Properties

Label 847.2.f.t.323.1
Level $847$
Weight $2$
Character 847.323
Analytic conductor $6.763$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [847,2,Mod(148,847)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("847.148"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(847, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 847.f (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-2,1,-8,-1,-12,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.76332905120\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 7 x^{10} - 15 x^{9} + 59 x^{8} + 118 x^{7} + 266 x^{6} + 324 x^{5} + 1036 x^{4} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 323.1
Root \(0.544351 + 1.67534i\) of defining polynomial
Character \(\chi\) \(=\) 847.323
Dual form 847.2.f.t.729.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.23415 - 1.62320i) q^{2} +(0.544351 - 1.67534i) q^{3} +(1.73859 + 5.35083i) q^{4} +(2.12464 - 1.54364i) q^{5} +(-3.93558 + 2.85936i) q^{6} +(0.309017 + 0.951057i) q^{7} +(3.09448 - 9.52384i) q^{8} +(-0.0833965 - 0.0605911i) q^{9} -7.25240 q^{10} +9.91087 q^{12} +(1.93173 + 1.40349i) q^{13} +(0.853368 - 2.62640i) q^{14} +(-1.42957 - 4.39978i) q^{15} +(-13.2693 + 9.64068i) q^{16} +(1.93173 - 1.40349i) q^{17} +(0.0879683 + 0.270739i) q^{18} +(-0.534377 + 1.64464i) q^{19} +(11.9536 + 8.68483i) q^{20} +1.76156 q^{21} -0.626198 q^{23} +(-14.2712 - 10.3686i) q^{24} +(0.586179 - 1.80407i) q^{25} +(-2.03763 - 6.27119i) q^{26} +(4.12848 - 2.99952i) q^{27} +(-4.55169 + 3.30700i) q^{28} +(0.534377 + 1.64464i) q^{29} +(-3.94785 + 12.1502i) q^{30} +(1.81094 + 1.31572i) q^{31} +25.2663 q^{32} -6.59392 q^{34} +(2.12464 + 1.54364i) q^{35} +(0.179220 - 0.551584i) q^{36} +(-2.13126 - 6.55936i) q^{37} +(3.86347 - 2.80697i) q^{38} +(3.40286 - 2.47232i) q^{39} +(-8.12672 - 25.0115i) q^{40} +(3.20999 - 9.87934i) q^{41} +(-3.93558 - 2.85936i) q^{42} +7.25240 q^{43} -0.270718 q^{45} +(1.39902 + 1.01645i) q^{46} +(1.97392 - 6.07512i) q^{47} +(8.92829 + 27.4784i) q^{48} +(-0.809017 + 0.587785i) q^{49} +(-4.23799 + 3.07908i) q^{50} +(-1.29978 - 4.00030i) q^{51} +(-4.15133 + 12.7765i) q^{52} +(7.48535 + 5.43842i) q^{53} -14.0925 q^{54} +10.0140 q^{56} +(2.46445 + 1.79053i) q^{57} +(1.47571 - 4.54178i) q^{58} +(-0.544351 - 1.67534i) q^{59} +(21.0570 - 15.2988i) q^{60} +(8.40387 - 6.10577i) q^{61} +(-1.91022 - 5.87904i) q^{62} +(0.0318546 - 0.0980384i) q^{63} +(-29.9102 - 21.7310i) q^{64} +6.27072 q^{65} -6.42003 q^{67} +(10.8683 + 7.89630i) q^{68} +(-0.340872 + 1.04909i) q^{69} +(-2.24111 - 6.89744i) q^{70} +(-6.54071 + 4.75210i) q^{71} +(-0.835128 + 0.606756i) q^{72} +(3.20999 + 9.87934i) q^{73} +(-5.88561 + 18.1140i) q^{74} +(-2.70335 - 1.96410i) q^{75} -9.72928 q^{76} -11.6156 q^{78} +(-12.3394 - 8.96513i) q^{79} +(-13.3106 + 40.9659i) q^{80} +(-2.87343 - 8.84352i) q^{81} +(-23.2078 + 16.8614i) q^{82} +(-10.3356 + 7.50926i) q^{83} +(3.06263 + 9.42580i) q^{84} +(1.93776 - 5.96381i) q^{85} +(-16.2029 - 11.7721i) q^{86} +3.04623 q^{87} -14.1493 q^{89} +(0.604824 + 0.439431i) q^{90} +(-0.737857 + 2.27089i) q^{91} +(-1.08870 - 3.35068i) q^{92} +(3.19007 - 2.31772i) q^{93} +(-14.2712 + 10.3686i) q^{94} +(1.40338 + 4.31916i) q^{95} +(13.7538 - 42.3297i) q^{96} +(6.75973 + 4.91123i) q^{97} +2.76156 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} + q^{3} - 8 q^{4} - q^{5} - 12 q^{6} - 3 q^{7} - 6 q^{8} - 4 q^{9} - 16 q^{10} + 8 q^{12} - 8 q^{13} - 2 q^{14} + 5 q^{15} - 10 q^{16} - 8 q^{17} + 18 q^{18} + 14 q^{20} - 4 q^{21} + 28 q^{23}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/847\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(365\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.23415 1.62320i −1.57978 1.14778i −0.916946 0.399011i \(-0.869353\pi\)
−0.662834 0.748766i \(-0.730647\pi\)
\(3\) 0.544351 1.67534i 0.314281 0.967258i −0.661768 0.749709i \(-0.730194\pi\)
0.976049 0.217550i \(-0.0698064\pi\)
\(4\) 1.73859 + 5.35083i 0.869295 + 2.67542i
\(5\) 2.12464 1.54364i 0.950167 0.690337i −0.000679067 1.00000i \(-0.500216\pi\)
0.950846 + 0.309663i \(0.100216\pi\)
\(6\) −3.93558 + 2.85936i −1.60669 + 1.16733i
\(7\) 0.309017 + 0.951057i 0.116797 + 0.359466i
\(8\) 3.09448 9.52384i 1.09406 3.36718i
\(9\) −0.0833965 0.0605911i −0.0277988 0.0201970i
\(10\) −7.25240 −2.29341
\(11\) 0 0
\(12\) 9.91087 2.86102
\(13\) 1.93173 + 1.40349i 0.535767 + 0.389257i 0.822510 0.568750i \(-0.192573\pi\)
−0.286744 + 0.958007i \(0.592573\pi\)
\(14\) 0.853368 2.62640i 0.228072 0.701934i
\(15\) −1.42957 4.39978i −0.369114 1.13602i
\(16\) −13.2693 + 9.64068i −3.31732 + 2.41017i
\(17\) 1.93173 1.40349i 0.468514 0.340396i −0.328348 0.944557i \(-0.606492\pi\)
0.796862 + 0.604161i \(0.206492\pi\)
\(18\) 0.0879683 + 0.270739i 0.0207343 + 0.0638137i
\(19\) −0.534377 + 1.64464i −0.122595 + 0.377307i −0.993455 0.114223i \(-0.963562\pi\)
0.870861 + 0.491530i \(0.163562\pi\)
\(20\) 11.9536 + 8.68483i 2.67291 + 1.94199i
\(21\) 1.76156 0.384403
\(22\) 0 0
\(23\) −0.626198 −0.130571 −0.0652857 0.997867i \(-0.520796\pi\)
−0.0652857 + 0.997867i \(0.520796\pi\)
\(24\) −14.2712 10.3686i −2.91309 2.11649i
\(25\) 0.586179 1.80407i 0.117236 0.360815i
\(26\) −2.03763 6.27119i −0.399613 1.22988i
\(27\) 4.12848 2.99952i 0.794527 0.577257i
\(28\) −4.55169 + 3.30700i −0.860189 + 0.624964i
\(29\) 0.534377 + 1.64464i 0.0992314 + 0.305403i 0.988333 0.152306i \(-0.0486701\pi\)
−0.889102 + 0.457709i \(0.848670\pi\)
\(30\) −3.94785 + 12.1502i −0.720775 + 2.21832i
\(31\) 1.81094 + 1.31572i 0.325254 + 0.236311i 0.738414 0.674347i \(-0.235575\pi\)
−0.413160 + 0.910658i \(0.635575\pi\)
\(32\) 25.2663 4.46650
\(33\) 0 0
\(34\) −6.59392 −1.13085
\(35\) 2.12464 + 1.54364i 0.359130 + 0.260923i
\(36\) 0.179220 0.551584i 0.0298701 0.0919306i
\(37\) −2.13126 6.55936i −0.350378 1.07835i −0.958641 0.284617i \(-0.908134\pi\)
0.608264 0.793735i \(-0.291866\pi\)
\(38\) 3.86347 2.80697i 0.626737 0.455351i
\(39\) 3.40286 2.47232i 0.544894 0.395889i
\(40\) −8.12672 25.0115i −1.28495 3.95466i
\(41\) 3.20999 9.87934i 0.501317 1.54289i −0.305559 0.952173i \(-0.598843\pi\)
0.806876 0.590721i \(-0.201157\pi\)
\(42\) −3.93558 2.85936i −0.607273 0.441209i
\(43\) 7.25240 1.10598 0.552990 0.833188i \(-0.313487\pi\)
0.552990 + 0.833188i \(0.313487\pi\)
\(44\) 0 0
\(45\) −0.270718 −0.0403563
\(46\) 1.39902 + 1.01645i 0.206274 + 0.149867i
\(47\) 1.97392 6.07512i 0.287927 0.886147i −0.697580 0.716507i \(-0.745740\pi\)
0.985506 0.169640i \(-0.0542603\pi\)
\(48\) 8.92829 + 27.4784i 1.28869 + 3.96617i
\(49\) −0.809017 + 0.587785i −0.115574 + 0.0839693i
\(50\) −4.23799 + 3.07908i −0.599342 + 0.435448i
\(51\) −1.29978 4.00030i −0.182005 0.560154i
\(52\) −4.15133 + 12.7765i −0.575686 + 1.77178i
\(53\) 7.48535 + 5.43842i 1.02819 + 0.747025i 0.967946 0.251159i \(-0.0808117\pi\)
0.0602454 + 0.998184i \(0.480812\pi\)
\(54\) −14.0925 −1.91774
\(55\) 0 0
\(56\) 10.0140 1.33817
\(57\) 2.46445 + 1.79053i 0.326424 + 0.237161i
\(58\) 1.47571 4.54178i 0.193771 0.596365i
\(59\) −0.544351 1.67534i −0.0708685 0.218111i 0.909349 0.416034i \(-0.136580\pi\)
−0.980218 + 0.197923i \(0.936580\pi\)
\(60\) 21.0570 15.2988i 2.71845 1.97507i
\(61\) 8.40387 6.10577i 1.07601 0.781764i 0.0990233 0.995085i \(-0.468428\pi\)
0.976982 + 0.213321i \(0.0684282\pi\)
\(62\) −1.91022 5.87904i −0.242598 0.746639i
\(63\) 0.0318546 0.0980384i 0.00401330 0.0123517i
\(64\) −29.9102 21.7310i −3.73878 2.71638i
\(65\) 6.27072 0.777787
\(66\) 0 0
\(67\) −6.42003 −0.784332 −0.392166 0.919895i \(-0.628274\pi\)
−0.392166 + 0.919895i \(0.628274\pi\)
\(68\) 10.8683 + 7.89630i 1.31798 + 0.957567i
\(69\) −0.340872 + 1.04909i −0.0410361 + 0.126296i
\(70\) −2.24111 6.89744i −0.267864 0.824402i
\(71\) −6.54071 + 4.75210i −0.776239 + 0.563971i −0.903848 0.427854i \(-0.859270\pi\)
0.127609 + 0.991825i \(0.459270\pi\)
\(72\) −0.835128 + 0.606756i −0.0984208 + 0.0715069i
\(73\) 3.20999 + 9.87934i 0.375701 + 1.15629i 0.943004 + 0.332780i \(0.107987\pi\)
−0.567303 + 0.823509i \(0.692013\pi\)
\(74\) −5.88561 + 18.1140i −0.684188 + 2.10571i
\(75\) −2.70335 1.96410i −0.312156 0.226795i
\(76\) −9.72928 −1.11603
\(77\) 0 0
\(78\) −11.6156 −1.31520
\(79\) −12.3394 8.96513i −1.38830 1.00866i −0.996050 0.0887962i \(-0.971698\pi\)
−0.392247 0.919860i \(-0.628302\pi\)
\(80\) −13.3106 + 40.9659i −1.48817 + 4.58013i
\(81\) −2.87343 8.84352i −0.319270 0.982613i
\(82\) −23.2078 + 16.8614i −2.56287 + 1.86203i
\(83\) −10.3356 + 7.50926i −1.13448 + 0.824248i −0.986341 0.164718i \(-0.947328\pi\)
−0.148139 + 0.988966i \(0.547328\pi\)
\(84\) 3.06263 + 9.42580i 0.334160 + 1.02844i
\(85\) 1.93776 5.96381i 0.210179 0.646866i
\(86\) −16.2029 11.7721i −1.74721 1.26942i
\(87\) 3.04623 0.326590
\(88\) 0 0
\(89\) −14.1493 −1.49982 −0.749912 0.661538i \(-0.769904\pi\)
−0.749912 + 0.661538i \(0.769904\pi\)
\(90\) 0.604824 + 0.439431i 0.0637541 + 0.0463200i
\(91\) −0.737857 + 2.27089i −0.0773484 + 0.238054i
\(92\) −1.08870 3.35068i −0.113505 0.349333i
\(93\) 3.19007 2.31772i 0.330795 0.240337i
\(94\) −14.2712 + 10.3686i −1.47196 + 1.06944i
\(95\) 1.40338 + 4.31916i 0.143984 + 0.443137i
\(96\) 13.7538 42.3297i 1.40374 4.32026i
\(97\) 6.75973 + 4.91123i 0.686346 + 0.498660i 0.875457 0.483296i \(-0.160561\pi\)
−0.189111 + 0.981956i \(0.560561\pi\)
\(98\) 2.76156 0.278959
\(99\) 0 0
\(100\) 10.6724 1.06724
\(101\) 11.2019 + 8.13866i 1.11463 + 0.809827i 0.983387 0.181523i \(-0.0581026\pi\)
0.131245 + 0.991350i \(0.458103\pi\)
\(102\) −3.58941 + 11.0471i −0.355404 + 1.09382i
\(103\) −0.905170 2.78583i −0.0891891 0.274496i 0.896507 0.443030i \(-0.146097\pi\)
−0.985696 + 0.168534i \(0.946097\pi\)
\(104\) 19.3443 14.0545i 1.89686 1.37815i
\(105\) 3.74267 2.71921i 0.365247 0.265368i
\(106\) −7.89570 24.3005i −0.766898 2.36027i
\(107\) 1.06875 3.28929i 0.103320 0.317988i −0.886012 0.463662i \(-0.846535\pi\)
0.989333 + 0.145674i \(0.0465352\pi\)
\(108\) 23.2277 + 16.8759i 2.23508 + 1.62388i
\(109\) −16.2341 −1.55494 −0.777471 0.628919i \(-0.783498\pi\)
−0.777471 + 0.628919i \(0.783498\pi\)
\(110\) 0 0
\(111\) −12.1493 −1.15316
\(112\) −13.2693 9.64068i −1.25383 0.910959i
\(113\) 2.19497 6.75543i 0.206486 0.635498i −0.793163 0.609009i \(-0.791567\pi\)
0.999649 0.0264888i \(-0.00843265\pi\)
\(114\) −2.59955 8.00061i −0.243471 0.749325i
\(115\) −1.33044 + 0.966625i −0.124065 + 0.0901382i
\(116\) −7.87115 + 5.71873i −0.730818 + 0.530971i
\(117\) −0.0760610 0.234092i −0.00703184 0.0216418i
\(118\) −1.50326 + 4.62655i −0.138386 + 0.425908i
\(119\) 1.93173 + 1.40349i 0.177082 + 0.128657i
\(120\) −46.3265 −4.22901
\(121\) 0 0
\(122\) −28.6864 −2.59714
\(123\) −14.8039 10.7557i −1.33482 0.969805i
\(124\) −3.89174 + 11.9775i −0.349488 + 1.07561i
\(125\) 2.51828 + 7.75046i 0.225241 + 0.693222i
\(126\) −0.230304 + 0.167326i −0.0205171 + 0.0149066i
\(127\) 3.67410 2.66939i 0.326024 0.236870i −0.412718 0.910859i \(-0.635420\pi\)
0.738741 + 0.673989i \(0.235420\pi\)
\(128\) 15.9345 + 49.0412i 1.40842 + 4.33467i
\(129\) 3.94785 12.1502i 0.347589 1.06977i
\(130\) −14.0097 10.1786i −1.22873 0.892726i
\(131\) −6.27072 −0.547875 −0.273938 0.961747i \(-0.588326\pi\)
−0.273938 + 0.961747i \(0.588326\pi\)
\(132\) 0 0
\(133\) −1.72928 −0.149948
\(134\) 14.3433 + 10.4210i 1.23907 + 0.900238i
\(135\) 4.14136 12.7458i 0.356431 1.09698i
\(136\) −7.38887 22.7406i −0.633590 1.94999i
\(137\) −7.60614 + 5.52619i −0.649837 + 0.472134i −0.863216 0.504836i \(-0.831553\pi\)
0.213379 + 0.976970i \(0.431553\pi\)
\(138\) 2.46445 1.79053i 0.209788 0.152420i
\(139\) 4.88919 + 15.0474i 0.414695 + 1.27630i 0.912523 + 0.409025i \(0.134131\pi\)
−0.497828 + 0.867276i \(0.665869\pi\)
\(140\) −4.56588 + 14.0523i −0.385888 + 1.18764i
\(141\) −9.10338 6.61399i −0.766643 0.556999i
\(142\) 22.3265 1.87360
\(143\) 0 0
\(144\) 1.69075 0.140896
\(145\) 3.67410 + 2.66939i 0.305117 + 0.221681i
\(146\) 8.86458 27.2824i 0.733638 2.25790i
\(147\) 0.544351 + 1.67534i 0.0448973 + 0.138180i
\(148\) 31.3926 22.8081i 2.58046 1.87481i
\(149\) −2.79804 + 2.03289i −0.229224 + 0.166541i −0.696469 0.717587i \(-0.745247\pi\)
0.467245 + 0.884128i \(0.345247\pi\)
\(150\) 2.85155 + 8.77618i 0.232828 + 0.716572i
\(151\) −3.18245 + 9.79457i −0.258984 + 0.797071i 0.734034 + 0.679112i \(0.237635\pi\)
−0.993018 + 0.117959i \(0.962365\pi\)
\(152\) 14.0097 + 10.1786i 1.13634 + 0.825597i
\(153\) −0.246139 −0.0198991
\(154\) 0 0
\(155\) 5.87859 0.472180
\(156\) 19.1452 + 13.9098i 1.53284 + 1.11367i
\(157\) 3.50337 10.7823i 0.279600 0.860519i −0.708366 0.705845i \(-0.750567\pi\)
0.987966 0.154674i \(-0.0494327\pi\)
\(158\) 13.0159 + 40.0588i 1.03549 + 3.18691i
\(159\) 13.1859 9.58009i 1.04571 0.759751i
\(160\) 53.6819 39.0022i 4.24392 3.08339i
\(161\) −0.193506 0.595550i −0.0152504 0.0469359i
\(162\) −7.93515 + 24.4219i −0.623444 + 1.91876i
\(163\) 7.87115 + 5.71873i 0.616516 + 0.447925i 0.851703 0.524025i \(-0.175570\pi\)
−0.235187 + 0.971950i \(0.575570\pi\)
\(164\) 58.4436 4.56368
\(165\) 0 0
\(166\) 35.2803 2.73828
\(167\) −18.2068 13.2280i −1.40888 1.02361i −0.993484 0.113972i \(-0.963643\pi\)
−0.415397 0.909640i \(-0.636357\pi\)
\(168\) 5.45111 16.7768i 0.420562 1.29436i
\(169\) −2.25540 6.94140i −0.173492 0.533954i
\(170\) −14.0097 + 10.1786i −1.07450 + 0.780667i
\(171\) 0.144216 0.104779i 0.0110285 0.00801265i
\(172\) 12.6089 + 38.8064i 0.961423 + 2.95896i
\(173\) 2.14124 6.59005i 0.162795 0.501032i −0.836072 0.548620i \(-0.815153\pi\)
0.998867 + 0.0475877i \(0.0151533\pi\)
\(174\) −6.80572 4.94465i −0.515940 0.374853i
\(175\) 1.89692 0.143393
\(176\) 0 0
\(177\) −3.10308 −0.233242
\(178\) 31.6116 + 22.9672i 2.36939 + 1.72146i
\(179\) 4.30867 13.2607i 0.322045 0.991153i −0.650712 0.759325i \(-0.725529\pi\)
0.972757 0.231828i \(-0.0744706\pi\)
\(180\) −0.470668 1.44857i −0.0350815 0.107970i
\(181\) −2.56267 + 1.86189i −0.190482 + 0.138393i −0.678939 0.734195i \(-0.737560\pi\)
0.488457 + 0.872588i \(0.337560\pi\)
\(182\) 5.33460 3.87581i 0.395427 0.287294i
\(183\) −5.65459 17.4030i −0.417999 1.28647i
\(184\) −1.93776 + 5.96381i −0.142853 + 0.439658i
\(185\) −14.6535 10.6464i −1.07734 0.782736i
\(186\) −10.8892 −0.798436
\(187\) 0 0
\(188\) 35.9388 2.62110
\(189\) 4.12848 + 2.99952i 0.300303 + 0.218183i
\(190\) 3.87552 11.9276i 0.281160 0.865320i
\(191\) 5.67216 + 17.4571i 0.410423 + 1.26315i 0.916281 + 0.400535i \(0.131176\pi\)
−0.505859 + 0.862616i \(0.668824\pi\)
\(192\) −52.6885 + 38.2805i −3.80247 + 2.76265i
\(193\) 2.46445 1.79053i 0.177395 0.128885i −0.495544 0.868583i \(-0.665031\pi\)
0.672939 + 0.739698i \(0.265031\pi\)
\(194\) −7.13030 21.9448i −0.511926 1.57555i
\(195\) 3.41347 10.5056i 0.244444 0.752321i
\(196\) −4.55169 3.30700i −0.325121 0.236214i
\(197\) 4.95377 0.352942 0.176471 0.984306i \(-0.443532\pi\)
0.176471 + 0.984306i \(0.443532\pi\)
\(198\) 0 0
\(199\) 15.7047 1.11328 0.556638 0.830755i \(-0.312091\pi\)
0.556638 + 0.830755i \(0.312091\pi\)
\(200\) −15.3678 11.1654i −1.08667 0.789510i
\(201\) −3.49475 + 10.7557i −0.246501 + 0.758651i
\(202\) −11.8160 36.3659i −0.831371 2.55870i
\(203\) −1.39902 + 1.01645i −0.0981918 + 0.0713405i
\(204\) 19.1452 13.9098i 1.34043 0.973879i
\(205\) −8.43008 25.9451i −0.588782 1.81209i
\(206\) −2.49968 + 7.69322i −0.174161 + 0.536012i
\(207\) 0.0522227 + 0.0379420i 0.00362973 + 0.00263715i
\(208\) −39.1633 −2.71548
\(209\) 0 0
\(210\) −12.7755 −0.881594
\(211\) −14.1991 10.3162i −0.977505 0.710199i −0.0203551 0.999793i \(-0.506480\pi\)
−0.957150 + 0.289594i \(0.906480\pi\)
\(212\) −16.0861 + 49.5080i −1.10480 + 3.40022i
\(213\) 4.40095 + 13.5447i 0.301548 + 0.928069i
\(214\) −7.72694 + 5.61395i −0.528203 + 0.383762i
\(215\) 15.4087 11.1951i 1.05087 0.763499i
\(216\) −15.7914 48.6009i −1.07447 3.30687i
\(217\) −0.691717 + 2.12889i −0.0469568 + 0.144518i
\(218\) 36.2693 + 26.3512i 2.45647 + 1.78473i
\(219\) 18.2986 1.23651
\(220\) 0 0
\(221\) 5.70138 0.383516
\(222\) 27.1433 + 19.7208i 1.82174 + 1.32357i
\(223\) −6.88930 + 21.2031i −0.461342 + 1.41986i 0.402183 + 0.915559i \(0.368251\pi\)
−0.863525 + 0.504305i \(0.831749\pi\)
\(224\) 7.80773 + 24.0297i 0.521676 + 1.60555i
\(225\) −0.158196 + 0.114936i −0.0105464 + 0.00766241i
\(226\) −15.8693 + 11.5297i −1.05561 + 0.766947i
\(227\) 4.40989 + 13.5723i 0.292695 + 0.900823i 0.983986 + 0.178246i \(0.0570423\pi\)
−0.691291 + 0.722576i \(0.742958\pi\)
\(228\) −5.29615 + 16.2999i −0.350746 + 1.07948i
\(229\) 3.13785 + 2.27978i 0.207355 + 0.150652i 0.686616 0.727020i \(-0.259095\pi\)
−0.479261 + 0.877672i \(0.659095\pi\)
\(230\) 4.54144 0.299453
\(231\) 0 0
\(232\) 17.3169 1.13691
\(233\) −5.40670 3.92820i −0.354205 0.257345i 0.396426 0.918067i \(-0.370250\pi\)
−0.750631 + 0.660722i \(0.770250\pi\)
\(234\) −0.210047 + 0.646458i −0.0137312 + 0.0422603i
\(235\) −5.18392 15.9545i −0.338162 1.04075i
\(236\) 8.01806 5.82546i 0.521931 0.379205i
\(237\) −21.7366 + 15.7926i −1.41195 + 1.02584i
\(238\) −2.03763 6.27119i −0.132080 0.406501i
\(239\) −1.40338 + 4.31916i −0.0907772 + 0.279383i −0.986130 0.165974i \(-0.946923\pi\)
0.895353 + 0.445357i \(0.146923\pi\)
\(240\) 61.3862 + 44.5997i 3.96246 + 2.87890i
\(241\) −3.70470 −0.238641 −0.119320 0.992856i \(-0.538072\pi\)
−0.119320 + 0.992856i \(0.538072\pi\)
\(242\) 0 0
\(243\) −1.07081 −0.0686924
\(244\) 47.2818 + 34.3523i 3.02691 + 2.19918i
\(245\) −0.811540 + 2.49766i −0.0518474 + 0.159570i
\(246\) 15.6155 + 48.0595i 0.995606 + 3.06416i
\(247\) −3.34051 + 2.42703i −0.212552 + 0.154428i
\(248\) 18.1347 13.1756i 1.15155 0.836651i
\(249\) 6.95436 + 21.4033i 0.440715 + 1.35638i
\(250\) 6.95436 21.4033i 0.439833 1.35367i
\(251\) −6.88406 5.00156i −0.434518 0.315696i 0.348935 0.937147i \(-0.386543\pi\)
−0.783453 + 0.621451i \(0.786543\pi\)
\(252\) 0.579969 0.0365346
\(253\) 0 0
\(254\) −12.5414 −0.786920
\(255\) −8.93659 6.49281i −0.559631 0.406596i
\(256\) 21.1545 65.1070i 1.32216 4.06919i
\(257\) −0.912766 2.80920i −0.0569367 0.175233i 0.918544 0.395320i \(-0.129366\pi\)
−0.975480 + 0.220086i \(0.929366\pi\)
\(258\) −28.5424 + 20.7372i −1.77697 + 1.29104i
\(259\) 5.57972 4.05391i 0.346707 0.251897i
\(260\) 10.9022 + 33.5536i 0.676127 + 2.08090i
\(261\) 0.0550856 0.169536i 0.00340971 0.0104940i
\(262\) 14.0097 + 10.1786i 0.865522 + 0.628839i
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) 24.2986 1.49265
\(266\) 3.86347 + 2.80697i 0.236884 + 0.172107i
\(267\) −7.70219 + 23.7049i −0.471367 + 1.45072i
\(268\) −11.1618 34.3525i −0.681816 2.09841i
\(269\) 5.48150 3.98255i 0.334213 0.242820i −0.408003 0.912981i \(-0.633775\pi\)
0.742216 + 0.670160i \(0.233775\pi\)
\(270\) −29.9414 + 21.7537i −1.82217 + 1.32389i
\(271\) 1.06875 + 3.28929i 0.0649222 + 0.199810i 0.978256 0.207402i \(-0.0665009\pi\)
−0.913334 + 0.407212i \(0.866501\pi\)
\(272\) −12.1021 + 37.2465i −0.733798 + 2.25840i
\(273\) 3.40286 + 2.47232i 0.205951 + 0.149632i
\(274\) 25.9634 1.56850
\(275\) 0 0
\(276\) −6.20617 −0.373567
\(277\) 9.27017 + 6.73517i 0.556991 + 0.404677i 0.830356 0.557233i \(-0.188137\pi\)
−0.273366 + 0.961910i \(0.588137\pi\)
\(278\) 13.5018 41.5542i 0.809782 2.49225i
\(279\) −0.0713047 0.219453i −0.00426890 0.0131383i
\(280\) 21.2760 15.4579i 1.27149 0.923789i
\(281\) 18.0625 13.1232i 1.07752 0.782865i 0.100272 0.994960i \(-0.468029\pi\)
0.977249 + 0.212095i \(0.0680287\pi\)
\(282\) 9.60244 + 29.5533i 0.571817 + 1.75987i
\(283\) −3.82043 + 11.7581i −0.227101 + 0.698945i 0.770970 + 0.636871i \(0.219772\pi\)
−0.998072 + 0.0620743i \(0.980228\pi\)
\(284\) −36.7993 26.7363i −2.18364 1.58651i
\(285\) 8.00000 0.473879
\(286\) 0 0
\(287\) 10.3878 0.613170
\(288\) −2.10712 1.53092i −0.124163 0.0902101i
\(289\) −3.49147 + 10.7456i −0.205380 + 0.632096i
\(290\) −3.87552 11.9276i −0.227578 0.700414i
\(291\) 11.9076 8.65141i 0.698038 0.507155i
\(292\) −47.2818 + 34.3523i −2.76696 + 2.01031i
\(293\) 0.665524 + 2.04827i 0.0388803 + 0.119661i 0.968613 0.248574i \(-0.0799620\pi\)
−0.929733 + 0.368236i \(0.879962\pi\)
\(294\) 1.50326 4.62655i 0.0876717 0.269826i
\(295\) −3.74267 2.71921i −0.217907 0.158319i
\(296\) −69.0654 −4.01434
\(297\) 0 0
\(298\) 9.55102 0.553276
\(299\) −1.20965 0.878861i −0.0699558 0.0508258i
\(300\) 5.80955 17.8799i 0.335414 1.03230i
\(301\) 2.24111 + 6.89744i 0.129176 + 0.397562i
\(302\) 23.0086 16.7168i 1.32400 0.961941i
\(303\) 19.7328 14.3367i 1.13362 0.823623i
\(304\) −8.76470 26.9750i −0.502690 1.54712i
\(305\) 8.43008 25.9451i 0.482705 1.48561i
\(306\) 0.549910 + 0.399533i 0.0314363 + 0.0228398i
\(307\) −31.8217 −1.81616 −0.908081 0.418794i \(-0.862453\pi\)
−0.908081 + 0.418794i \(0.862453\pi\)
\(308\) 0 0
\(309\) −5.15994 −0.293539
\(310\) −13.1336 9.54215i −0.745941 0.541958i
\(311\) −3.37731 + 10.3943i −0.191509 + 0.589405i 0.808490 + 0.588510i \(0.200285\pi\)
−1.00000 0.000895774i \(0.999715\pi\)
\(312\) −13.0159 40.0588i −0.736881 2.26789i
\(313\) −5.98811 + 4.35062i −0.338468 + 0.245911i −0.744015 0.668163i \(-0.767081\pi\)
0.405547 + 0.914074i \(0.367081\pi\)
\(314\) −25.3289 + 18.4025i −1.42939 + 1.03851i
\(315\) −0.0836565 0.257468i −0.00471351 0.0145067i
\(316\) 26.5177 81.6130i 1.49174 4.59109i
\(317\) 7.19776 + 5.22948i 0.404266 + 0.293717i 0.771276 0.636500i \(-0.219619\pi\)
−0.367010 + 0.930217i \(0.619619\pi\)
\(318\) −45.0096 −2.52401
\(319\) 0 0
\(320\) −97.0933 −5.42768
\(321\) −4.92890 3.58106i −0.275104 0.199875i
\(322\) −0.534377 + 1.64464i −0.0297797 + 0.0916525i
\(323\) 1.27596 + 3.92701i 0.0709965 + 0.218505i
\(324\) 42.3245 30.7505i 2.35136 1.70836i
\(325\) 3.66434 2.66230i 0.203261 0.147678i
\(326\) −8.30266 25.5530i −0.459842 1.41525i
\(327\) −8.83704 + 27.1976i −0.488689 + 1.50403i
\(328\) −84.1560 61.1429i −4.64674 3.37605i
\(329\) 6.38776 0.352168
\(330\) 0 0
\(331\) 8.56165 0.470591 0.235295 0.971924i \(-0.424394\pi\)
0.235295 + 0.971924i \(0.424394\pi\)
\(332\) −58.1502 42.2486i −3.19140 2.31869i
\(333\) −0.219699 + 0.676163i −0.0120394 + 0.0370535i
\(334\) 19.2049 + 59.1065i 1.05084 + 3.23416i
\(335\) −13.6402 + 9.91022i −0.745246 + 0.541453i
\(336\) −23.3746 + 16.9826i −1.27519 + 0.926478i
\(337\) −3.00651 9.25310i −0.163775 0.504048i 0.835169 0.549994i \(-0.185370\pi\)
−0.998944 + 0.0459455i \(0.985370\pi\)
\(338\) −6.22841 + 19.1691i −0.338781 + 1.04266i
\(339\) −10.1228 7.35466i −0.549796 0.399450i
\(340\) 35.2803 1.91334
\(341\) 0 0
\(342\) −0.492277 −0.0266193
\(343\) −0.809017 0.587785i −0.0436828 0.0317374i
\(344\) 22.4424 69.0706i 1.21001 3.72404i
\(345\) 0.895196 + 2.75513i 0.0481958 + 0.148331i
\(346\) −15.4808 + 11.2475i −0.832255 + 0.604668i
\(347\) −12.0059 + 8.72277i −0.644508 + 0.468263i −0.861396 0.507934i \(-0.830409\pi\)
0.216888 + 0.976197i \(0.430409\pi\)
\(348\) 5.29615 + 16.2999i 0.283903 + 0.873764i
\(349\) 5.02033 15.4510i 0.268732 0.827073i −0.722078 0.691812i \(-0.756813\pi\)
0.990810 0.135261i \(-0.0431873\pi\)
\(350\) −4.23799 3.07908i −0.226530 0.164584i
\(351\) 12.1849 0.650383
\(352\) 0 0
\(353\) 30.8603 1.64253 0.821263 0.570549i \(-0.193270\pi\)
0.821263 + 0.570549i \(0.193270\pi\)
\(354\) 6.93274 + 5.03693i 0.368471 + 0.267710i
\(355\) −6.56111 + 20.1930i −0.348227 + 1.07173i
\(356\) −24.5999 75.7106i −1.30379 4.01265i
\(357\) 3.40286 2.47232i 0.180098 0.130849i
\(358\) −31.1510 + 22.6325i −1.64638 + 1.19617i
\(359\) −3.64449 11.2166i −0.192349 0.591990i −0.999997 0.00232497i \(-0.999260\pi\)
0.807648 0.589665i \(-0.200740\pi\)
\(360\) −0.837733 + 2.57828i −0.0441524 + 0.135887i
\(361\) 12.9520 + 9.41020i 0.681686 + 0.495274i
\(362\) 8.74760 0.459764
\(363\) 0 0
\(364\) −13.4340 −0.704132
\(365\) 22.0702 + 16.0350i 1.15521 + 0.839308i
\(366\) −15.6155 + 48.0595i −0.816233 + 2.51211i
\(367\) −1.09868 3.38138i −0.0573504 0.176506i 0.918278 0.395937i \(-0.129580\pi\)
−0.975628 + 0.219430i \(0.929580\pi\)
\(368\) 8.30919 6.03698i 0.433146 0.314699i
\(369\) −0.866302 + 0.629405i −0.0450979 + 0.0327655i
\(370\) 15.4568 + 47.5711i 0.803559 + 2.47310i
\(371\) −2.85915 + 8.79955i −0.148440 + 0.456850i
\(372\) 17.9480 + 13.0400i 0.930559 + 0.676091i
\(373\) 22.5048 1.16525 0.582627 0.812740i \(-0.302025\pi\)
0.582627 + 0.812740i \(0.302025\pi\)
\(374\) 0 0
\(375\) 14.3555 0.741314
\(376\) −51.7501 37.5987i −2.66881 1.93900i
\(377\) −1.27596 + 3.92701i −0.0657154 + 0.202251i
\(378\) −4.35481 13.4027i −0.223987 0.689362i
\(379\) −18.9550 + 13.7716i −0.973651 + 0.707399i −0.956281 0.292450i \(-0.905529\pi\)
−0.0173701 + 0.999849i \(0.505529\pi\)
\(380\) −20.6712 + 15.0185i −1.06041 + 0.770433i
\(381\) −2.47214 7.60845i −0.126651 0.389793i
\(382\) 15.6640 48.2088i 0.801439 2.46658i
\(383\) 2.77193 + 2.01392i 0.141639 + 0.102907i 0.656348 0.754458i \(-0.272100\pi\)
−0.514709 + 0.857365i \(0.672100\pi\)
\(384\) 90.8347 4.63539
\(385\) 0 0
\(386\) −8.41233 −0.428177
\(387\) −0.604824 0.439431i −0.0307449 0.0223375i
\(388\) −14.5268 + 44.7088i −0.737485 + 2.26974i
\(389\) 2.48971 + 7.66252i 0.126233 + 0.388505i 0.994124 0.108250i \(-0.0345247\pi\)
−0.867891 + 0.496755i \(0.834525\pi\)
\(390\) −24.6789 + 17.9303i −1.24966 + 0.907934i
\(391\) −1.20965 + 0.878861i −0.0611746 + 0.0444459i
\(392\) 3.09448 + 9.52384i 0.156295 + 0.481026i
\(393\) −3.41347 + 10.5056i −0.172187 + 0.529937i
\(394\) −11.0675 8.04097i −0.557570 0.405098i
\(395\) −40.0558 −2.01543
\(396\) 0 0
\(397\) −26.3632 −1.32313 −0.661565 0.749888i \(-0.730107\pi\)
−0.661565 + 0.749888i \(0.730107\pi\)
\(398\) −35.0866 25.4919i −1.75873 1.27779i
\(399\) −0.941336 + 2.89714i −0.0471258 + 0.145038i
\(400\) 9.61434 + 29.5899i 0.480717 + 1.47950i
\(401\) 18.2816 13.2823i 0.912937 0.663288i −0.0288186 0.999585i \(-0.509175\pi\)
0.941756 + 0.336297i \(0.109175\pi\)
\(402\) 25.2665 18.3572i 1.26018 0.915574i
\(403\) 1.65165 + 5.08326i 0.0822746 + 0.253215i
\(404\) −24.0731 + 74.0893i −1.19768 + 3.68608i
\(405\) −19.7562 14.3537i −0.981694 0.713243i
\(406\) 4.77551 0.237005
\(407\) 0 0
\(408\) −42.1204 −2.08527
\(409\) −7.52781 5.46927i −0.372226 0.270438i 0.385907 0.922538i \(-0.373888\pi\)
−0.758133 + 0.652099i \(0.773888\pi\)
\(410\) −23.2801 + 71.6489i −1.14972 + 3.53849i
\(411\) 5.11783 + 15.7511i 0.252444 + 0.776943i
\(412\) 13.3328 9.68683i 0.656859 0.477236i
\(413\) 1.42513 1.03542i 0.0701260 0.0509496i
\(414\) −0.0550856 0.169536i −0.00270731 0.00833224i
\(415\) −10.3678 + 31.9089i −0.508937 + 1.56635i
\(416\) 48.8079 + 35.4610i 2.39300 + 1.73862i
\(417\) 27.8709 1.36484
\(418\) 0 0
\(419\) −13.8463 −0.676437 −0.338218 0.941068i \(-0.609824\pi\)
−0.338218 + 0.941068i \(0.609824\pi\)
\(420\) 21.0570 + 15.2988i 1.02748 + 0.746506i
\(421\) −11.0496 + 34.0071i −0.538524 + 1.65740i 0.197387 + 0.980326i \(0.436755\pi\)
−0.735910 + 0.677079i \(0.763245\pi\)
\(422\) 14.9775 + 46.0959i 0.729092 + 2.24392i
\(423\) −0.532716 + 0.387041i −0.0259015 + 0.0188186i
\(424\) 74.9579 54.4601i 3.64028 2.64482i
\(425\) −1.39965 4.30769i −0.0678931 0.208954i
\(426\) 12.1535 37.4045i 0.588838 1.81226i
\(427\) 8.40387 + 6.10577i 0.406692 + 0.295479i
\(428\) 19.4586 0.940565
\(429\) 0 0
\(430\) −52.5972 −2.53646
\(431\) 25.3289 + 18.4025i 1.22005 + 0.886417i 0.996104 0.0881844i \(-0.0281065\pi\)
0.223945 + 0.974602i \(0.428106\pi\)
\(432\) −25.8645 + 79.6028i −1.24441 + 3.82989i
\(433\) 6.67720 + 20.5503i 0.320886 + 0.987585i 0.973264 + 0.229691i \(0.0737716\pi\)
−0.652378 + 0.757894i \(0.726228\pi\)
\(434\) 5.00101 3.63345i 0.240056 0.174411i
\(435\) 6.47214 4.70228i 0.310315 0.225457i
\(436\) −28.2244 86.8658i −1.35170 4.16012i
\(437\) 0.334626 1.02987i 0.0160073 0.0492655i
\(438\) −40.8818 29.7024i −1.95341 1.41923i
\(439\) 15.5877 0.743959 0.371979 0.928241i \(-0.378679\pi\)
0.371979 + 0.928241i \(0.378679\pi\)
\(440\) 0 0
\(441\) 0.103084 0.00490875
\(442\) −12.7377 9.25449i −0.605871 0.440191i
\(443\) 7.26010 22.3443i 0.344938 1.06161i −0.616680 0.787214i \(-0.711523\pi\)
0.961617 0.274395i \(-0.0884774\pi\)
\(444\) −21.1227 65.0089i −1.00244 3.08519i
\(445\) −30.0622 + 21.8415i −1.42508 + 1.03538i
\(446\) 49.8086 36.1881i 2.35851 1.71356i
\(447\) 1.88267 + 5.79427i 0.0890474 + 0.274060i
\(448\) 11.4247 35.1616i 0.539766 1.66123i
\(449\) −18.4320 13.3916i −0.869860 0.631990i 0.0606894 0.998157i \(-0.480670\pi\)
−0.930549 + 0.366166i \(0.880670\pi\)
\(450\) 0.539998 0.0254558
\(451\) 0 0
\(452\) 39.9634 1.87972
\(453\) 14.6769 + 10.6634i 0.689580 + 0.501009i
\(454\) 12.1782 37.4806i 0.571550 1.75905i
\(455\) 1.93776 + 5.96381i 0.0908435 + 0.279588i
\(456\) 24.6789 17.9303i 1.15570 0.839662i
\(457\) 11.7346 8.52570i 0.548923 0.398816i −0.278466 0.960446i \(-0.589826\pi\)
0.827388 + 0.561631i \(0.189826\pi\)
\(458\) −3.30987 10.1867i −0.154660 0.475995i
\(459\) 3.76535 11.5885i 0.175751 0.540907i
\(460\) −7.48535 5.43842i −0.349006 0.253568i
\(461\) −31.1633 −1.45142 −0.725709 0.688002i \(-0.758488\pi\)
−0.725709 + 0.688002i \(0.758488\pi\)
\(462\) 0 0
\(463\) −5.87859 −0.273201 −0.136601 0.990626i \(-0.543618\pi\)
−0.136601 + 0.990626i \(0.543618\pi\)
\(464\) −22.9463 16.6715i −1.06525 0.773953i
\(465\) 3.20002 9.84865i 0.148397 0.456720i
\(466\) 5.70310 + 17.5524i 0.264191 + 0.813097i
\(467\) 19.1939 13.9452i 0.888186 0.645305i −0.0472185 0.998885i \(-0.515036\pi\)
0.935404 + 0.353580i \(0.115036\pi\)
\(468\) 1.12035 0.813980i 0.0517881 0.0376262i
\(469\) −1.98390 6.10581i −0.0916079 0.281940i
\(470\) −14.3157 + 44.0591i −0.660333 + 2.03230i
\(471\) −16.1569 11.7387i −0.744472 0.540890i
\(472\) −17.6402 −0.811954
\(473\) 0 0
\(474\) 74.1974 3.40800
\(475\) 2.65382 + 1.92811i 0.121766 + 0.0884679i
\(476\) −4.15133 + 12.7765i −0.190276 + 0.585609i
\(477\) −0.294732 0.907090i −0.0134948 0.0415328i
\(478\) 10.1462 7.37167i 0.464078 0.337172i
\(479\) −6.80572 + 4.94465i −0.310961 + 0.225927i −0.732309 0.680973i \(-0.761557\pi\)
0.421348 + 0.906899i \(0.361557\pi\)
\(480\) −36.1201 111.166i −1.64865 5.07402i
\(481\) 5.08894 15.6621i 0.232036 0.714132i
\(482\) 8.27685 + 6.01348i 0.377000 + 0.273907i
\(483\) −1.10308 −0.0501920
\(484\) 0 0
\(485\) 21.9431 0.996387
\(486\) 2.39234 + 1.73814i 0.108519 + 0.0788436i
\(487\) 7.66230 23.5821i 0.347212 1.06861i −0.613177 0.789946i \(-0.710109\pi\)
0.960389 0.278663i \(-0.0898912\pi\)
\(488\) −32.1447 98.9313i −1.45512 4.47841i
\(489\) 13.8655 10.0739i 0.627019 0.455556i
\(490\) 5.86731 4.26285i 0.265058 0.192576i
\(491\) 3.77191 + 11.6088i 0.170224 + 0.523896i 0.999383 0.0351168i \(-0.0111803\pi\)
−0.829159 + 0.559013i \(0.811180\pi\)
\(492\) 31.8138 97.9129i 1.43428 4.41425i
\(493\) 3.34051 + 2.42703i 0.150449 + 0.109308i
\(494\) 11.4028 0.513034
\(495\) 0 0
\(496\) −36.7143 −1.64852
\(497\) −6.54071 4.75210i −0.293391 0.213161i
\(498\) 19.2049 59.1065i 0.860591 2.64863i
\(499\) 6.89928 + 21.2338i 0.308854 + 0.950555i 0.978211 + 0.207614i \(0.0665698\pi\)
−0.669357 + 0.742941i \(0.733430\pi\)
\(500\) −37.0931 + 26.9497i −1.65886 + 1.20523i
\(501\) −32.0722 + 23.3019i −1.43288 + 1.04105i
\(502\) 7.26145 + 22.3484i 0.324094 + 0.997459i
\(503\) −1.40338 + 4.31916i −0.0625737 + 0.192582i −0.977456 0.211138i \(-0.932283\pi\)
0.914883 + 0.403720i \(0.132283\pi\)
\(504\) −0.835128 0.606756i −0.0371996 0.0270271i
\(505\) 36.3632 1.61814
\(506\) 0 0
\(507\) −12.8569 −0.570997
\(508\) 20.6712 + 15.0185i 0.917137 + 0.666339i
\(509\) 1.27358 3.91969i 0.0564506 0.173737i −0.918856 0.394594i \(-0.870885\pi\)
0.975306 + 0.220857i \(0.0708853\pi\)
\(510\) 9.42650 + 29.0118i 0.417412 + 1.28466i
\(511\) −8.40387 + 6.10577i −0.371765 + 0.270103i
\(512\) −69.5103 + 50.5022i −3.07195 + 2.23190i
\(513\) 2.72697 + 8.39276i 0.120399 + 0.370549i
\(514\) −2.52065 + 7.75778i −0.111181 + 0.342181i
\(515\) −6.22347 4.52162i −0.274239 0.199246i
\(516\) 71.8776 3.16423
\(517\) 0 0
\(518\) −19.0462 −0.836843
\(519\) −9.87500 7.17461i −0.433464 0.314930i
\(520\) 19.4046 59.7213i 0.850949 2.61895i
\(521\) 12.1407 + 37.3651i 0.531892 + 1.63700i 0.750271 + 0.661131i \(0.229923\pi\)
−0.218379 + 0.975864i \(0.570077\pi\)
\(522\) −0.398261 + 0.289353i −0.0174314 + 0.0126647i
\(523\) 1.73260 1.25881i 0.0757615 0.0550439i −0.549260 0.835652i \(-0.685090\pi\)
0.625021 + 0.780608i \(0.285090\pi\)
\(524\) −10.9022 33.5536i −0.476265 1.46579i
\(525\) 1.03259 3.17798i 0.0450659 0.138698i
\(526\) 35.7463 + 25.9712i 1.55861 + 1.13240i
\(527\) 5.34485 0.232825
\(528\) 0 0
\(529\) −22.6079 −0.982951
\(530\) −54.2867 39.4416i −2.35806 1.71323i
\(531\) −0.0561137 + 0.172700i −0.00243513 + 0.00749455i
\(532\) −3.00651 9.25310i −0.130349 0.401173i
\(533\) 20.0664 14.5791i 0.869172 0.631490i
\(534\) 55.6857 40.4580i 2.40976 1.75079i
\(535\) −2.80676 8.63833i −0.121347 0.373467i
\(536\) −19.8667 + 61.1433i −0.858109 + 2.64099i
\(537\) −19.8708 14.4370i −0.857488 0.623001i
\(538\) −18.7110 −0.806687
\(539\) 0 0
\(540\) 75.4007 3.24473
\(541\) 34.8251 + 25.3019i 1.49725 + 1.08782i 0.971461 + 0.237200i \(0.0762296\pi\)
0.525788 + 0.850615i \(0.323770\pi\)
\(542\) 2.95143 9.08356i 0.126775 0.390172i
\(543\) 1.72431 + 5.30687i 0.0739970 + 0.227739i
\(544\) 48.8079 35.4610i 2.09262 1.52038i
\(545\) −34.4915 + 25.0596i −1.47746 + 1.07343i
\(546\) −3.58941 11.0471i −0.153613 0.472771i
\(547\) −8.96445 + 27.5898i −0.383292 + 1.17965i 0.554419 + 0.832238i \(0.312940\pi\)
−0.937711 + 0.347415i \(0.887060\pi\)
\(548\) −42.7937 31.0914i −1.82805 1.32816i
\(549\) −1.07081 −0.0457010
\(550\) 0 0
\(551\) −2.99042 −0.127396
\(552\) 8.93659 + 6.49281i 0.380366 + 0.276352i
\(553\) 4.71325 14.5059i 0.200428 0.616853i
\(554\) −9.77837 30.0947i −0.415443 1.27860i
\(555\) −25.8129 + 18.7542i −1.09570 + 0.796070i
\(556\) −72.0156 + 52.3224i −3.05414 + 2.21897i
\(557\) −0.462045 1.42203i −0.0195775 0.0602532i 0.940791 0.338989i \(-0.110085\pi\)
−0.960368 + 0.278735i \(0.910085\pi\)
\(558\) −0.196912 + 0.606033i −0.00833595 + 0.0256554i
\(559\) 14.0097 + 10.1786i 0.592547 + 0.430511i
\(560\) −43.0741 −1.82021
\(561\) 0 0
\(562\) −61.6560 −2.60080
\(563\) −5.07312 3.68584i −0.213806 0.155339i 0.475728 0.879593i \(-0.342185\pi\)
−0.689534 + 0.724253i \(0.742185\pi\)
\(564\) 19.5633 60.2097i 0.823764 2.53529i
\(565\) −5.76444 17.7411i −0.242512 0.746374i
\(566\) 27.6211 20.0679i 1.16100 0.843518i
\(567\) 7.52275 5.46559i 0.315926 0.229533i
\(568\) 25.0181 + 76.9979i 1.04974 + 3.23076i
\(569\) 2.41705 7.43892i 0.101328 0.311856i −0.887523 0.460763i \(-0.847576\pi\)
0.988851 + 0.148908i \(0.0475757\pi\)
\(570\) −17.8732 12.9856i −0.748625 0.543908i
\(571\) −15.1753 −0.635068 −0.317534 0.948247i \(-0.602855\pi\)
−0.317534 + 0.948247i \(0.602855\pi\)
\(572\) 0 0
\(573\) 32.3342 1.35078
\(574\) −23.2078 16.8614i −0.968674 0.703783i
\(575\) −0.367064 + 1.12971i −0.0153076 + 0.0471121i
\(576\) 1.17770 + 3.62458i 0.0490708 + 0.151024i
\(577\) −19.1288 + 13.8979i −0.796343 + 0.578577i −0.909839 0.414961i \(-0.863795\pi\)
0.113496 + 0.993538i \(0.463795\pi\)
\(578\) 25.2428 18.3400i 1.04996 0.762842i
\(579\) −1.65822 5.10347i −0.0689132 0.212093i
\(580\) −7.89570 + 24.3005i −0.327851 + 1.00902i
\(581\) −10.3356 7.50926i −0.428793 0.311536i
\(582\) −40.6464 −1.68485
\(583\) 0 0
\(584\) 104.022 4.30448
\(585\) −0.522956 0.379950i −0.0216216 0.0157090i
\(586\) 1.83788 5.65642i 0.0759222 0.233665i
\(587\) −3.13766 9.65672i −0.129505 0.398576i 0.865190 0.501444i \(-0.167198\pi\)
−0.994695 + 0.102869i \(0.967198\pi\)
\(588\) −8.01806 + 5.82546i −0.330659 + 0.240238i
\(589\) −3.13162 + 2.27526i −0.129036 + 0.0937503i
\(590\) 3.94785 + 12.1502i 0.162530 + 0.500217i
\(591\) 2.69659 8.29925i 0.110923 0.341386i
\(592\) 91.5170 + 66.4910i 3.76132 + 2.73276i
\(593\) 33.7972 1.38788 0.693942 0.720031i \(-0.255873\pi\)
0.693942 + 0.720031i \(0.255873\pi\)
\(594\) 0 0
\(595\) 6.27072 0.257074
\(596\) −15.7423 11.4375i −0.644830 0.468496i
\(597\) 8.54887 26.3107i 0.349882 1.07683i
\(598\) 1.27596 + 3.92701i 0.0521780 + 0.160587i
\(599\) 14.8265 10.7721i 0.605793 0.440135i −0.242137 0.970242i \(-0.577848\pi\)
0.847931 + 0.530107i \(0.177848\pi\)
\(600\) −27.0712 + 19.6684i −1.10518 + 0.802959i
\(601\) 14.9812 + 46.1074i 0.611096 + 1.88076i 0.447650 + 0.894209i \(0.352261\pi\)
0.163446 + 0.986552i \(0.447739\pi\)
\(602\) 6.18896 19.0477i 0.252243 0.776325i
\(603\) 0.535408 + 0.388997i 0.0218035 + 0.0158412i
\(604\) −57.9421 −2.35763
\(605\) 0 0
\(606\) −67.3574 −2.73621
\(607\) 16.6635 + 12.1068i 0.676352 + 0.491398i 0.872145 0.489247i \(-0.162728\pi\)
−0.195794 + 0.980645i \(0.562728\pi\)
\(608\) −13.5018 + 41.5542i −0.547569 + 1.68524i
\(609\) 0.941336 + 2.89714i 0.0381449 + 0.117398i
\(610\) −60.9482 + 44.2815i −2.46772 + 1.79290i
\(611\) 12.3394 8.96513i 0.499201 0.362690i
\(612\) −0.427934 1.31705i −0.0172982 0.0532385i
\(613\) 5.81328 17.8914i 0.234796 0.722628i −0.762352 0.647162i \(-0.775956\pi\)
0.997148 0.0754656i \(-0.0240443\pi\)
\(614\) 71.0944 + 51.6531i 2.86914 + 2.08455i
\(615\) −48.0558 −1.93780
\(616\) 0 0
\(617\) −14.2062 −0.571919 −0.285959 0.958242i \(-0.592312\pi\)
−0.285959 + 0.958242i \(0.592312\pi\)
\(618\) 11.5281 + 8.37563i 0.463727 + 0.336917i
\(619\) −4.95155 + 15.2393i −0.199019 + 0.612519i 0.800887 + 0.598816i \(0.204362\pi\)
−0.999906 + 0.0137029i \(0.995638\pi\)
\(620\) 10.2205 + 31.4554i 0.410464 + 1.26328i
\(621\) −2.58525 + 1.87829i −0.103742 + 0.0753733i
\(622\) 24.4174 17.7403i 0.979049 0.711321i
\(623\) −4.37238 13.4568i −0.175176 0.539135i
\(624\) −21.3186 + 65.6118i −0.853426 + 2.62657i
\(625\) 24.9875 + 18.1545i 0.999501 + 0.726180i
\(626\) 20.4402 0.816956
\(627\) 0 0
\(628\) 63.7851 2.54530
\(629\) −13.3230 9.67973i −0.531223 0.385956i
\(630\) −0.231022 + 0.711014i −0.00920415 + 0.0283275i
\(631\) 4.69568 + 14.4518i 0.186932 + 0.575318i 0.999976 0.00688413i \(-0.00219131\pi\)
−0.813044 + 0.582202i \(0.802191\pi\)
\(632\) −123.567 + 89.7764i −4.91522 + 3.57111i
\(633\) −25.0125 + 18.1726i −0.994157 + 0.722297i
\(634\) −7.59234 23.3668i −0.301531 0.928016i
\(635\) 3.68556 11.3430i 0.146257 0.450132i
\(636\) 74.1863 + 53.8995i 2.94168 + 2.13725i
\(637\) −2.38776 −0.0946063
\(638\) 0 0
\(639\) 0.833407 0.0329691
\(640\) 109.557 + 79.5978i 4.33062 + 3.14638i
\(641\) −3.16012 + 9.72586i −0.124817 + 0.384149i −0.993868 0.110575i \(-0.964731\pi\)
0.869050 + 0.494724i \(0.164731\pi\)
\(642\) 5.19911 + 16.0012i 0.205192 + 0.631517i
\(643\) −16.6374 + 12.0878i −0.656116 + 0.476696i −0.865349 0.501170i \(-0.832903\pi\)
0.209233 + 0.977866i \(0.432903\pi\)
\(644\) 2.85026 2.07083i 0.112316 0.0816023i
\(645\) −10.3678 31.9089i −0.408233 1.25641i
\(646\) 3.52364 10.8447i 0.138636 0.426677i
\(647\) 20.5929 + 14.9616i 0.809590 + 0.588201i 0.913712 0.406363i \(-0.133203\pi\)
−0.104122 + 0.994565i \(0.533203\pi\)
\(648\) −93.1160 −3.65794
\(649\) 0 0
\(650\) −12.5081 −0.490609
\(651\) 3.19007 + 2.31772i 0.125029 + 0.0908387i
\(652\) −16.9152 + 52.0598i −0.662452 + 2.03882i
\(653\) −13.9834 43.0366i −0.547214 1.68415i −0.715666 0.698442i \(-0.753877\pi\)
0.168452 0.985710i \(-0.446123\pi\)
\(654\) 63.8905 46.4191i 2.49831 1.81513i
\(655\) −13.3230 + 9.67973i −0.520573 + 0.378219i
\(656\) 52.6494 + 162.038i 2.05561 + 6.32652i
\(657\) 0.330898 1.01840i 0.0129096 0.0397315i
\(658\) −14.2712 10.3686i −0.556349 0.404211i
\(659\) −50.3544 −1.96153 −0.980765 0.195191i \(-0.937467\pi\)
−0.980765 + 0.195191i \(0.937467\pi\)
\(660\) 0 0
\(661\) −23.2234 −0.903287 −0.451644 0.892198i \(-0.649162\pi\)
−0.451644 + 0.892198i \(0.649162\pi\)
\(662\) −19.1280 13.8973i −0.743430 0.540133i
\(663\) 3.10355 9.55174i 0.120532 0.370959i
\(664\) 39.5336 + 121.672i 1.53420 + 4.72178i
\(665\) −3.67410 + 2.66939i −0.142475 + 0.103514i
\(666\) 1.58839 1.15403i 0.0615488 0.0447178i
\(667\) −0.334626 1.02987i −0.0129568 0.0398769i
\(668\) 39.1266 120.419i 1.51385 4.65917i
\(669\) 31.7722 + 23.0839i 1.22838 + 0.892474i
\(670\) 46.5606 1.79879
\(671\) 0 0
\(672\) 44.5081 1.71694
\(673\) 2.60867 + 1.89531i 0.100557 + 0.0730587i 0.636927 0.770924i \(-0.280205\pi\)
−0.536371 + 0.843983i \(0.680205\pi\)
\(674\) −8.30266 + 25.5530i −0.319806 + 0.984263i
\(675\) −2.99132 9.20634i −0.115136 0.354352i
\(676\) 33.2211 24.1365i 1.27773 0.928328i
\(677\) −34.4818 + 25.0525i −1.32524 + 0.962845i −0.325392 + 0.945579i \(0.605496\pi\)
−0.999851 + 0.0172658i \(0.994504\pi\)
\(678\) 10.6778 + 32.8628i 0.410077 + 1.26209i
\(679\) −2.58199 + 7.94653i −0.0990875 + 0.304960i
\(680\) −50.8020 36.9098i −1.94817 1.41543i
\(681\) 25.1387 0.963317
\(682\) 0 0
\(683\) 15.5877 0.596445 0.298223 0.954496i \(-0.403606\pi\)
0.298223 + 0.954496i \(0.403606\pi\)
\(684\) 0.811388 + 0.589508i 0.0310242 + 0.0225404i
\(685\) −7.62986 + 23.4823i −0.291522 + 0.897212i
\(686\) 0.853368 + 2.62640i 0.0325817 + 0.100276i
\(687\) 5.52750 4.01596i 0.210887 0.153219i
\(688\) −96.2339 + 69.9180i −3.66888 + 2.66560i
\(689\) 6.82694 + 21.0112i 0.260086 + 0.800462i
\(690\) 2.47214 7.60845i 0.0941126 0.289649i
\(691\) −33.9230 24.6465i −1.29049 0.937596i −0.290675 0.956822i \(-0.593880\pi\)
−0.999815 + 0.0192259i \(0.993880\pi\)
\(692\) 38.9850 1.48199
\(693\) 0 0
\(694\) 40.9817 1.55564
\(695\) 33.6155 + 24.4231i 1.27511 + 0.926420i
\(696\) 9.42650 29.0118i 0.357311 1.09969i
\(697\) −7.66468 23.5895i −0.290320 0.893514i
\(698\) −36.2963 + 26.3708i −1.37383 + 0.998149i
\(699\) −9.52422 + 6.91975i −0.360239 + 0.261729i
\(700\) 3.29796 + 10.1501i 0.124651 + 0.383637i
\(701\) −4.76177 + 14.6552i −0.179849 + 0.553520i −0.999822 0.0188835i \(-0.993989\pi\)
0.819972 + 0.572403i \(0.193989\pi\)
\(702\) −27.2229 19.7786i −1.02746 0.746495i
\(703\) 11.9267 0.449824
\(704\) 0 0
\(705\) −29.5510 −1.11296
\(706\) −68.9464 50.0925i −2.59483 1.88526i
\(707\) −4.27875 + 13.1686i −0.160919 + 0.495257i
\(708\) −5.39499 16.6041i −0.202756 0.624020i
\(709\) −2.31401 + 1.68123i −0.0869044 + 0.0631398i −0.630389 0.776279i \(-0.717105\pi\)
0.543485 + 0.839419i \(0.317105\pi\)
\(710\) 47.4358 34.4641i 1.78023 1.29342i
\(711\) 0.485859 + 1.49532i 0.0182211 + 0.0560789i
\(712\) −43.7848 + 134.756i −1.64090 + 5.05018i
\(713\) −1.13401 0.823904i −0.0424689 0.0308554i
\(714\) −11.6156 −0.434702
\(715\) 0 0
\(716\) 78.4469 2.93170
\(717\) 6.47214 + 4.70228i 0.241706 + 0.175610i
\(718\) −10.0645 + 30.9753i −0.375603 + 1.15599i
\(719\) −10.6526 32.7853i −0.397275 1.22269i −0.927176 0.374626i \(-0.877771\pi\)
0.529901 0.848059i \(-0.322229\pi\)
\(720\) 3.59223 2.60991i 0.133875 0.0972655i
\(721\) 2.36977 1.72174i 0.0882547 0.0641208i
\(722\) −13.6621 42.0475i −0.508450 1.56485i
\(723\) −2.01666 + 6.20664i −0.0750003 + 0.230827i
\(724\) −14.4181 10.4754i −0.535844 0.389314i
\(725\) 3.28030 0.121827
\(726\) 0 0
\(727\) −40.3309 −1.49579 −0.747895 0.663817i \(-0.768935\pi\)
−0.747895 + 0.663817i \(0.768935\pi\)
\(728\) 19.3443 + 14.0545i 0.716947 + 0.520893i
\(729\) 8.03740 24.7366i 0.297682 0.916170i
\(730\) −23.2801 71.6489i −0.861637 2.65184i
\(731\) 14.0097 10.1786i 0.518168 0.376471i
\(732\) 83.2897 60.5135i 3.07847 2.23664i
\(733\) −8.88839 27.3557i −0.328300 1.01040i −0.969929 0.243389i \(-0.921741\pi\)
0.641628 0.767016i \(-0.278259\pi\)
\(734\) −3.03406 + 9.33786i −0.111989 + 0.344667i
\(735\) 3.74267 + 2.71921i 0.138051 + 0.100300i
\(736\) −15.8217 −0.583197
\(737\) 0 0
\(738\) 2.95710 0.108852
\(739\) −28.3981 20.6325i −1.04464 0.758977i −0.0734563 0.997298i \(-0.523403\pi\)
−0.971186 + 0.238321i \(0.923403\pi\)
\(740\) 31.4905 96.9179i 1.15761 3.56277i
\(741\) 2.24768 + 6.91765i 0.0825706 + 0.254126i
\(742\) 20.6712 15.0185i 0.758864 0.551347i
\(743\) 26.2673 19.0843i 0.963653 0.700135i 0.00965687 0.999953i \(-0.496926\pi\)
0.953996 + 0.299818i \(0.0969261\pi\)
\(744\) −12.2020 37.5539i −0.447347 1.37679i
\(745\) −2.80676 + 8.63833i −0.102832 + 0.316484i
\(746\) −50.2790 36.5298i −1.84085 1.33745i
\(747\) 1.31695 0.0481846
\(748\) 0 0
\(749\) 3.45856 0.126373
\(750\) −32.0722 23.3019i −1.17111 0.850863i
\(751\) −8.77095 + 26.9942i −0.320056 + 0.985033i 0.653566 + 0.756869i \(0.273272\pi\)
−0.973623 + 0.228163i \(0.926728\pi\)
\(752\) 32.3757 + 99.6423i 1.18062 + 3.63358i
\(753\) −12.1267 + 8.81053i −0.441920 + 0.321074i
\(754\) 9.22502 6.70237i 0.335955 0.244086i
\(755\) 8.35774 + 25.7225i 0.304169 + 0.936137i
\(756\) −8.87217 + 27.3057i −0.322678 + 0.993100i
\(757\) 13.7907 + 10.0195i 0.501231 + 0.364166i 0.809487 0.587138i \(-0.199745\pi\)
−0.308256 + 0.951303i \(0.599745\pi\)
\(758\) 64.7022 2.35009
\(759\) 0 0
\(760\) 45.4777 1.64965
\(761\) −22.6029 16.4220i −0.819356 0.595297i 0.0971719 0.995268i \(-0.469020\pi\)
−0.916528 + 0.399971i \(0.869020\pi\)
\(762\) −6.82694 + 21.0112i −0.247314 + 0.761155i
\(763\) −5.01660 15.4395i −0.181613 0.558948i
\(764\) −83.5485 + 60.7015i −3.02268 + 2.19610i
\(765\) −0.522956 + 0.379950i −0.0189075 + 0.0137371i
\(766\) −2.92388 8.99879i −0.105644 0.325140i
\(767\) 1.29978 4.00030i 0.0469322 0.144443i
\(768\) −97.5608 70.8821i −3.52042 2.55774i
\(769\) 6.69512 0.241432 0.120716 0.992687i \(-0.461481\pi\)
0.120716 + 0.992687i \(0.461481\pi\)
\(770\) 0 0
\(771\) −5.20324 −0.187390
\(772\) 13.8655 + 10.0739i 0.499030 + 0.362566i
\(773\) 8.62596 26.5480i 0.310254 0.954864i −0.667410 0.744691i \(-0.732597\pi\)
0.977664 0.210174i \(-0.0674030\pi\)
\(774\) 0.637981 + 1.96350i 0.0229318 + 0.0705767i
\(775\) 3.43520 2.49582i 0.123396 0.0896524i
\(776\) 67.6916 49.1808i 2.42999 1.76549i
\(777\) −3.75434 11.5547i −0.134686 0.414522i
\(778\) 6.87546 21.1605i 0.246497 0.758641i
\(779\) 14.5327 + 10.5586i 0.520687 + 0.378301i
\(780\) 62.1483 2.22527
\(781\) 0 0
\(782\) 4.12910 0.147656
\(783\) 7.13931 + 5.18701i 0.255138 + 0.185369i
\(784\) 5.06841 15.5990i 0.181015 0.557105i
\(785\) −9.20056 28.3164i −0.328382 1.01066i
\(786\) 24.6789 17.9303i 0.880267 0.639551i
\(787\) −17.6838 + 12.8480i −0.630360 + 0.457983i −0.856525 0.516106i \(-0.827381\pi\)
0.226165 + 0.974089i \(0.427381\pi\)
\(788\) 8.61258 + 26.5068i 0.306811 + 0.944266i
\(789\) −8.70962 + 26.8054i −0.310071 + 0.954299i
\(790\) 89.4906 + 65.0187i 3.18393 + 2.31326i
\(791\) 7.10308 0.252557
\(792\) 0 0
\(793\) 24.8034 0.880795
\(794\) 58.8992 + 42.7928i 2.09025 + 1.51866i
\(795\) 13.2270 40.7085i 0.469113 1.44378i
\(796\) 27.3041 + 84.0332i 0.967766 + 2.97848i
\(797\) 28.0132 20.3528i 0.992278 0.720932i 0.0318591 0.999492i \(-0.489857\pi\)
0.960419 + 0.278560i \(0.0898572\pi\)
\(798\) 6.80572 4.94465i 0.240920 0.175039i
\(799\) −4.71325 14.5059i −0.166743 0.513182i
\(800\) 14.8106 45.5824i 0.523634 1.61158i
\(801\) 1.18000 + 0.857322i 0.0416933 + 0.0302920i
\(802\) −62.4036 −2.20355
\(803\) 0 0
\(804\) −63.6281 −2.24399
\(805\) −1.33044 0.966625i −0.0468920 0.0340690i
\(806\) 4.56113 14.0377i 0.160659 0.494457i
\(807\) −3.68826 11.3513i −0.129833 0.399584i
\(808\) 112.175 81.5002i 3.94632 2.86717i
\(809\) −28.3530 + 20.5997i −0.996838 + 0.724245i −0.961408 0.275127i \(-0.911280\pi\)
−0.0354303 + 0.999372i \(0.511280\pi\)
\(810\) 20.8393 + 64.1367i 0.732217 + 2.25353i
\(811\) −5.60607 + 17.2537i −0.196856 + 0.605859i 0.803094 + 0.595852i \(0.203186\pi\)
−0.999950 + 0.0100074i \(0.996814\pi\)
\(812\) −7.87115 5.71873i −0.276223 0.200688i
\(813\) 6.09246 0.213672
\(814\) 0 0
\(815\) 25.5510 0.895013
\(816\) 55.8127 + 40.5503i 1.95384 + 1.41955i
\(817\) −3.87552 + 11.9276i −0.135587 + 0.417294i
\(818\) 7.94049 + 24.4383i 0.277633 + 0.854466i
\(819\) 0.199130 0.144677i 0.00695818 0.00505541i
\(820\) 124.171 90.2159i 4.33626 3.15047i
\(821\) −1.06875 3.28929i −0.0372998 0.114797i 0.930673 0.365852i \(-0.119222\pi\)
−0.967973 + 0.251055i \(0.919222\pi\)
\(822\) 14.1332 43.4975i 0.492951 1.51715i
\(823\) 27.1270 + 19.7089i 0.945588 + 0.687010i 0.949759 0.312982i \(-0.101328\pi\)
−0.00417155 + 0.999991i \(0.501328\pi\)
\(824\) −29.3328 −1.02186
\(825\) 0 0
\(826\) −4.86464 −0.169263
\(827\) 21.2760 + 15.4579i 0.739840 + 0.537525i 0.892661 0.450729i \(-0.148836\pi\)
−0.152821 + 0.988254i \(0.548836\pi\)
\(828\) −0.112227 + 0.345401i −0.00390017 + 0.0120035i
\(829\) −8.96208 27.5824i −0.311266 0.957978i −0.977264 0.212025i \(-0.931994\pi\)
0.665999 0.745953i \(-0.268006\pi\)
\(830\) 74.9579 54.4601i 2.60183 1.89034i
\(831\) 16.3299 11.8644i 0.566479 0.411571i
\(832\) −27.2793 83.9572i −0.945741 2.91069i
\(833\) −0.737857 + 2.27089i −0.0255652 + 0.0786817i
\(834\) −62.2677 45.2401i −2.15615 1.56654i
\(835\) −59.1020 −2.04531
\(836\) 0 0
\(837\) 11.4230 0.394835
\(838\) 30.9347 + 22.4754i 1.06862 + 0.776399i
\(839\) 9.01432 27.7432i 0.311209 0.957803i −0.666078 0.745882i \(-0.732028\pi\)
0.977287 0.211921i \(-0.0679718\pi\)
\(840\) −14.3157 44.0591i −0.493938 1.52019i
\(841\) 21.0422 15.2881i 0.725593 0.527174i
\(842\) 79.8868 58.0412i 2.75308 2.00023i
\(843\) −12.1535 37.4045i −0.418588 1.28828i
\(844\) 30.5140 93.9126i 1.05034 3.23260i
\(845\) −15.5069 11.2665i −0.533455 0.387578i
\(846\) 1.81841 0.0625183
\(847\) 0 0
\(848\) −151.755 −5.21129
\(849\) 17.6191 + 12.8010i 0.604687 + 0.439331i
\(850\) −3.86522 + 11.8959i −0.132576 + 0.408027i
\(851\) 1.33459 + 4.10746i 0.0457493 + 0.140802i
\(852\) −64.8241 + 47.0975i −2.22084 + 1.61353i
\(853\) −8.59324 + 6.24335i −0.294227 + 0.213768i −0.725099 0.688645i \(-0.758206\pi\)
0.430872 + 0.902413i \(0.358206\pi\)
\(854\) −8.86458 27.2824i −0.303340 0.933583i
\(855\) 0.144666 0.445235i 0.00494746 0.0152267i
\(856\) −28.0194 20.3573i −0.957684 0.695798i
\(857\) 37.8463 1.29281 0.646403 0.762996i \(-0.276273\pi\)
0.646403 + 0.762996i \(0.276273\pi\)
\(858\) 0 0
\(859\) −19.0785 −0.650950 −0.325475 0.945551i \(-0.605524\pi\)
−0.325475 + 0.945551i \(0.605524\pi\)
\(860\) 86.6925 + 62.9858i 2.95619 + 2.14780i
\(861\) 5.65459 17.4030i 0.192708 0.593094i
\(862\) −26.7174 82.2278i −0.909999 2.80069i
\(863\) −9.04103 + 6.56869i −0.307760 + 0.223601i −0.730935 0.682447i \(-0.760916\pi\)
0.423175 + 0.906048i \(0.360916\pi\)
\(864\) 104.312 75.7869i 3.54875 2.57832i
\(865\) −5.62332 17.3068i −0.191198 0.588448i
\(866\) 18.4395 56.7509i 0.626599 1.92847i
\(867\) 16.1020 + 11.6988i 0.546853 + 0.397312i
\(868\) −12.5939 −0.427466
\(869\) 0 0
\(870\) −22.0925 −0.749004
\(871\) −12.4018 9.01043i −0.420219 0.305307i
\(872\) −50.2360 + 154.611i −1.70121 + 5.23578i
\(873\) −0.266161 0.819158i −0.00900817 0.0277243i
\(874\) −2.41930 + 1.75772i −0.0818339 + 0.0594558i
\(875\) −6.59293 + 4.79005i −0.222882 + 0.161933i
\(876\) 31.8138 + 97.9129i 1.07489 + 3.30817i
\(877\) −1.81034 + 5.57165i −0.0611308 + 0.188141i −0.976958 0.213431i \(-0.931536\pi\)
0.915827 + 0.401572i \(0.131536\pi\)
\(878\) −34.8251 25.3019i −1.17529 0.853899i
\(879\) 3.79383 0.127963
\(880\) 0 0
\(881\) −25.9065 −0.872812 −0.436406 0.899750i \(-0.643749\pi\)
−0.436406 + 0.899750i \(0.643749\pi\)
\(882\) −0.230304 0.167326i −0.00775474 0.00563415i
\(883\) 4.14760 12.7650i 0.139578 0.429577i −0.856696 0.515822i \(-0.827487\pi\)
0.996274 + 0.0862449i \(0.0274868\pi\)
\(884\) 9.91236 + 30.5071i 0.333389 + 1.02606i
\(885\) −6.59293 + 4.79005i −0.221619 + 0.161016i
\(886\) −52.4894 + 38.1358i −1.76342 + 1.28120i
\(887\) −15.3294 47.1789i −0.514709 1.58411i −0.783810 0.621001i \(-0.786726\pi\)
0.269101 0.963112i \(-0.413274\pi\)
\(888\) −37.5958 + 115.708i −1.26163 + 3.88291i
\(889\) 3.67410 + 2.66939i 0.123225 + 0.0895284i
\(890\) 102.616 3.43971
\(891\) 0 0
\(892\) −125.432 −4.19977
\(893\) 8.93659 + 6.49281i 0.299051 + 0.217274i
\(894\) 5.19911 16.0012i 0.173884 0.535161i
\(895\) −11.3154 34.8253i −0.378233 1.16408i
\(896\) −41.7169 + 30.3091i −1.39367 + 1.01256i
\(897\) −2.13086 + 1.54816i −0.0711475 + 0.0516917i
\(898\) 19.4425 + 59.8377i 0.648803 + 1.99681i
\(899\) −1.19617 + 3.68144i −0.0398946 + 0.122783i
\(900\) −0.890043 0.646654i −0.0296681 0.0215551i
\(901\) 22.0925 0.736006
\(902\) 0 0
\(903\) 12.7755 0.425142
\(904\) −57.5453 41.8091i −1.91393 1.39055i
\(905\) −2.57066 + 7.91168i −0.0854517 + 0.262993i
\(906\) −15.4815 47.6471i −0.514338 1.58297i
\(907\) 38.7338 28.1417i 1.28613 0.934430i 0.286413 0.958106i \(-0.407537\pi\)
0.999720 + 0.0236757i \(0.00753690\pi\)
\(908\) −64.9559 + 47.1932i −2.15564 + 1.56616i
\(909\) −0.441069 1.35747i −0.0146293 0.0450245i
\(910\) 5.35123 16.4694i 0.177392 0.545955i
\(911\) −18.4554 13.4086i −0.611455 0.444248i 0.238471 0.971150i \(-0.423354\pi\)
−0.849927 + 0.526901i \(0.823354\pi\)
\(912\) −49.9634 −1.65445
\(913\) 0 0
\(914\) −40.0558 −1.32493
\(915\) −38.8780 28.2465i −1.28527 0.933800i
\(916\) −6.74329 + 20.7537i −0.222805 + 0.685722i
\(917\) −1.93776 5.96381i −0.0639904 0.196942i
\(918\) −27.2229 + 19.7786i −0.898489 + 0.652791i
\(919\) 32.3607 23.5114i 1.06748 0.775570i 0.0920227 0.995757i \(-0.470667\pi\)
0.975458 + 0.220187i \(0.0706668\pi\)
\(920\) 5.08894 + 15.6621i 0.167777 + 0.516365i
\(921\) −17.3222 + 53.3122i −0.570786 + 1.75670i
\(922\) 69.6233 + 50.5843i 2.29292 + 1.66590i
\(923\) −19.3044 −0.635413
\(924\) 0 0
\(925\) −13.0829 −0.430162
\(926\) 13.1336 + 9.54215i 0.431598 + 0.313574i
\(927\) −0.0933083 + 0.287173i −0.00306465 + 0.00943201i
\(928\) 13.5018 + 41.5542i 0.443217 + 1.36408i
\(929\) 12.9739 9.42610i 0.425660 0.309260i −0.354251 0.935150i \(-0.615264\pi\)
0.779911 + 0.625890i \(0.215264\pi\)
\(930\) −23.1357 + 16.8090i −0.758648 + 0.551190i
\(931\) −0.534377 1.64464i −0.0175135 0.0539011i
\(932\) 11.6191 35.7599i 0.380596 1.17135i
\(933\) 15.5755 + 11.3163i 0.509919 + 0.370478i
\(934\) −65.5177 −2.14380
\(935\) 0 0
\(936\) −2.46482 −0.0805652
\(937\) 20.4721 + 14.8738i 0.668794 + 0.485907i 0.869621 0.493720i \(-0.164363\pi\)
−0.200827 + 0.979627i \(0.564363\pi\)
\(938\) −5.47865 + 16.8615i −0.178884 + 0.550549i
\(939\) 4.02913 + 12.4004i 0.131486 + 0.404671i
\(940\) 76.3569 55.4766i 2.49049 1.80945i
\(941\) −16.6086 + 12.0669i −0.541425 + 0.393368i −0.824614 0.565696i \(-0.808608\pi\)
0.283189 + 0.959064i \(0.408608\pi\)
\(942\) 17.0427 + 52.4519i 0.555280 + 1.70898i
\(943\) −2.01009 + 6.18643i −0.0654576 + 0.201458i
\(944\) 23.3746 + 16.9826i 0.760777 + 0.552737i
\(945\) 13.4017 0.435958
\(946\) 0 0
\(947\) −16.6907 −0.542376 −0.271188 0.962526i \(-0.587417\pi\)
−0.271188 + 0.962526i \(0.587417\pi\)
\(948\) −122.295 88.8523i −3.97195 2.88579i
\(949\) −7.66468 + 23.5895i −0.248806 + 0.765746i
\(950\) −2.79931 8.61538i −0.0908215 0.279520i
\(951\) 12.6793 9.21202i 0.411153 0.298720i
\(952\) 19.3443 14.0545i 0.626952 0.455508i
\(953\) 17.4496 + 53.7044i 0.565249 + 1.73966i 0.667212 + 0.744868i \(0.267488\pi\)
−0.101963 + 0.994788i \(0.532512\pi\)
\(954\) −0.813918 + 2.50498i −0.0263516 + 0.0811018i
\(955\) 38.9988 + 28.3343i 1.26197 + 0.916875i
\(956\) −25.5510 −0.826379
\(957\) 0 0
\(958\) 23.2311 0.750564
\(959\) −7.60614 5.52619i −0.245615 0.178450i
\(960\) −52.8528 + 162.664i −1.70582 + 5.24997i
\(961\) −8.03116 24.7174i −0.259070 0.797334i
\(962\) −36.7923 + 26.7311i −1.18623 + 0.861847i
\(963\) −0.288432 + 0.209558i −0.00929459 + 0.00675292i
\(964\) −6.44096 19.8232i −0.207449 0.638464i
\(965\) 2.47214 7.60845i 0.0795809 0.244925i
\(966\) 2.46445 + 1.79053i 0.0792924 + 0.0576093i
\(967\) 47.3082 1.52133 0.760665 0.649145i \(-0.224873\pi\)
0.760665 + 0.649145i \(0.224873\pi\)
\(968\) 0 0
\(969\) 7.27365 0.233663
\(970\) −49.0242 35.6182i −1.57407 1.14363i
\(971\) −7.79820 + 24.0004i −0.250256 + 0.770209i 0.744471 + 0.667655i \(0.232702\pi\)
−0.994727 + 0.102555i \(0.967298\pi\)
\(972\) −1.86170 5.72972i −0.0597140 0.183781i
\(973\) −12.8001 + 9.29978i −0.410351 + 0.298137i
\(974\) −55.3973 + 40.2485i −1.77504 + 1.28964i
\(975\) −2.46557 7.58824i −0.0789614 0.243018i
\(976\) −52.6494 + 162.038i −1.68527 + 5.18671i
\(977\) −5.74652 4.17509i −0.183847 0.133573i 0.492055 0.870564i \(-0.336246\pi\)
−0.675902 + 0.736991i \(0.736246\pi\)
\(978\) −47.3295 −1.51343
\(979\) 0 0
\(980\) −14.7755 −0.471986
\(981\) 1.35386 + 0.983640i 0.0432256 + 0.0314052i
\(982\) 10.4164 32.0582i 0.332399 1.02302i
\(983\) −4.38473 13.4948i −0.139851 0.430418i 0.856462 0.516210i \(-0.172658\pi\)
−0.996313 + 0.0857927i \(0.972658\pi\)
\(984\) −148.246 + 107.707i −4.72590 + 3.43356i
\(985\) 10.5250 7.64684i 0.335354 0.243649i
\(986\) −3.52364 10.8447i −0.112216 0.345364i
\(987\) 3.47718 10.7017i 0.110680 0.340638i
\(988\) −18.7944 13.6549i −0.597929 0.434421i
\(989\) −4.54144 −0.144409
\(990\) 0 0
\(991\) 4.23407 0.134500 0.0672499 0.997736i \(-0.478578\pi\)
0.0672499 + 0.997736i \(0.478578\pi\)
\(992\) 45.7558 + 33.2435i 1.45275 + 1.05548i
\(993\) 4.66054 14.3437i 0.147898 0.455183i
\(994\) 6.89928 + 21.2338i 0.218832 + 0.673495i
\(995\) 33.3668 24.2424i 1.05780 0.768536i
\(996\) −102.435 + 74.4233i −3.24577 + 2.35819i
\(997\) −8.56122 26.3487i −0.271137 0.834473i −0.990216 0.139545i \(-0.955436\pi\)
0.719079 0.694928i \(-0.244564\pi\)
\(998\) 19.0527 58.6383i 0.603104 1.85616i
\(999\) −28.4738 20.6874i −0.900871 0.654521i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 847.2.f.t.323.1 12
11.2 odd 10 847.2.f.u.148.1 12
11.3 even 5 inner 847.2.f.t.729.1 12
11.4 even 5 inner 847.2.f.t.372.3 12
11.5 even 5 847.2.a.j.1.3 yes 3
11.6 odd 10 847.2.a.i.1.1 3
11.7 odd 10 847.2.f.u.372.1 12
11.8 odd 10 847.2.f.u.729.3 12
11.9 even 5 inner 847.2.f.t.148.3 12
11.10 odd 2 847.2.f.u.323.3 12
33.5 odd 10 7623.2.a.bz.1.1 3
33.17 even 10 7623.2.a.ce.1.3 3
77.6 even 10 5929.2.a.t.1.1 3
77.27 odd 10 5929.2.a.y.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
847.2.a.i.1.1 3 11.6 odd 10
847.2.a.j.1.3 yes 3 11.5 even 5
847.2.f.t.148.3 12 11.9 even 5 inner
847.2.f.t.323.1 12 1.1 even 1 trivial
847.2.f.t.372.3 12 11.4 even 5 inner
847.2.f.t.729.1 12 11.3 even 5 inner
847.2.f.u.148.1 12 11.2 odd 10
847.2.f.u.323.3 12 11.10 odd 2
847.2.f.u.372.1 12 11.7 odd 10
847.2.f.u.729.3 12 11.8 odd 10
5929.2.a.t.1.1 3 77.6 even 10
5929.2.a.y.1.3 3 77.27 odd 10
7623.2.a.bz.1.1 3 33.5 odd 10
7623.2.a.ce.1.3 3 33.17 even 10