047\pi\)
\(398\) −26.4553 19.2209i −1.32609 0.963457i
\(399\) 5.09864 15.6920i 0.255251 0.785582i
\(400\) 3.98200 + 12.2553i 0.199100 + 0.612766i
\(401\) −23.4118 + 17.0096i −1.16913 + 0.849421i −0.990904 0.134569i \(-0.957035\pi\)
−0.178223 + 0.983990i \(0.557035\pi\)
\(402\) −53.7978 + 39.0864i −2.68319 + 1.94945i
\(403\) −12.3510 38.0126i −0.615249 1.89354i
\(404\) −10.0653 + 30.9777i −0.500766 + 1.54120i
\(405\) −6.46026 4.69365i −0.321013 0.233230i
\(406\) −11.2195 −0.556814
\(407\) 0 0
\(408\) 19.1883 0.949963
\(409\) −12.5482 9.11681i −0.620469 0.450797i 0.232616 0.972569i \(-0.425271\pi\)
−0.853085 + 0.521771i \(0.825271\pi\)
\(410\) −0.760991 + 2.34209i −0.0375827 + 0.115668i
\(411\) 9.37094 + 28.8408i 0.462234 + 1.42261i
\(412\) −24.7631 + 17.9914i −1.21999 + 0.886374i
\(413\) −2.52809 + 1.83676i −0.124399 + 0.0903811i
\(414\) −11.0378 33.9708i −0.542478 1.66957i
\(415\) −0.482379 + 1.48461i −0.0236790 + 0.0728766i
\(416\) −36.0151 26.1665i −1.76578 1.28292i
\(417\) 61.6197 3.01753
\(418\) 0 0
\(419\) −12.9503 −0.632666 −0.316333 0.948648i \(-0.602452\pi\)
−0.316333 + 0.948648i \(0.602452\pi\)
\(420\) 3.08299 + 2.23992i 0.150434 + 0.109297i
\(421\) −5.28136 + 16.2543i −0.257398 + 0.792188i 0.735950 + 0.677036i \(0.236736\pi\)
−0.993348 + 0.115153i \(0.963264\pi\)
\(422\) 9.48101 + 29.1796i 0.461528 + 1.42044i
\(423\) 8.81003 6.40086i 0.428358 0.311220i
\(424\) −2.68348 + 1.94967i −0.130321 + 0.0946841i
\(425\) −8.26000 25.4217i −0.400669 1.23313i
\(426\) 24.7769 76.2555i 1.20045 3.69459i
\(427\) 1.93375 + 1.40496i 0.0935810 + 0.0679905i
\(428\) 26.5601 1.28383
\(429\) 0 0
\(430\) −1.06147 −0.0511886
\(431\) −15.6530 11.3726i −0.753978 0.547797i 0.143079 0.989711i \(-0.454300\pi\)
−0.897057 + 0.441914i \(0.854300\pi\)
\(432\) 9.83184 30.2593i 0.473035 1.45585i
\(433\) 4.89034 + 15.0509i 0.235015 + 0.723300i 0.997119 + 0.0758469i \(0.0241660\pi\)
−0.762105 + 0.647454i \(0.775834\pi\)
\(434\) −12.2482 + 8.89881i −0.587931 + 0.427157i
\(435\) 6.47214 4.70228i 0.310315 0.225457i
\(436\) −5.70526 17.5590i −0.273233 0.840923i
\(437\) −4.05436 + 12.4780i −0.193946 + 0.596906i
\(438\) −12.8402 9.32894i −0.613527 0.445754i
\(439\) −11.0596 −0.527848 −0.263924 0.964544i \(-0.585017\pi\)
−0.263924 + 0.964544i \(0.585017\pi\)
\(440\) 0 0
\(441\) 6.76491 0.322139
\(442\) 54.0978 + 39.3044i 2.57317 + 1.86952i
\(443\) −10.7240 + 33.0049i −0.509510 + 1.56811i 0.283543 + 0.958960i \(0.408490\pi\)
−0.793053 + 0.609152i \(0.791510\pi\)
\(444\) 0.570972 + 1.75727i 0.0270971 + 0.0833963i
\(445\) 0.496355 0.360623i 0.0235295 0.0170952i
\(446\) 29.6600 21.5493i 1.40444 1.02039i
\(447\) −10.1973 31.3840i −0.482315 1.48441i
\(448\) −3.53938 + 10.8931i −0.167220 + 0.514650i
\(449\) 29.3623 + 21.3330i 1.38569 + 1.00676i 0.996322 + 0.0856838i \(0.0273075\pi\)
0.389371 + 0.921081i \(0.372693\pi\)
\(450\) 68.4939 3.22883
\(451\) 0 0
\(452\) 34.6206 1.62842
\(453\) 39.1076 + 28.4134i 1.83744 + 1.33498i
\(454\) −7.03900 + 21.6638i −0.330356 + 1.01673i
\(455\) 0.840512 + 2.58683i 0.0394038 + 0.121272i
\(456\) 14.6113 10.6157i 0.684237 0.497127i
\(457\) 1.66702 1.21116i 0.0779800 0.0566558i −0.548112 0.836405i \(-0.684653\pi\)
0.626092 + 0.779749i \(0.284653\pi\)
\(458\) −3.58162 11.0231i −0.167358 0.515075i
\(459\) −20.3946 + 62.7680i −0.951936 + 2.92976i
\(460\) −2.45154 1.78115i −0.114304 0.0830466i
\(461\) −7.17076 −0.333975 −0.166988 0.985959i \(-0.553404\pi\)
−0.166988 + 0.985959i \(0.553404\pi\)
\(462\) 0 0
\(463\) 3.45459 0.160548 0.0802741 0.996773i \(-0.474420\pi\)
0.0802741 + 0.996773i \(0.474420\pi\)
\(464\) 11.5521 + 8.39306i 0.536291 + 0.389638i
\(465\) 3.33590 10.2668i 0.154698 0.476113i
\(466\) −19.5540 60.1812i −0.905824 2.78784i
\(467\) 10.9183 7.93261i 0.505239 0.367077i −0.305776 0.952104i \(-0.598916\pi\)
0.811014 + 0.585026i \(0.198916\pi\)
\(468\) −77.2191 + 56.1030i −3.56945 + 2.59336i
\(469\) 3.09471 + 9.52453i 0.142900 + 0.439802i
\(470\) 0.512500 1.57731i 0.0236399 0.0727560i
\(471\) 23.0195 + 16.7246i 1.06068 + 0.770631i
\(472\) −3.42053 −0.157443
\(473\) 0 0
\(474\) 59.9612 2.75411
\(475\) −20.3540 14.7881i −0.933906 0.678523i
\(476\) 4.36001 13.4187i 0.199841 0.615047i
\(477\) −6.33471 19.4962i −0.290046 0.892671i
\(478\) 4.40098 3.19750i 0.201296 0.146250i
\(479\) −28.3638 + 20.6075i −1.29598 + 0.941582i −0.999908 0.0135841i \(-0.995676\pi\)
−0.296069 + 0.955166i \(0.595676\pi\)
\(480\) −3.71551 11.4352i −0.169589 0.521941i
\(481\) −0.407532 + 1.25426i −0.0185819 + 0.0571891i
\(482\) 47.0841 + 34.2086i 2.14462 + 1.55816i
\(483\) −7.76491 −0.353316
\(484\) 0 0
\(485\) −4.26445 −0.193639
\(486\) −27.7971 20.1957i −1.26090 0.916098i
\(487\) 9.16718 28.2137i 0.415404 1.27848i −0.496484 0.868046i \(-0.665376\pi\)
0.911889 0.410437i \(-0.134624\pi\)
\(488\) 0.808510 + 2.48834i 0.0365995 + 0.112642i
\(489\) −33.5731 + 24.3923i −1.51823 + 1.10306i
\(490\) 0.833511 0.605581i 0.0376542 0.0273574i
\(491\) 7.88915 + 24.2803i 0.356032 + 1.09575i 0.955409 + 0.295287i \(0.0954153\pi\)
−0.599376 + 0.800467i \(0.704585\pi\)
\(492\) −5.80527 + 17.8668i −0.261722 + 0.805496i
\(493\) −23.9629 17.4100i −1.07923 0.784109i
\(494\) 62.9385 2.83174
\(495\) 0 0
\(496\) 19.2682 0.865169
\(497\) −9.76907 7.09764i −0.438203 0.318373i
\(498\) −6.60602 + 20.3312i −0.296023 + 0.911064i
\(499\) −7.92891 24.4027i −0.354947 1.09241i −0.956040 0.293235i \(-0.905268\pi\)
0.601094 0.799179i \(-0.294732\pi\)
\(500\) 9.63398 6.99950i 0.430845 0.313027i
\(501\) 25.4339 18.4788i 1.13630 0.825573i
\(502\) −6.46437 19.8953i −0.288519 0.887971i
\(503\) 0.791113 2.43479i 0.0352740 0.108562i −0.931869 0.362794i \(-0.881823\pi\)
0.967143 + 0.254232i \(0.0818228\pi\)
\(504\) 5.99072 + 4.35251i 0.266848 + 0.193876i
\(505\) −6.27913 −0.279418
\(506\) 0 0
\(507\) −57.7143 −2.56318
\(508\) −5.20925 3.78474i −0.231123 0.167921i
\(509\) 4.15770 12.7961i 0.184287 0.567176i −0.815649 0.578547i \(-0.803620\pi\)
0.999935 + 0.0113716i \(0.00361976\pi\)
\(510\) 5.58102 + 17.1766i 0.247132 + 0.760593i
\(511\) −1.93375 + 1.40496i −0.0855443 + 0.0621516i
\(512\) 22.1519 16.0943i 0.978987 0.711275i
\(513\) 19.1959 + 59.0789i 0.847520 + 2.60840i
\(514\) 14.7738 45.4690i 0.651643 2.00555i
\(515\) −4.77376 3.46834i −0.210357 0.152833i
\(516\) −8.09747 −0.356471
\(517\) 0 0
\(518\) 0.499542 0.0219486
\(519\) −20.6541 15.0061i −0.906612 0.658693i
\(520\) −0.920032 + 2.83157i −0.0403461 + 0.124172i
\(521\) −9.96062 30.6556i −0.436383 1.34305i −0.891663 0.452700i \(-0.850461\pi\)
0.455280 0.890348i \(-0.349539\pi\)
\(522\) 61.4035 44.6122i 2.68756 1.95262i
\(523\) 26.1634 19.0088i 1.14404 0.831196i 0.156366 0.987699i \(-0.450022\pi\)
0.987678 + 0.156503i \(0.0500221\pi\)
\(524\) −2.11400 6.50623i −0.0923507 0.284226i
\(525\) 4.60120 14.1610i 0.200813 0.618038i
\(526\) −27.5051 19.9836i −1.19928 0.871327i
\(527\) −39.9688 −1.74107
\(528\) 0 0
\(529\) −16.8255 −0.731542
\(530\) −2.52577 1.83508i −0.109712 0.0797107i
\(531\) 6.53248 20.1049i 0.283486 0.872479i
\(532\) −4.10376 12.6301i −0.177921 0.547583i
\(533\) −10.8479 + 7.88144i −0.469874 + 0.341383i
\(534\) 6.79742 4.93861i 0.294153 0.213715i
\(535\) 1.58223 + 4.86959i 0.0684056 + 0.210531i
\(536\) −3.38749 + 10.4256i −0.146317 + 0.450319i
\(537\) −31.0056 22.5269i −1.33799 0.972106i
\(538\) −19.5904 −0.844601
\(539\) 0 0
\(540\) −14.3472 −0.617407
\(541\) 19.0123 + 13.8132i 0.817401 + 0.593877i 0.915967 0.401254i \(-0.131425\pi\)
−0.0985656 + 0.995131i \(0.531425\pi\)
\(542\) −6.93403 + 21.3407i −0.297842 + 0.916664i
\(543\) 6.80291 + 20.9372i 0.291941 + 0.898501i
\(544\) −36.0151 + 26.1665i −1.54413 + 1.12188i
\(545\) 2.87943 2.09203i 0.123341 0.0896128i
\(546\) 11.5105 + 35.4258i 0.492605 + 1.51608i
\(547\) −1.27349 + 3.91940i −0.0544506 + 0.167582i −0.974583 0.224025i \(-0.928080\pi\)
0.920133 + 0.391606i \(0.128080\pi\)
\(548\) 19.7463 + 14.3465i 0.843521 + 0.612854i
\(549\) −16.1698 −0.690112
\(550\) 0 0
\(551\) −27.8789 −1.18768
\(552\) −6.87627 4.99591i −0.292674 0.212640i
\(553\) 2.79051 8.58830i 0.118665 0.365212i
\(554\) 12.1870 + 37.5078i 0.517777 + 1.59356i
\(555\) −0.288168 + 0.209366i −0.0122321 + 0.00888711i
\(556\) 40.1241 29.1519i 1.70164 1.23631i
\(557\) −4.30753 13.2572i −0.182516 0.561726i 0.817381 0.576098i \(-0.195425\pi\)
−0.999897 + 0.0143718i \(0.995425\pi\)
\(558\) 31.6488 97.4051i 1.33980 4.12349i
\(559\) −4.67579 3.39716i −0.197765 0.143684i
\(560\) −1.31124 −0.0554100
\(561\) 0 0
\(562\) −54.5213 −2.29984
\(563\) −2.20049 1.59875i −0.0927395 0.0673792i 0.540449 0.841377i \(-0.318254\pi\)
−0.633189 + 0.773997i \(0.718254\pi\)
\(564\) 3.90963 12.0326i 0.164625 0.506664i
\(565\) 2.06240 + 6.34743i 0.0867660 + 0.267038i
\(566\) 52.0519 37.8179i 2.18790 1.58961i
\(567\) −13.3239 + 9.68039i −0.559552 + 0.406538i
\(568\) −4.08448 12.5707i −0.171381 0.527457i
\(569\) −8.56565 + 26.3624i −0.359091 + 1.10517i 0.594508 + 0.804089i \(0.297347\pi\)
−0.953599 + 0.301079i \(0.902653\pi\)
\(570\) 13.7525 + 9.99181i 0.576031 + 0.418511i
\(571\) 38.1193 1.59524 0.797621 0.603159i \(-0.206092\pi\)
0.797621 + 0.603159i \(0.206092\pi\)
\(572\) 0 0
\(573\) −58.7328 −2.45360
\(574\) 4.10901 + 2.98537i 0.171507 + 0.124607i
\(575\) −3.65880 + 11.2606i −0.152583 + 0.469601i
\(576\) −23.9436 73.6907i −0.997649 3.07045i
\(577\) −18.7731 + 13.6394i −0.781534 + 0.567818i −0.905439 0.424476i \(-0.860458\pi\)
0.123905 + 0.992294i \(0.460458\pi\)
\(578\) 24.8737 18.0718i 1.03461 0.751687i
\(579\) −15.9327 49.0357i −0.662139 2.03785i
\(580\) 1.98976 6.12384i 0.0826202 0.254279i
\(581\) 2.60463 + 1.89237i 0.108058 + 0.0785088i
\(582\) −58.4002 −2.42077
\(583\) 0 0
\(584\) −2.61639 −0.108267
\(585\) −14.8861 10.8154i −0.615465 0.447161i
\(586\) −2.00248 + 6.16300i −0.0827217 + 0.254591i
\(587\) −3.41453 10.5088i −0.140933 0.433746i 0.855533 0.517749i \(-0.173230\pi\)
−0.996466 + 0.0840022i \(0.973230\pi\)
\(588\) 6.35848 4.61971i 0.262219 0.190514i
\(589\) −30.4350 + 22.1123i −1.25405 + 0.911122i
\(590\) −0.994879 3.06192i −0.0409585 0.126057i
\(591\) −23.6578 + 72.8112i −0.973152 + 2.99505i
\(592\) −0.514349 0.373696i −0.0211396 0.0153588i
\(593\) −36.3884 −1.49429 −0.747147 0.664659i \(-0.768577\pi\)
−0.747147 + 0.664659i \(0.768577\pi\)
\(594\) 0 0
\(595\) 2.71995 0.111507
\(596\) −21.4876 15.6116i −0.880165 0.639477i
\(597\) 14.8606 45.7362i 0.608204 1.87186i
\(598\) −9.15300 28.1700i −0.374294 1.15196i
\(599\) −23.9942 + 17.4328i −0.980377 + 0.712286i −0.957793 0.287459i \(-0.907189\pi\)
−0.0225843 + 0.999745i \(0.507189\pi\)
\(600\) 13.1858 9.58002i 0.538307 0.391103i
\(601\) 0.429895 + 1.32308i 0.0175358 + 0.0539696i 0.959442 0.281908i \(-0.0909672\pi\)
−0.941906 + 0.335877i \(0.890967\pi\)
\(602\) −0.676506 + 2.08207i −0.0275723 + 0.0848589i
\(603\) −54.8096 39.8215i −2.23202 1.62166i
\(604\) 38.9073 1.58312
\(605\) 0 0
\(606\) −85.9906 −3.49313
\(607\) −25.0298 18.1852i −1.01593 0.738115i −0.0504839 0.998725i \(-0.516076\pi\)
−0.965444 + 0.260610i \(0.916076\pi\)
\(608\) −12.9480 + 39.8499i −0.525112 + 1.61613i
\(609\) −5.09864 15.6920i −0.206607 0.635872i
\(610\) −1.99230 + 1.44749i −0.0806659 + 0.0586072i
\(611\) 7.30565 5.30786i 0.295555 0.214733i
\(612\) 29.4951 + 90.7765i 1.19227 + 3.66942i
\(613\) 2.52154 7.76049i 0.101844 0.313443i −0.887133 0.461514i \(-0.847306\pi\)
0.988977 + 0.148071i \(0.0473064\pi\)
\(614\) 6.39328 + 4.64499i 0.258012 + 0.187456i
\(615\) −3.62156 −0.146036
\(616\) 0 0
\(617\) −27.5298 −1.10831 −0.554154 0.832414i \(-0.686958\pi\)
−0.554154 + 0.832414i \(0.686958\pi\)
\(618\) −65.3751 47.4978i −2.62977 1.91064i
\(619\) 6.17215 18.9959i 0.248080 0.763511i −0.747035 0.664785i \(-0.768523\pi\)
0.995115 0.0987261i \(-0.0314768\pi\)
\(620\) −2.68497 8.26350i −0.107831 0.331870i
\(621\) 23.6509 17.1834i 0.949080 0.689547i
\(622\) 7.16824 5.20803i 0.287420 0.208823i
\(623\) −0.391020 1.20344i −0.0156659 0.0482146i
\(624\) 14.6495 45.0866i 0.586451 1.80491i
\(625\) −17.4172 12.6544i −0.696690 0.506175i
\(626\) 24.8704 0.994022
\(627\) 0 0
\(628\) 22.9016 0.913874
\(629\) 1.06693 + 0.775172i 0.0425414 + 0.0309081i
\(630\) −2.15376 + 6.62860i −0.0858080 + 0.264090i
\(631\) −5.32565 16.3907i −0.212011 0.652502i −0.999352 0.0359852i \(-0.988543\pi\)
0.787341 0.616517i \(-0.211457\pi\)
\(632\) 7.99683 5.81004i 0.318097 0.231111i
\(633\) −36.5030 + 26.5210i −1.45086 + 1.05411i
\(634\) 1.46762 + 4.51686i 0.0582866 + 0.179388i
\(635\) 0.383580 1.18054i 0.0152219 0.0468483i
\(636\) −19.2680 13.9990i −0.764024 0.555096i
\(637\) 5.60975 0.222266
\(638\) 0 0
\(639\) 81.6878 3.23152
\(640\) −3.32104 2.41288i −0.131276 0.0953774i
\(641\) −13.7250 + 42.2411i −0.542103 + 1.66842i 0.185675 + 0.982611i \(0.440553\pi\)
−0.727779 + 0.685812i \(0.759447\pi\)
\(642\) 21.6680 + 66.6874i 0.855170 + 2.63194i
\(643\) 18.2301 13.2449i 0.718924 0.522329i −0.167117 0.985937i \(-0.553446\pi\)
0.886040 + 0.463609i \(0.153446\pi\)
\(644\) −5.05617 + 3.67352i −0.199241 + 0.144757i
\(645\) −0.482379 1.48461i −0.0189936 0.0584564i
\(646\) 19.4491 59.8581i 0.765214 2.35509i
\(647\) 15.1899 + 11.0361i 0.597178 + 0.433876i 0.844876 0.534962i \(-0.179674\pi\)
−0.247698 + 0.968837i \(0.579674\pi\)
\(648\) −18.0274 −0.708184
\(649\) 0 0
\(650\) 56.7980 2.22780
\(651\) −18.0123 13.0867i −0.705958 0.512909i
\(652\) −10.3215 + 31.7664i −0.404222 + 1.24407i
\(653\) 9.76883 + 30.0654i 0.382284 + 1.17655i 0.938431 + 0.345466i \(0.112279\pi\)
−0.556147 + 0.831084i \(0.687721\pi\)
\(654\) 39.4329 28.6497i 1.54195 1.12029i
\(655\) 1.06693 0.775172i 0.0416885 0.0302885i
\(656\) −1.99752 6.14772i −0.0779899 0.240028i
\(657\) 4.99676 15.3784i 0.194942 0.599970i
\(658\) −2.76727 2.01054i −0.107879 0.0783789i
\(659\) 19.8477 0.773157 0.386578 0.922257i \(-0.373657\pi\)
0.386578 + 0.922257i \(0.373657\pi\)
\(660\) 0 0
\(661\) 31.4234 1.22223 0.611114 0.791542i \(-0.290722\pi\)
0.611114 + 0.791542i \(0.290722\pi\)
\(662\) 38.3782 + 27.8834i 1.49161 + 1.08372i
\(663\) −30.3881 + 93.5249i −1.18017 + 3.63220i
\(664\) 1.08900 + 3.35161i 0.0422615 + 0.130068i
\(665\) 2.07116 1.50479i 0.0803161 0.0583531i
\(666\) −2.73395 + 1.98633i −0.105939 + 0.0769689i
\(667\) 4.05436 + 12.4780i 0.156985 + 0.483152i
\(668\) 7.81927 24.0652i 0.302536 0.931112i
\(669\) 43.6185 + 31.6907i 1.68639 + 1.22523i
\(670\) −10.3179 −0.398615
\(671\) 0 0
\(672\) −24.7980 −0.956606
\(673\) 15.5489 + 11.2969i 0.599366 + 0.435465i 0.845654 0.533732i \(-0.179211\pi\)
−0.246288 + 0.969197i \(0.579211\pi\)
\(674\) 8.72002 26.8375i 0.335883 1.03374i
\(675\) 17.3231 + 53.3150i 0.666766 + 2.05210i
\(676\) −37.5811 + 27.3042i −1.44543 + 1.05016i
\(677\) −20.8167 + 15.1242i −0.800051 + 0.581271i −0.910929 0.412563i \(-0.864634\pi\)
0.110878 + 0.993834i \(0.464634\pi\)
\(678\) 28.2439 + 86.9259i 1.08470 + 3.33837i
\(679\) −2.71786 + 8.36472i −0.104302 + 0.321008i
\(680\) 2.40867 + 1.75000i 0.0923685 + 0.0671096i
\(681\) −33.4986 −1.28367
\(682\) 0 0
\(683\) −11.0596 −0.423185 −0.211593 0.977358i \(-0.567865\pi\)
−0.211593 + 0.977358i \(0.567865\pi\)
\(684\) 72.6807 + 52.8056i 2.77902 + 2.01907i
\(685\) −1.45401 + 4.47498i −0.0555548 + 0.170980i
\(686\) −0.656626 2.02089i −0.0250701 0.0771578i
\(687\) 13.7897 10.0188i 0.526108 0.382240i
\(688\) 2.25411 1.63771i 0.0859372 0.0624370i
\(689\) −5.25301 16.1671i −0.200124 0.615917i
\(690\) 2.47214 7.60845i 0.0941126 0.289649i
\(691\) −36.4265 26.4654i −1.38573 1.00679i −0.996319 0.0857252i \(-0.972679\pi\)
−0.389409 0.921065i \(-0.627321\pi\)
\(692\) −20.5483 −0.781128
\(693\) 0 0
\(694\) 38.3103 1.45424
\(695\) 7.73502 + 5.61982i 0.293406 + 0.213172i
\(696\) 5.58102 17.1766i 0.211548 0.651078i
\(697\) 4.14352 + 12.7524i 0.156947 + 0.483033i
\(698\) −37.7326 + 27.4143i −1.42820 + 1.03765i
\(699\) 75.2853 54.6980i 2.84755 2.06887i
\(700\) −3.70338 11.3978i −0.139975 0.430798i
\(701\) 14.4554 44.4892i 0.545973 1.68033i −0.172692 0.984976i \(-0.555246\pi\)
0.718665 0.695357i \(-0.244754\pi\)
\(702\) −113.455 82.4301i −4.28210 3.11113i
\(703\) 1.24129 0.0468162
\(704\) 0 0
\(705\) 2.43899 0.0918577
\(706\) 32.4143 + 23.5504i 1.21993 + 0.886330i
\(707\) −4.00188 + 12.3165i −0.150506 + 0.463210i
\(708\) −7.58949 23.3580i −0.285230 0.877849i
\(709\) 7.39786 5.37486i 0.277833 0.201857i −0.440139 0.897930i \(-0.645071\pi\)
0.717972 + 0.696072i \(0.245071\pi\)
\(710\) 10.0648 7.31253i 0.377727 0.274434i
\(711\) 18.8775 + 58.0991i 0.707963 + 2.17889i
\(712\) 0.428014 1.31729i 0.0160405 0.0493676i
\(713\) 14.3231 + 10.4064i 0.536405 + 0.389721i
\(714\) 37.2489 1.39400
\(715\) 0 0
\(716\) −30.8468 −1.15280
\(717\) 6.47214 + 4.70228i 0.241706 + 0.175610i
\(718\) −1.00452 + 3.09159i −0.0374883 + 0.115377i
\(719\) −9.41435 28.9744i −0.351096 1.08056i −0.958239 0.285970i \(-0.907684\pi\)
0.607143 0.794593i \(-0.292316\pi\)
\(720\) 7.17632 5.21390i 0.267446 0.194311i
\(721\) −9.84561 + 7.15325i −0.366670 + 0.266401i
\(722\) −5.83011 17.9432i −0.216974 0.667778i
\(723\) −26.4483 + 81.3995i −0.983623 + 3.02728i
\(724\) 14.3350 + 10.4150i 0.532756 + 0.387070i
\(725\) −25.1589 −0.934380
\(726\) 0 0
\(727\) −6.12580 −0.227193 −0.113597 0.993527i \(-0.536237\pi\)
−0.113597 + 0.993527i \(0.536237\pi\)
\(728\) 4.96775 + 3.60928i 0.184117 + 0.133769i
\(729\) 0.346440 1.06623i 0.0128311 0.0394901i
\(730\) −0.760991 2.34209i −0.0281656 0.0866847i
\(731\) −4.67579 + 3.39716i −0.172940 + 0.125648i
\(732\) −15.1984 + 11.0423i −0.561748 + 0.408134i
\(733\) −13.0005 40.0115i −0.480185 1.47786i −0.838835 0.544385i \(-0.816763\pi\)
0.358651 0.933472i \(-0.383237\pi\)
\(734\) −9.62265 + 29.6155i −0.355179 + 1.09313i
\(735\) 1.22577 + 0.890576i 0.0452133 + 0.0328494i
\(736\) 19.7190 0.726853
\(737\) 0 0
\(738\) −34.3591 −1.26477
\(739\) 23.3628 + 16.9741i 0.859414 + 0.624401i 0.927725 0.373263i \(-0.121761\pi\)
−0.0683118 + 0.997664i \(0.521761\pi\)
\(740\) −0.0885928 + 0.272661i −0.00325674 + 0.0100232i
\(741\) 28.6021 + 88.0281i 1.05072 + 3.23379i
\(742\) −5.20925 + 3.78474i −0.191238 + 0.138942i
\(743\) 11.8773 8.62939i 0.435737 0.316582i −0.348202 0.937420i \(-0.613208\pi\)
0.783939 + 0.620838i \(0.213208\pi\)
\(744\) −7.53101 23.1781i −0.276100 0.849750i
\(745\) 1.58223 4.86959i 0.0579682 0.178408i
\(746\) 17.2948 + 12.5654i 0.633207 + 0.460052i
\(747\) −21.7796 −0.796873
\(748\) 0 0
\(749\) 10.5601 0.385857
\(750\) 25.4339 + 18.4788i 0.928716 + 0.674752i
\(751\) −2.04136 + 6.28265i −0.0744901 + 0.229257i −0.981368 0.192136i \(-0.938459\pi\)
0.906878 + 0.421393i \(0.138459\pi\)
\(752\) 1.34525 + 4.14026i 0.0490563 + 0.150980i
\(753\) 24.8886 18.0826i 0.906991 0.658967i
\(754\) 50.9183 36.9943i 1.85434 1.34725i
\(755\) 2.31777 + 7.13336i 0.0843523 + 0.259610i
\(756\) −9.14393 + 28.1421i −0.332561 + 1.02352i
\(757\) −2.02217 1.46919i −0.0734971 0.0533988i 0.550430 0.834881i \(-0.314464\pi\)
−0.623927 + 0.781483i \(0.714464\pi\)
\(758\) 38.0218 1.38101
\(759\) 0 0
\(760\) 2.80230 0.101650
\(761\) 9.74763 + 7.08207i 0.353351 + 0.256725i 0.750274 0.661127i \(-0.229922\pi\)
−0.396922 + 0.917852i \(0.629922\pi\)
\(762\) 5.25301 16.1671i 0.190296 0.585672i
\(763\) −2.26837 6.98132i −0.0821205 0.252741i
\(764\) −38.2442 + 27.7861i −1.38363 + 1.00526i
\(765\) −14.8861 + 10.8154i −0.538208 + 0.391031i
\(766\) 12.4529 + 38.3262i 0.449942 + 1.38478i
\(767\) 5.41701 16.6718i 0.195597 0.601986i
\(768\) 12.4311 + 9.03173i 0.448569 + 0.325905i
\(769\) 0.489560 0.0176540 0.00882699 0.999961i \(-0.497190\pi\)
0.00882699 + 0.999961i \(0.497190\pi\)
\(770\) 0 0
\(771\) 70.3085 2.53210
\(772\) −33.5731 24.3923i −1.20832 0.877897i
\(773\) −14.4367 + 44.4316i −0.519252 + 1.59809i 0.256159 + 0.966635i \(0.417543\pi\)
−0.775410 + 0.631458i \(0.782457\pi\)
\(774\) −4.57650 14.0850i −0.164499 0.506276i
\(775\) −27.4657 + 19.9550i −0.986596 + 0.716804i
\(776\) −7.78864 + 5.65878i −0.279596 + 0.203138i
\(777\) 0.227014 + 0.698677i 0.00814408 + 0.0250649i
\(778\) −22.4989 + 69.2446i −0.806625 + 2.48254i
\(779\) 10.2103 + 7.41823i 0.365823 + 0.265786i
\(780\) −21.3775 −0.765438
\(781\) 0 0
\(782\) −29.6197 −1.05920
\(783\) 50.2555 + 36.5128i 1.79599 + 1.30486i
\(784\) −0.835692 + 2.57200i −0.0298461 + 0.0918570i
\(785\) 1.36428 + 4.19883i 0.0486934 + 0.149863i
\(786\) 14.6113 10.6157i 0.521168 0.378650i
\(787\) 6.74694 4.90194i 0.240503 0.174735i −0.461005 0.887398i \(-0.652511\pi\)
0.701507 + 0.712662i \(0.252511\pi\)
\(788\) 19.0415 + 58.6038i 0.678327 + 2.08768i
\(789\) 15.4503 47.5511i 0.550045 1.69286i
\(790\) 7.52683 + 5.46856i 0.267793 + 0.194563i
\(791\) 13.7649 0.489424
\(792\) 0 0
\(793\) −13.4087 −0.476157
\(794\) 27.9849 + 20.3322i 0.993148 + 0.721564i
\(795\) 1.41879 4.36657i 0.0503191 0.154866i
\(796\) −11.9609 36.8119i −0.423943 1.30476i
\(797\) 25.4963 18.5241i 0.903125 0.656158i −0.0361420 0.999347i \(-0.511507\pi\)
0.939267 + 0.343188i \(0.111507\pi\)
\(798\) 28.3638 20.6075i 1.00407 0.729499i
\(799\) −2.79051 8.58830i −0.0987211 0.303832i
\(800\) −11.6848 + 35.9620i −0.413119 + 1.27145i
\(801\) 6.92526 + 5.03150i 0.244692 + 0.177779i
\(802\) −61.4911 −2.17132
\(803\) 0 0
\(804\) −78.7106 −2.77591
\(805\) −0.974716 0.708172i −0.0343542 0.0249598i
\(806\) 26.2445 80.7724i 0.924425 2.84509i
\(807\) −8.90274 27.3998i −0.313391 0.964519i
\(808\) −11.4683 + 8.33219i −0.403453 + 0.293125i
\(809\) −12.5401 + 9.11094i −0.440888 + 0.320324i −0.785988 0.618242i \(-0.787845\pi\)
0.345100 + 0.938566i \(0.387845\pi\)
\(810\) −5.24337 16.1374i −0.184233 0.567011i
\(811\) −14.9378 + 45.9738i −0.524537 + 1.61436i 0.240694 + 0.970601i \(0.422625\pi\)
−0.765231 + 0.643756i \(0.777375\pi\)
\(812\) −10.7438 7.80582i −0.377033 0.273930i
\(813\) −32.9991 −1.15733
\(814\) 0 0
\(815\) −6.43899 −0.225548
\(816\) −38.3530 27.8651i −1.34262 0.975472i
\(817\) −1.68102 + 5.17366i −0.0588116 + 0.181003i
\(818\) −10.1846 31.3448i −0.356095 1.09595i
\(819\) −30.7017 + 22.3061i −1.07281 + 0.779439i
\(820\) −2.35820 + 1.71334i −0.0823521 + 0.0598323i
\(821\) −3.26325 10.0432i −0.113888 0.350512i 0.877825 0.478981i \(-0.158994\pi\)
−0.991714 + 0.128469i \(0.958994\pi\)
\(822\) −19.9122 + 61.2834i −0.694517 + 2.13750i
\(823\) −15.6335 11.3584i −0.544950 0.395929i 0.280970 0.959717i \(-0.409344\pi\)
−0.825920 + 0.563787i \(0.809344\pi\)
\(824\) −13.3212 −0.464067
\(825\) 0 0
\(826\) −6.64002 −0.231036
\(827\) 0.429373 + 0.311958i 0.0149308 + 0.0108478i 0.595226 0.803559i \(-0.297063\pi\)
−0.580295 + 0.814406i \(0.697063\pi\)
\(828\) 13.0650 40.2098i 0.454039 1.39739i
\(829\) −14.5842 44.8855i −0.506530 1.55894i −0.798184 0.602414i \(-0.794206\pi\)
0.291654 0.956524i \(-0.405794\pi\)
\(830\) −2.68348 + 1.94967i −0.0931451 + 0.0676739i
\(831\) −46.9215 + 34.0905i −1.62769 + 1.18259i
\(832\) −19.8550 61.1075i −0.688349 2.11852i
\(833\) 1.73351 5.33519i 0.0600625 0.184853i
\(834\) 105.929 + 76.9616i 3.66801 + 2.66496i
\(835\) 4.87798 0.168809
\(836\) 0 0
\(837\) 83.8236 2.89737
\(838\) −22.2625 16.1747i −0.769046 0.558745i
\(839\) −11.7128 + 36.0484i −0.404372 + 1.24453i 0.517046 + 0.855958i \(0.327032\pi\)
−0.921418 + 0.388572i \(0.872968\pi\)
\(840\) 0.512500 + 1.57731i 0.0176829 + 0.0544224i
\(841\) 0.906992 0.658969i 0.0312756 0.0227231i
\(842\) −29.3803 + 21.3460i −1.01251 + 0.735633i
\(843\) −24.7769 76.2555i −0.853363 2.62638i
\(844\) −11.2223 + 34.5386i −0.386287 + 1.18887i
\(845\) −7.24478 5.26364i −0.249228 0.181075i
\(846\) 23.1396 0.795555
\(847\) 0 0
\(848\) 8.19495 0.281416
\(849\) 76.5482 + 55.6155i 2.62713 + 1.90872i
\(850\) 17.5516 54.0182i 0.602014 1.85281i
\(851\) −0.180518 0.555578i −0.00618808 0.0190450i
\(852\) 76.7802 55.7841i 2.63045 1.91113i
\(853\) 5.07185 3.68491i 0.173657 0.126169i −0.497562 0.867429i \(-0.665771\pi\)
0.671219 + 0.741260i \(0.265771\pi\)
\(854\) 1.56950 + 4.83043i 0.0537072 + 0.165294i
\(855\) −5.35180 + 16.4712i −0.183028 + 0.563302i
\(856\) 9.35157 + 6.79431i 0.319630 + 0.232225i
\(857\) 36.9503 1.26220 0.631100 0.775702i \(-0.282604\pi\)
0.631100 + 0.775702i \(0.282604\pi\)
\(858\) 0 0
\(859\) 8.90447 0.303817 0.151908 0.988395i \(-0.451458\pi\)
0.151908 + 0.988395i \(0.451458\pi\)
\(860\) −1.01646 0.738503i −0.0346611 0.0251827i
\(861\) −2.30813 + 7.10369i −0.0786609 + 0.242093i
\(862\) −12.7045 39.1004i −0.432717 1.33177i
\(863\) 34.0752 24.7571i 1.15993 0.842741i 0.170164 0.985416i \(-0.445570\pi\)
0.989770 + 0.142675i \(0.0455703\pi\)
\(864\) 75.5318 54.8770i 2.56964 1.86695i
\(865\) −1.22409 3.76737i −0.0416204 0.128094i
\(866\) −10.3914 + 31.9815i −0.353114 + 1.08677i
\(867\) 36.5795 + 26.5766i 1.24231 + 0.902588i
\(868\) −17.9201 −0.608247
\(869\) 0 0
\(870\) 16.9991 0.576323
\(871\) −45.4504 33.0217i −1.54003 1.11890i
\(872\) 2.48298 7.64182i 0.0840843 0.258785i
\(873\) −18.3861 56.5866i −0.622275 1.91516i
\(874\) −22.5545 + 16.3868i −0.762917 + 0.554292i
\(875\) 3.83040 2.78295i 0.129491 0.0940808i
\(876\) −5.80527 17.8668i −0.196142 0.603662i
\(877\) 7.52138 23.1484i 0.253979 0.781666i −0.740050 0.672551i \(-0.765198\pi\)
0.994029 0.109115i \(-0.0348016\pi\)
\(878\) −19.0123 13.8132i −0.641633 0.466174i
\(879\) −9.52982 −0.321433
\(880\) 0 0
\(881\) 5.64380 0.190145 0.0950723 0.995470i \(-0.469692\pi\)
0.0950723 + 0.995470i \(0.469692\pi\)
\(882\) 11.6293 + 8.44921i 0.391580 + 0.284500i
\(883\) 4.69111 14.4377i 0.157868 0.485869i −0.840572 0.541700i \(-0.817781\pi\)
0.998440 + 0.0558313i \(0.0177809\pi\)
\(884\) 24.4586 + 75.2757i 0.822630 + 2.53180i
\(885\) 3.83040 2.78295i 0.128757 0.0935478i
\(886\) −59.6576 + 43.3438i −2.00424 + 1.45616i
\(887\) 8.28704 + 25.5049i 0.278252 + 0.856370i 0.988341 + 0.152259i \(0.0486546\pi\)
−0.710089 + 0.704112i \(0.751345\pi\)
\(888\) −0.248492 + 0.764779i −0.00833883 + 0.0256643i
\(889\) −2.07116 1.50479i −0.0694645 0.0504689i
\(890\) 1.30368 0.0436994
\(891\) 0 0
\(892\) 43.3951 1.45297
\(893\) −6.87627 4.99591i −0.230106 0.167182i
\(894\) 21.6680 66.6874i 0.724688 2.23036i
\(895\) −1.83759 5.65552i −0.0614239 0.189043i
\(896\) −6.84946 + 4.97643i −0.228824 + 0.166251i
\(897\) 35.2401 25.6034i 1.17663 0.854874i
\(898\) 23.8314 + 73.3457i 0.795266 + 2.44758i
\(899\) −11.6251 + 35.7785i −0.387720 + 1.19328i
\(900\) 65.5898 + 47.6537i 2.18633 + 1.58846i
\(901\) −16.9991 −0.566322
\(902\) 0 0
\(903\) −3.21949 −0.107138
\(904\) 12.1896 + 8.85628i 0.405421 + 0.294555i
\(905\) −1.05555 + 3.24865i −0.0350877 + 0.107989i
\(906\) 31.7411 + 97.6890i 1.05453 + 3.24550i
\(907\) −25.9674 + 18.8664i −0.862233 + 0.626449i −0.928492 0.371353i \(-0.878894\pi\)
0.0662582 + 0.997803i \(0.478894\pi\)
\(908\) −21.8128 + 15.8480i −0.723885 + 0.525933i
\(909\) −27.0723 83.3201i −0.897933 2.76355i
\(910\) −1.78599 + 5.49672i −0.0592050 + 0.182214i
\(911\) −9.83753 7.14739i −0.325932 0.236803i 0.412771 0.910835i \(-0.364561\pi\)
−0.738703 + 0.674032i \(0.764561\pi\)
\(912\) −44.6206 −1.47754
\(913\) 0 0
\(914\) 4.37844 0.144826
\(915\) −2.92991 2.12870i −0.0968597 0.0703727i
\(916\) 4.23942 13.0476i 0.140074 0.431104i
\(917\) −0.840512 2.58683i −0.0277561 0.0854246i
\(918\) −113.455 + 82.4301i −3.74458 + 2.72060i
\(919\) 32.3607 23.5114i 1.06748 0.775570i 0.0920227 0.995757i \(-0.470667\pi\)
0.975458 + 0.220187i \(0.0706668\pi\)
\(920\) −0.407532 1.25426i −0.0134359 0.0413516i
\(921\) −3.59126 + 11.0528i −0.118336 + 0.364201i
\(922\) −12.3270 8.95611i −0.405969 0.294954i
\(923\) 67.7390 2.22966
\(924\) 0 0
\(925\) 1.12019 0.0368315
\(926\) 5.93867 + 4.31470i 0.195157 + 0.141790i
\(927\) 25.4407 78.2985i 0.835583 2.57166i
\(928\) 12.9480 + 39.8499i 0.425040 + 1.30814i
\(929\) 17.2963 12.5665i 0.567472 0.412292i −0.266714 0.963776i \(-0.585938\pi\)
0.834186 + 0.551483i \(0.185938\pi\)
\(930\) 18.5577 13.4829i 0.608530 0.442123i
\(931\) −1.63162 5.02162i −0.0534743 0.164577i
\(932\) 23.1453 71.2339i 0.758150 2.33334i
\(933\) 10.5417 + 7.65900i 0.345120 + 0.250745i
\(934\) 28.6769 0.938338
\(935\) 0 0
\(936\) −41.5398 −1.35777
\(937\) 25.4925 + 18.5214i 0.832803 + 0.605067i 0.920351 0.391093i \(-0.127903\pi\)
−0.0875479 + 0.996160i \(0.527903\pi\)
\(938\) −6.57590 + 20.2385i −0.214711 + 0.660811i
\(939\) 11.3022 + 34.7847i 0.368834 + 1.13516i
\(940\) 1.58816 1.15387i 0.0518002 0.0376350i
\(941\) −34.5692 + 25.1160i −1.12693 + 0.818759i −0.985244 0.171153i \(-0.945251\pi\)
−0.141681 + 0.989912i \(0.545251\pi\)
\(942\) 18.6834 + 57.5016i 0.608738 + 1.87350i
\(943\) 1.83539 5.64875i 0.0597685 0.183949i
\(944\) 6.83684 + 4.96726i 0.222520 + 0.161670i
\(945\) −5.70436 −0.185563
\(946\) 0 0
\(947\) 3.29473 0.107064 0.0535321 0.998566i \(-0.482952\pi\)
0.0535321 + 0.998566i \(0.482952\pi\)
\(948\) 57.4189 + 41.7172i 1.86488 + 1.35491i
\(949\) 4.14352 12.7524i 0.134504 0.413962i
\(950\) −16.5200 50.8434i −0.535980 1.64958i
\(951\) −5.65050 + 4.10533i −0.183230 + 0.133124i
\(952\) 4.96775 3.60928i 0.161006 0.116978i
\(953\) 11.9531 + 36.7880i 0.387200 + 1.19168i 0.934871 + 0.354987i \(0.115515\pi\)
−0.547671 + 0.836694i \(0.684485\pi\)
\(954\) 13.4605 41.4272i 0.435801 1.34126i
\(955\) −7.37263 5.35653i −0.238573 0.173333i
\(956\) 6.43899 0.208252
\(957\) 0 0
\(958\) −74.4977 −2.40691
\(959\) 7.85099 + 5.70408i 0.253522 + 0.184194i
\(960\) 5.36265 16.5045i 0.173079 0.532681i
\(961\) 6.10741 + 18.7967i 0.197013 + 0.606344i
\(962\) −2.26711 + 1.64715i −0.0730946 + 0.0531063i
\(963\) −57.7946 + 41.9902i −1.86241 + 1.35312i
\(964\) 21.2876 + 65.5163i 0.685626 + 2.11014i
\(965\) 2.47214 7.60845i 0.0795809 0.244925i
\(966\) −13.3484 9.69819i −0.429478 0.312034i
\(967\) −3.34816 −0.107670 −0.0538348 0.998550i \(-0.517144\pi\)
−0.0538348 + 0.998550i \(0.517144\pi\)
\(968\) 0 0
\(969\) 92.5583 2.97340
\(970\) −7.33088 5.32620i −0.235380 0.171014i
\(971\) 18.1434 55.8398i 0.582251 1.79198i −0.0277898 0.999614i \(-0.508847\pi\)
0.610041 0.792370i \(-0.291153\pi\)
\(972\) −12.5675 38.6789i −0.403104 1.24063i
\(973\) 15.9530 11.5906i 0.511431 0.371576i
\(974\) 50.9972 37.0516i 1.63406 1.18721i
\(975\) 25.8116 + 79.4398i 0.826632 + 2.54411i
\(976\) 1.99752 6.14772i 0.0639389 0.196784i
\(977\) −11.1360 8.09081i −0.356274 0.258848i 0.395223 0.918585i \(-0.370667\pi\)
−0.751496 + 0.659737i \(0.770667\pi\)
\(978\) −88.1798 −2.81968
\(979\) 0 0
\(980\) 1.21949 0.0389553
\(981\) 40.1746 + 29.1885i 1.28267 + 0.931918i
\(982\) −16.7635 + 51.5929i −0.534946 + 1.64639i
\(983\) 15.5169 + 47.7562i 0.494914 + 1.52319i 0.817091 + 0.576508i \(0.195585\pi\)
−0.322178 + 0.946679i \(0.604415\pi\)
\(984\) −6.61446 + 4.80569i −0.210861 + 0.153200i
\(985\) −9.61023 + 6.98224i −0.306207 + 0.222473i
\(986\) −19.4491 59.8581i −0.619385 1.90627i
\(987\) 1.55444 4.78408i 0.0494784 0.152279i
\(988\) 60.2699 + 43.7887i 1.91744 + 1.39310i
\(989\) 2.56009 0.0814062
\(990\) 0 0
\(991\) −4.65940 −0.148011 −0.0740054 0.997258i \(-0.523578\pi\)
−0.0740054 + 0.997258i \(0.523578\pi\)
\(992\) 45.7424 + 33.2338i 1.45232 + 1.05517i
\(993\) −21.5580 + 66.3486i −0.684122 + 2.10551i
\(994\) −7.92891 24.4027i −0.251490 0.774006i
\(995\) 6.03664 4.38588i 0.191375 0.139042i
\(996\) −20.4711 + 14.8731i −0.648652 + 0.471273i
\(997\) 1.04736 + 3.22345i 0.0331703 + 0.102088i 0.966271 0.257528i \(-0.0829079\pi\)
−0.933101 + 0.359615i \(0.882908\pi\)
\(998\) 16.8480 51.8529i 0.533315 1.64137i
\(999\) −2.23760 1.62571i −0.0707945 0.0514352i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 847.2.f.t.323.3 12
11.2 odd 10 847.2.f.u.148.3 12
11.3 even 5 inner 847.2.f.t.729.3 12
11.4 even 5 inner 847.2.f.t.372.1 12
11.5 even 5 847.2.a.j.1.1 yes 3
11.6 odd 10 847.2.a.i.1.3 3
11.7 odd 10 847.2.f.u.372.3 12
11.8 odd 10 847.2.f.u.729.1 12
11.9 even 5 inner 847.2.f.t.148.1 12
11.10 odd 2 847.2.f.u.323.1 12
33.5 odd 10 7623.2.a.bz.1.3 3
33.17 even 10 7623.2.a.ce.1.1 3
77.6 even 10 5929.2.a.t.1.3 3
77.27 odd 10 5929.2.a.y.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
847.2.a.i.1.3 3 11.6 odd 10
847.2.a.j.1.1 yes 3 11.5 even 5
847.2.f.t.148.1 12 11.9 even 5 inner
847.2.f.t.323.3 12 1.1 even 1 trivial
847.2.f.t.372.1 12 11.4 even 5 inner
847.2.f.t.729.3 12 11.3 even 5 inner
847.2.f.u.148.3 12 11.2 odd 10
847.2.f.u.323.1 12 11.10 odd 2
847.2.f.u.372.3 12 11.7 odd 10
847.2.f.u.729.1 12 11.8 odd 10
5929.2.a.t.1.3 3 77.6 even 10
5929.2.a.y.1.1 3 77.27 odd 10
7623.2.a.bz.1.3 3 33.5 odd 10
7623.2.a.ce.1.1 3 33.17 even 10