Properties

Label 847.2.f.l
Level 847
Weight 2
Character orbit 847.f
Analytic conductor 6.763
Analytic rank 0
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 847.f (of order \(5\), degree \(4\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.76332905120\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 2 - \zeta_{10} + \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{2} + ( \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{3} + ( 3 - 3 \zeta_{10} - 3 \zeta_{10}^{3} ) q^{4} -\zeta_{10} q^{5} + ( 1 + \zeta_{10}^{2} ) q^{6} -\zeta_{10}^{3} q^{7} + ( -4 \zeta_{10} - \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{8} + ( 2 - \zeta_{10} + \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{9} +O(q^{10})\) \( q + ( 2 - \zeta_{10} + \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{2} + ( \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{3} + ( 3 - 3 \zeta_{10} - 3 \zeta_{10}^{3} ) q^{4} -\zeta_{10} q^{5} + ( 1 + \zeta_{10}^{2} ) q^{6} -\zeta_{10}^{3} q^{7} + ( -4 \zeta_{10} - \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{8} + ( 2 - \zeta_{10} + \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{9} + ( -2 - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{10} + 3 q^{12} + ( -2 + 2 \zeta_{10}^{3} ) q^{13} + ( -\zeta_{10} - \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{14} + ( 1 - \zeta_{10} ) q^{15} + ( -3 - 5 \zeta_{10} - 3 \zeta_{10}^{2} ) q^{16} + ( 5 + 5 \zeta_{10}^{2} ) q^{17} + ( 3 - 3 \zeta_{10} - 5 \zeta_{10}^{3} ) q^{18} + ( -2 \zeta_{10} - 3 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{19} + ( -3 + 3 \zeta_{10}^{3} ) q^{20} + ( \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{21} + ( -3 - 5 \zeta_{10}^{2} + 5 \zeta_{10}^{3} ) q^{23} + ( 4 - 3 \zeta_{10} + 3 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{24} -4 \zeta_{10}^{2} q^{25} + ( -4 + 4 \zeta_{10} + 6 \zeta_{10}^{3} ) q^{26} + ( 4 - 3 \zeta_{10} + 4 \zeta_{10}^{2} ) q^{27} + ( -3 - 3 \zeta_{10}^{2} ) q^{28} + ( 1 - \zeta_{10} + 3 \zeta_{10}^{3} ) q^{29} + ( -\zeta_{10} - \zeta_{10}^{3} ) q^{30} + ( 1 - 3 \zeta_{10} + 3 \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{31} + ( -9 - 3 \zeta_{10}^{2} + 3 \zeta_{10}^{3} ) q^{32} + ( 15 + 10 \zeta_{10}^{2} - 10 \zeta_{10}^{3} ) q^{34} + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{35} + ( -6 \zeta_{10} - 3 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{36} + ( -4 + 4 \zeta_{10} ) q^{37} + ( -7 - 5 \zeta_{10} - 7 \zeta_{10}^{2} ) q^{38} -2 \zeta_{10} q^{39} + ( -4 + 4 \zeta_{10} + 5 \zeta_{10}^{3} ) q^{40} + ( 10 \zeta_{10} - 5 \zeta_{10}^{2} + 10 \zeta_{10}^{3} ) q^{41} + ( 1 - \zeta_{10}^{3} ) q^{42} + ( 2 + 9 \zeta_{10}^{2} - 9 \zeta_{10}^{3} ) q^{43} + ( -2 - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{45} + ( -11 + 3 \zeta_{10} - 3 \zeta_{10}^{2} + 11 \zeta_{10}^{3} ) q^{46} + ( \zeta_{10} - 6 \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{47} + ( 5 - 5 \zeta_{10} - 3 \zeta_{10}^{3} ) q^{48} -\zeta_{10} q^{49} + ( -4 - 4 \zeta_{10} - 4 \zeta_{10}^{2} ) q^{50} + 5 \zeta_{10}^{3} q^{51} + ( 6 \zeta_{10} + 6 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{52} + ( 4 - 3 \zeta_{10} + 3 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{53} + ( 6 + 5 \zeta_{10}^{2} - 5 \zeta_{10}^{3} ) q^{54} + ( -5 - 4 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{56} + ( 2 + \zeta_{10} - \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{57} + ( 2 \zeta_{10} + 3 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{58} + ( -5 + 5 \zeta_{10} - 3 \zeta_{10}^{3} ) q^{59} -3 \zeta_{10} q^{60} + ( -1 + 7 \zeta_{10} - \zeta_{10}^{2} ) q^{61} + ( -1 + \zeta_{10} ) q^{62} + ( -\zeta_{10} - \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{63} + ( -5 - \zeta_{10} + \zeta_{10}^{2} + 5 \zeta_{10}^{3} ) q^{64} + ( 2 + 2 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{65} + ( 3 + 7 \zeta_{10}^{2} - 7 \zeta_{10}^{3} ) q^{67} + ( 30 - 15 \zeta_{10} + 15 \zeta_{10}^{2} - 30 \zeta_{10}^{3} ) q^{68} + ( 2 \zeta_{10} - 7 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{69} + ( -1 + \zeta_{10} + 2 \zeta_{10}^{3} ) q^{70} + ( -5 + 13 \zeta_{10} - 5 \zeta_{10}^{2} ) q^{71} + ( -9 - 5 \zeta_{10} - 9 \zeta_{10}^{2} ) q^{72} + ( 2 - 2 \zeta_{10} + 11 \zeta_{10}^{3} ) q^{73} + ( 4 \zeta_{10} + 4 \zeta_{10}^{3} ) q^{74} + ( 4 \zeta_{10} - 4 \zeta_{10}^{2} ) q^{75} + ( -21 - 15 \zeta_{10}^{2} + 15 \zeta_{10}^{3} ) q^{76} + ( -4 - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{78} + ( -8 + 7 \zeta_{10} - 7 \zeta_{10}^{2} + 8 \zeta_{10}^{3} ) q^{79} + ( 3 \zeta_{10} + 5 \zeta_{10}^{2} + 3 \zeta_{10}^{3} ) q^{80} + ( 6 - 6 \zeta_{10} - 2 \zeta_{10}^{3} ) q^{81} + ( 15 + 5 \zeta_{10} + 15 \zeta_{10}^{2} ) q^{82} + ( 6 + \zeta_{10} + 6 \zeta_{10}^{2} ) q^{83} -3 \zeta_{10}^{3} q^{84} + ( -5 \zeta_{10} - 5 \zeta_{10}^{3} ) q^{85} + ( 13 - 2 \zeta_{10} + 2 \zeta_{10}^{2} - 13 \zeta_{10}^{3} ) q^{86} + ( 1 - 4 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{87} + ( 2 - 3 \zeta_{10}^{2} + 3 \zeta_{10}^{3} ) q^{89} + ( -5 + 2 \zeta_{10} - 2 \zeta_{10}^{2} + 5 \zeta_{10}^{3} ) q^{90} + ( 2 \zeta_{10} + 2 \zeta_{10}^{3} ) q^{91} + ( -9 + 9 \zeta_{10} + 24 \zeta_{10}^{3} ) q^{92} + ( 3 - 5 \zeta_{10} + 3 \zeta_{10}^{2} ) q^{93} + ( -4 - 5 \zeta_{10} - 4 \zeta_{10}^{2} ) q^{94} + ( -2 + 2 \zeta_{10} + 5 \zeta_{10}^{3} ) q^{95} + ( -6 \zeta_{10} + 3 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{96} + ( -7 + 7 \zeta_{10} - 7 \zeta_{10}^{2} + 7 \zeta_{10}^{3} ) q^{97} + ( -2 - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 4q^{2} + 3q^{3} + 6q^{4} - q^{5} + 3q^{6} - q^{7} - 7q^{8} + 4q^{9} + O(q^{10}) \) \( 4q + 4q^{2} + 3q^{3} + 6q^{4} - q^{5} + 3q^{6} - q^{7} - 7q^{8} + 4q^{9} - 6q^{10} + 12q^{12} - 6q^{13} - q^{14} + 3q^{15} - 14q^{16} + 15q^{17} + 4q^{18} - q^{19} - 9q^{20} - 2q^{21} - 2q^{23} + 6q^{24} + 4q^{25} - 6q^{26} + 9q^{27} - 9q^{28} + 6q^{29} - 2q^{30} - 3q^{31} - 30q^{32} + 40q^{34} - q^{35} - 9q^{36} - 12q^{37} - 26q^{38} - 2q^{39} - 7q^{40} + 25q^{41} + 3q^{42} - 10q^{43} - 6q^{45} - 27q^{46} + 8q^{47} + 12q^{48} - q^{49} - 16q^{50} + 5q^{51} + 6q^{52} + 6q^{53} + 14q^{54} - 12q^{56} + 8q^{57} + q^{58} - 18q^{59} - 3q^{60} + 4q^{61} - 3q^{62} - q^{63} - 17q^{64} + 4q^{65} - 2q^{67} + 60q^{68} + 11q^{69} - q^{70} - 2q^{71} - 32q^{72} + 17q^{73} + 8q^{74} + 8q^{75} - 54q^{76} - 12q^{78} - 10q^{79} + q^{80} + 16q^{81} + 50q^{82} + 19q^{83} - 3q^{84} - 10q^{85} + 35q^{86} + 12q^{87} + 14q^{89} - 11q^{90} + 4q^{91} - 3q^{92} + 4q^{93} - 17q^{94} - q^{95} - 15q^{96} - 7q^{97} - 6q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/847\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(365\)
\(\chi(n)\) \(1\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
148.1
−0.309017 + 0.951057i
0.809017 0.587785i
−0.309017 0.951057i
0.809017 + 0.587785i
−0.118034 0.363271i 1.30902 + 0.951057i 1.50000 1.08981i 0.309017 0.951057i 0.190983 0.587785i −0.809017 + 0.587785i −1.19098 0.865300i −0.118034 0.363271i −0.381966
323.1 2.11803 + 1.53884i 0.190983 0.587785i 1.50000 + 4.61653i −0.809017 + 0.587785i 1.30902 0.951057i 0.309017 + 0.951057i −2.30902 + 7.10642i 2.11803 + 1.53884i −2.61803
372.1 −0.118034 + 0.363271i 1.30902 0.951057i 1.50000 + 1.08981i 0.309017 + 0.951057i 0.190983 + 0.587785i −0.809017 0.587785i −1.19098 + 0.865300i −0.118034 + 0.363271i −0.381966
729.1 2.11803 1.53884i 0.190983 + 0.587785i 1.50000 4.61653i −0.809017 0.587785i 1.30902 + 0.951057i 0.309017 0.951057i −2.30902 7.10642i 2.11803 1.53884i −2.61803
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 847.2.f.l 4
11.b odd 2 1 847.2.f.c 4
11.c even 5 1 847.2.a.d 2
11.c even 5 2 847.2.f.d 4
11.c even 5 1 inner 847.2.f.l 4
11.d odd 10 1 847.2.a.h yes 2
11.d odd 10 1 847.2.f.c 4
11.d odd 10 2 847.2.f.j 4
33.f even 10 1 7623.2.a.t 2
33.h odd 10 1 7623.2.a.bx 2
77.j odd 10 1 5929.2.a.i 2
77.l even 10 1 5929.2.a.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
847.2.a.d 2 11.c even 5 1
847.2.a.h yes 2 11.d odd 10 1
847.2.f.c 4 11.b odd 2 1
847.2.f.c 4 11.d odd 10 1
847.2.f.d 4 11.c even 5 2
847.2.f.j 4 11.d odd 10 2
847.2.f.l 4 1.a even 1 1 trivial
847.2.f.l 4 11.c even 5 1 inner
5929.2.a.i 2 77.j odd 10 1
5929.2.a.s 2 77.l even 10 1
7623.2.a.t 2 33.f even 10 1
7623.2.a.bx 2 33.h odd 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(847, [\chi])\):

\( T_{2}^{4} - 4 T_{2}^{3} + 6 T_{2}^{2} + T_{2} + 1 \)
\( T_{3}^{4} - 3 T_{3}^{3} + 4 T_{3}^{2} - 2 T_{3} + 1 \)
\( T_{13}^{4} + 6 T_{13}^{3} + 16 T_{13}^{2} + 16 T_{13} + 16 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 - 4 T + 4 T^{2} + 7 T^{3} - 21 T^{4} + 14 T^{5} + 16 T^{6} - 32 T^{7} + 16 T^{8} \)
$3$ \( 1 - 3 T + T^{2} + T^{3} + 4 T^{4} + 3 T^{5} + 9 T^{6} - 81 T^{7} + 81 T^{8} \)
$5$ \( 1 + T - 4 T^{2} - 9 T^{3} + 11 T^{4} - 45 T^{5} - 100 T^{6} + 125 T^{7} + 625 T^{8} \)
$7$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$11$ \( \)
$13$ \( 1 + 6 T + 3 T^{2} - 10 T^{3} + 81 T^{4} - 130 T^{5} + 507 T^{6} + 13182 T^{7} + 28561 T^{8} \)
$17$ \( 1 - 15 T + 83 T^{2} - 165 T^{3} + 64 T^{4} - 2805 T^{5} + 23987 T^{6} - 73695 T^{7} + 83521 T^{8} \)
$19$ \( 1 + T + 12 T^{2} + 53 T^{3} + 425 T^{4} + 1007 T^{5} + 4332 T^{6} + 6859 T^{7} + 130321 T^{8} \)
$23$ \( ( 1 + T + 15 T^{2} + 23 T^{3} + 529 T^{4} )^{2} \)
$29$ \( 1 - 6 T - 13 T^{2} + 192 T^{3} - 575 T^{4} + 5568 T^{5} - 10933 T^{6} - 146334 T^{7} + 707281 T^{8} \)
$31$ \( 1 + 3 T - 12 T^{2} + 131 T^{3} + 1365 T^{4} + 4061 T^{5} - 11532 T^{6} + 89373 T^{7} + 923521 T^{8} \)
$37$ \( 1 + 12 T + 27 T^{2} - 20 T^{3} + 441 T^{4} - 740 T^{5} + 36963 T^{6} + 607836 T^{7} + 1874161 T^{8} \)
$41$ \( 1 - 25 T + 334 T^{2} - 3125 T^{3} + 22431 T^{4} - 128125 T^{5} + 561454 T^{6} - 1723025 T^{7} + 2825761 T^{8} \)
$43$ \( ( 1 + 5 T - 9 T^{2} + 215 T^{3} + 1849 T^{4} )^{2} \)
$47$ \( 1 - 8 T - 13 T^{2} + 430 T^{3} - 2449 T^{4} + 20210 T^{5} - 28717 T^{6} - 830584 T^{7} + 4879681 T^{8} \)
$53$ \( 1 - 6 T - 37 T^{2} + 360 T^{3} + 121 T^{4} + 19080 T^{5} - 103933 T^{6} - 893262 T^{7} + 7890481 T^{8} \)
$59$ \( 1 + 18 T + 65 T^{2} - 642 T^{3} - 8141 T^{4} - 37878 T^{5} + 226265 T^{6} + 3696822 T^{7} + 12117361 T^{8} \)
$61$ \( 1 - 4 T - 15 T^{2} + 424 T^{3} - 271 T^{4} + 25864 T^{5} - 55815 T^{6} - 907924 T^{7} + 13845841 T^{8} \)
$67$ \( ( 1 + T + 73 T^{2} + 67 T^{3} + 4489 T^{4} )^{2} \)
$71$ \( 1 + 2 T + 133 T^{2} - 326 T^{3} + 8655 T^{4} - 23146 T^{5} + 670453 T^{6} + 715822 T^{7} + 25411681 T^{8} \)
$73$ \( 1 - 17 T + 86 T^{2} + 779 T^{3} - 15281 T^{4} + 56867 T^{5} + 458294 T^{6} - 6613289 T^{7} + 28398241 T^{8} \)
$79$ \( 1 + 10 T - 19 T^{2} - 910 T^{3} - 6929 T^{4} - 71890 T^{5} - 118579 T^{6} + 4930390 T^{7} + 38950081 T^{8} \)
$83$ \( 1 - 19 T + 68 T^{2} + 345 T^{3} - 2479 T^{4} + 28635 T^{5} + 468452 T^{6} - 10863953 T^{7} + 47458321 T^{8} \)
$89$ \( ( 1 - 7 T + 179 T^{2} - 623 T^{3} + 7921 T^{4} )^{2} \)
$97$ \( 1 + 7 T - 48 T^{2} - 1015 T^{3} - 2449 T^{4} - 98455 T^{5} - 451632 T^{6} + 6388711 T^{7} + 88529281 T^{8} \)
show more
show less