Properties

Label 847.2.f.d
Level 847
Weight 2
Character orbit 847.f
Analytic conductor 6.763
Analytic rank 0
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 847.f (of order \(5\), degree \(4\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.76332905120\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - 2 \zeta_{10} + 2 \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{2} + ( -\zeta_{10} - \zeta_{10}^{3} ) q^{3} + ( -3 + 3 \zeta_{10} ) q^{4} -\zeta_{10} q^{5} + ( -1 + \zeta_{10} - \zeta_{10}^{2} ) q^{6} -\zeta_{10}^{3} q^{7} + ( 4 \zeta_{10} - 5 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{8} + ( 1 - 2 \zeta_{10} + 2 \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{9} +O(q^{10})\) \( q + ( 1 - 2 \zeta_{10} + 2 \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{2} + ( -\zeta_{10} - \zeta_{10}^{3} ) q^{3} + ( -3 + 3 \zeta_{10} ) q^{4} -\zeta_{10} q^{5} + ( -1 + \zeta_{10} - \zeta_{10}^{2} ) q^{6} -\zeta_{10}^{3} q^{7} + ( 4 \zeta_{10} - 5 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{8} + ( 1 - 2 \zeta_{10} + 2 \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{9} + ( -1 + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{10} + 3 q^{12} + ( 2 \zeta_{10} - 2 \zeta_{10}^{2} ) q^{13} + ( \zeta_{10} - 2 \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{14} + ( -1 + \zeta_{10} + \zeta_{10}^{3} ) q^{15} + ( 3 - 8 \zeta_{10} + 3 \zeta_{10}^{2} ) q^{16} + ( -5 + 5 \zeta_{10} - 5 \zeta_{10}^{2} ) q^{17} + ( -3 + 3 \zeta_{10} - 2 \zeta_{10}^{3} ) q^{18} + ( 2 \zeta_{10} - 5 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{19} + ( 3 \zeta_{10} - 3 \zeta_{10}^{2} ) q^{20} + ( -1 - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{21} + ( 2 + 5 \zeta_{10}^{2} - 5 \zeta_{10}^{3} ) q^{23} + ( 3 - 4 \zeta_{10} + 4 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{24} -4 \zeta_{10}^{2} q^{25} + ( 4 - 4 \zeta_{10} + 2 \zeta_{10}^{3} ) q^{26} + ( -4 + \zeta_{10} - 4 \zeta_{10}^{2} ) q^{27} + ( 3 - 3 \zeta_{10} + 3 \zeta_{10}^{2} ) q^{28} + ( -1 + \zeta_{10} + 4 \zeta_{10}^{3} ) q^{29} + ( \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{30} + ( 3 - \zeta_{10} + \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{31} + ( -6 + 3 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{32} + ( 5 - 10 \zeta_{10}^{2} + 10 \zeta_{10}^{3} ) q^{34} + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{35} + ( 6 \zeta_{10} - 9 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{36} + ( 4 - 4 \zeta_{10} - 4 \zeta_{10}^{3} ) q^{37} + ( 7 - 12 \zeta_{10} + 7 \zeta_{10}^{2} ) q^{38} -2 \zeta_{10} q^{39} + ( 4 - 4 \zeta_{10} + \zeta_{10}^{3} ) q^{40} + ( -10 \zeta_{10} + 5 \zeta_{10}^{2} - 10 \zeta_{10}^{3} ) q^{41} + ( -\zeta_{10} + \zeta_{10}^{2} ) q^{42} + ( -7 - 9 \zeta_{10}^{2} + 9 \zeta_{10}^{3} ) q^{43} + ( -1 + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{45} + ( -3 + 11 \zeta_{10} - 11 \zeta_{10}^{2} + 3 \zeta_{10}^{3} ) q^{46} + ( -\zeta_{10} - 5 \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{47} + ( -5 + 5 \zeta_{10} + 2 \zeta_{10}^{3} ) q^{48} -\zeta_{10} q^{49} + ( 4 - 8 \zeta_{10} + 4 \zeta_{10}^{2} ) q^{50} + 5 \zeta_{10}^{3} q^{51} + ( -6 \zeta_{10} + 12 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{52} + ( 3 - 4 \zeta_{10} + 4 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{53} + ( 1 - 5 \zeta_{10}^{2} + 5 \zeta_{10}^{3} ) q^{54} + ( -1 + 4 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{56} + ( -1 - 2 \zeta_{10} + 2 \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{57} + ( -2 \zeta_{10} + 5 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{58} + ( 5 - 5 \zeta_{10} - 8 \zeta_{10}^{3} ) q^{59} -3 \zeta_{10} q^{60} + ( 1 + 6 \zeta_{10} + \zeta_{10}^{2} ) q^{61} + ( 1 - \zeta_{10} - \zeta_{10}^{3} ) q^{62} + ( \zeta_{10} - 2 \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{63} + ( 1 + 5 \zeta_{10} - 5 \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{64} + ( -2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{65} + ( -4 - 7 \zeta_{10}^{2} + 7 \zeta_{10}^{3} ) q^{67} + ( 15 - 30 \zeta_{10} + 30 \zeta_{10}^{2} - 15 \zeta_{10}^{3} ) q^{68} + ( -2 \zeta_{10} - 5 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{69} + ( 1 - \zeta_{10} + \zeta_{10}^{3} ) q^{70} + ( 5 + 8 \zeta_{10} + 5 \zeta_{10}^{2} ) q^{71} + ( 9 - 14 \zeta_{10} + 9 \zeta_{10}^{2} ) q^{72} + ( -2 + 2 \zeta_{10} + 13 \zeta_{10}^{3} ) q^{73} + ( -4 \zeta_{10} + 4 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{74} + ( -4 + 4 \zeta_{10}^{3} ) q^{75} + ( -6 + 15 \zeta_{10}^{2} - 15 \zeta_{10}^{3} ) q^{76} + ( -2 + 2 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{78} + ( -7 + 8 \zeta_{10} - 8 \zeta_{10}^{2} + 7 \zeta_{10}^{3} ) q^{79} + ( -3 \zeta_{10} + 8 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{80} + ( -6 + 6 \zeta_{10} + 4 \zeta_{10}^{3} ) q^{81} + ( -15 + 20 \zeta_{10} - 15 \zeta_{10}^{2} ) q^{82} + ( -6 + 7 \zeta_{10} - 6 \zeta_{10}^{2} ) q^{83} -3 \zeta_{10}^{3} q^{84} + ( 5 \zeta_{10} - 5 \zeta_{10}^{2} + 5 \zeta_{10}^{3} ) q^{85} + ( 2 - 13 \zeta_{10} + 13 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{86} + ( 5 + 4 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{87} + ( 5 + 3 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{89} + ( -2 + 5 \zeta_{10} - 5 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{90} + ( -2 \zeta_{10} + 2 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{91} + ( 9 - 9 \zeta_{10} + 15 \zeta_{10}^{3} ) q^{92} + ( -3 - 2 \zeta_{10} - 3 \zeta_{10}^{2} ) q^{93} + ( 4 - 9 \zeta_{10} + 4 \zeta_{10}^{2} ) q^{94} + ( 2 - 2 \zeta_{10} + 3 \zeta_{10}^{3} ) q^{95} + ( 6 \zeta_{10} - 3 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{96} + ( -7 + 7 \zeta_{10} - 7 \zeta_{10}^{2} + 7 \zeta_{10}^{3} ) q^{97} + ( -1 + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - q^{2} - 2q^{3} - 9q^{4} - q^{5} - 2q^{6} - q^{7} + 13q^{8} - q^{9} + O(q^{10}) \) \( 4q - q^{2} - 2q^{3} - 9q^{4} - q^{5} - 2q^{6} - q^{7} + 13q^{8} - q^{9} - 6q^{10} + 12q^{12} + 4q^{13} + 4q^{14} - 2q^{15} + q^{16} - 10q^{17} - 11q^{18} + 9q^{19} + 6q^{20} - 2q^{21} - 2q^{23} + q^{24} + 4q^{25} + 14q^{26} - 11q^{27} + 6q^{28} + q^{29} + 3q^{30} + 7q^{31} - 30q^{32} + 40q^{34} - q^{35} + 21q^{36} + 8q^{37} + 9q^{38} - 2q^{39} + 13q^{40} - 25q^{41} - 2q^{42} - 10q^{43} - 6q^{45} + 13q^{46} + 3q^{47} - 13q^{48} - q^{49} + 4q^{50} + 5q^{51} - 24q^{52} + q^{53} + 14q^{54} - 12q^{56} - 7q^{57} - 9q^{58} + 7q^{59} - 3q^{60} + 9q^{61} + 2q^{62} + 4q^{63} + 13q^{64} + 4q^{65} - 2q^{67} - 15q^{68} + q^{69} + 4q^{70} + 23q^{71} + 13q^{72} + 7q^{73} - 12q^{74} - 12q^{75} - 54q^{76} - 12q^{78} - 5q^{79} - 14q^{80} - 14q^{81} - 25q^{82} - 11q^{83} - 3q^{84} + 15q^{85} - 20q^{86} + 12q^{87} + 14q^{89} + 4q^{90} - 6q^{91} + 42q^{92} - 11q^{93} + 3q^{94} + 9q^{95} + 15q^{96} - 7q^{97} - 6q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/847\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(365\)
\(\chi(n)\) \(1\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
148.1
−0.309017 + 0.951057i
0.809017 0.587785i
−0.309017 0.951057i
0.809017 + 0.587785i
−0.809017 2.48990i −0.500000 0.363271i −3.92705 + 2.85317i 0.309017 0.951057i −0.500000 + 1.53884i −0.809017 + 0.587785i 6.04508 + 4.39201i −0.809017 2.48990i −2.61803
323.1 0.309017 + 0.224514i −0.500000 + 1.53884i −0.572949 1.76336i −0.809017 + 0.587785i −0.500000 + 0.363271i 0.309017 + 0.951057i 0.454915 1.40008i 0.309017 + 0.224514i −0.381966
372.1 −0.809017 + 2.48990i −0.500000 + 0.363271i −3.92705 2.85317i 0.309017 + 0.951057i −0.500000 1.53884i −0.809017 0.587785i 6.04508 4.39201i −0.809017 + 2.48990i −2.61803
729.1 0.309017 0.224514i −0.500000 1.53884i −0.572949 + 1.76336i −0.809017 0.587785i −0.500000 0.363271i 0.309017 0.951057i 0.454915 + 1.40008i 0.309017 0.224514i −0.381966
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 847.2.f.d 4
11.b odd 2 1 847.2.f.j 4
11.c even 5 1 847.2.a.d 2
11.c even 5 1 inner 847.2.f.d 4
11.c even 5 2 847.2.f.l 4
11.d odd 10 1 847.2.a.h yes 2
11.d odd 10 2 847.2.f.c 4
11.d odd 10 1 847.2.f.j 4
33.f even 10 1 7623.2.a.t 2
33.h odd 10 1 7623.2.a.bx 2
77.j odd 10 1 5929.2.a.i 2
77.l even 10 1 5929.2.a.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
847.2.a.d 2 11.c even 5 1
847.2.a.h yes 2 11.d odd 10 1
847.2.f.c 4 11.d odd 10 2
847.2.f.d 4 1.a even 1 1 trivial
847.2.f.d 4 11.c even 5 1 inner
847.2.f.j 4 11.b odd 2 1
847.2.f.j 4 11.d odd 10 1
847.2.f.l 4 11.c even 5 2
5929.2.a.i 2 77.j odd 10 1
5929.2.a.s 2 77.l even 10 1
7623.2.a.t 2 33.f even 10 1
7623.2.a.bx 2 33.h odd 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(847, [\chi])\):

\( T_{2}^{4} + T_{2}^{3} + 6 T_{2}^{2} - 4 T_{2} + 1 \)
\( T_{3}^{4} + 2 T_{3}^{3} + 4 T_{3}^{2} + 3 T_{3} + 1 \)
\( T_{13}^{4} - 4 T_{13}^{3} + 16 T_{13}^{2} - 24 T_{13} + 16 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + 4 T^{2} + 2 T^{3} + 9 T^{4} + 4 T^{5} + 16 T^{6} + 8 T^{7} + 16 T^{8} \)
$3$ \( 1 + 2 T + T^{2} + 6 T^{3} + 19 T^{4} + 18 T^{5} + 9 T^{6} + 54 T^{7} + 81 T^{8} \)
$5$ \( 1 + T - 4 T^{2} - 9 T^{3} + 11 T^{4} - 45 T^{5} - 100 T^{6} + 125 T^{7} + 625 T^{8} \)
$7$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$11$ \( \)
$13$ \( 1 - 4 T + 3 T^{2} - 50 T^{3} + 341 T^{4} - 650 T^{5} + 507 T^{6} - 8788 T^{7} + 28561 T^{8} \)
$17$ \( 1 + 10 T + 83 T^{2} + 460 T^{3} + 2189 T^{4} + 7820 T^{5} + 23987 T^{6} + 49130 T^{7} + 83521 T^{8} \)
$19$ \( 1 - 9 T + 12 T^{2} + 163 T^{3} - 1095 T^{4} + 3097 T^{5} + 4332 T^{6} - 61731 T^{7} + 130321 T^{8} \)
$23$ \( ( 1 + T + 15 T^{2} + 23 T^{3} + 529 T^{4} )^{2} \)
$29$ \( 1 - T - 13 T^{2} + 137 T^{3} + 440 T^{4} + 3973 T^{5} - 10933 T^{6} - 24389 T^{7} + 707281 T^{8} \)
$31$ \( 1 - 7 T - 12 T^{2} + 121 T^{3} + 125 T^{4} + 3751 T^{5} - 11532 T^{6} - 208537 T^{7} + 923521 T^{8} \)
$37$ \( 1 - 8 T + 27 T^{2} - 340 T^{3} + 3401 T^{4} - 12580 T^{5} + 36963 T^{6} - 405224 T^{7} + 1874161 T^{8} \)
$41$ \( 1 + 25 T + 334 T^{2} + 3125 T^{3} + 22431 T^{4} + 128125 T^{5} + 561454 T^{6} + 1723025 T^{7} + 2825761 T^{8} \)
$43$ \( ( 1 + 5 T - 9 T^{2} + 215 T^{3} + 1849 T^{4} )^{2} \)
$47$ \( 1 - 3 T - 13 T^{2} + 285 T^{3} + 136 T^{4} + 13395 T^{5} - 28717 T^{6} - 311469 T^{7} + 4879681 T^{8} \)
$53$ \( 1 - T - 37 T^{2} + 305 T^{3} + 1976 T^{4} + 16165 T^{5} - 103933 T^{6} - 148877 T^{7} + 7890481 T^{8} \)
$59$ \( 1 - 7 T + 65 T^{2} - 667 T^{3} + 8084 T^{4} - 39353 T^{5} + 226265 T^{6} - 1437653 T^{7} + 12117361 T^{8} \)
$61$ \( 1 - 9 T - 15 T^{2} + 629 T^{3} - 4236 T^{4} + 38369 T^{5} - 55815 T^{6} - 2042829 T^{7} + 13845841 T^{8} \)
$67$ \( ( 1 + T + 73 T^{2} + 67 T^{3} + 4489 T^{4} )^{2} \)
$71$ \( 1 - 23 T + 133 T^{2} + 1649 T^{3} - 28620 T^{4} + 117079 T^{5} + 670453 T^{6} - 8231953 T^{7} + 25411681 T^{8} \)
$73$ \( 1 - 7 T + 86 T^{2} - 611 T^{3} + 2239 T^{4} - 44603 T^{5} + 458294 T^{6} - 2723119 T^{7} + 28398241 T^{8} \)
$79$ \( 1 + 5 T - 19 T^{2} - 635 T^{3} - 1004 T^{4} - 50165 T^{5} - 118579 T^{6} + 2465195 T^{7} + 38950081 T^{8} \)
$83$ \( 1 + 11 T + 68 T^{2} + 1215 T^{3} + 17441 T^{4} + 100845 T^{5} + 468452 T^{6} + 6289657 T^{7} + 47458321 T^{8} \)
$89$ \( ( 1 - 7 T + 179 T^{2} - 623 T^{3} + 7921 T^{4} )^{2} \)
$97$ \( 1 + 7 T - 48 T^{2} - 1015 T^{3} - 2449 T^{4} - 98455 T^{5} - 451632 T^{6} + 6388711 T^{7} + 88529281 T^{8} \)
show more
show less