Properties

Label 847.2.f.c
Level $847$
Weight $2$
Character orbit 847.f
Analytic conductor $6.763$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 847.f (of order \(5\), degree \(4\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.76332905120\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Defining polynomial: \(x^{4} - x^{3} + x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -2 + \zeta_{10} - \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{2} + ( \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{3} + ( 3 - 3 \zeta_{10} - 3 \zeta_{10}^{3} ) q^{4} -\zeta_{10} q^{5} + ( -1 - \zeta_{10}^{2} ) q^{6} + \zeta_{10}^{3} q^{7} + ( 4 \zeta_{10} + \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{8} + ( 2 - \zeta_{10} + \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{9} +O(q^{10})\) \( q + ( -2 + \zeta_{10} - \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{2} + ( \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{3} + ( 3 - 3 \zeta_{10} - 3 \zeta_{10}^{3} ) q^{4} -\zeta_{10} q^{5} + ( -1 - \zeta_{10}^{2} ) q^{6} + \zeta_{10}^{3} q^{7} + ( 4 \zeta_{10} + \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{8} + ( 2 - \zeta_{10} + \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{9} + ( 2 + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{10} + 3 q^{12} + ( 2 - 2 \zeta_{10}^{3} ) q^{13} + ( -\zeta_{10} - \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{14} + ( 1 - \zeta_{10} ) q^{15} + ( -3 - 5 \zeta_{10} - 3 \zeta_{10}^{2} ) q^{16} + ( -5 - 5 \zeta_{10}^{2} ) q^{17} + ( -3 + 3 \zeta_{10} + 5 \zeta_{10}^{3} ) q^{18} + ( 2 \zeta_{10} + 3 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{19} + ( -3 + 3 \zeta_{10}^{3} ) q^{20} + ( -\zeta_{10}^{2} + \zeta_{10}^{3} ) q^{21} + ( -3 - 5 \zeta_{10}^{2} + 5 \zeta_{10}^{3} ) q^{23} + ( -4 + 3 \zeta_{10} - 3 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{24} -4 \zeta_{10}^{2} q^{25} + ( -4 + 4 \zeta_{10} + 6 \zeta_{10}^{3} ) q^{26} + ( 4 - 3 \zeta_{10} + 4 \zeta_{10}^{2} ) q^{27} + ( 3 + 3 \zeta_{10}^{2} ) q^{28} + ( -1 + \zeta_{10} - 3 \zeta_{10}^{3} ) q^{29} + ( \zeta_{10} + \zeta_{10}^{3} ) q^{30} + ( 1 - 3 \zeta_{10} + 3 \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{31} + ( 9 + 3 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{32} + ( 15 + 10 \zeta_{10}^{2} - 10 \zeta_{10}^{3} ) q^{34} + ( 1 - \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{35} + ( -6 \zeta_{10} - 3 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{36} + ( -4 + 4 \zeta_{10} ) q^{37} + ( -7 - 5 \zeta_{10} - 7 \zeta_{10}^{2} ) q^{38} + 2 \zeta_{10} q^{39} + ( 4 - 4 \zeta_{10} - 5 \zeta_{10}^{3} ) q^{40} + ( -10 \zeta_{10} + 5 \zeta_{10}^{2} - 10 \zeta_{10}^{3} ) q^{41} + ( 1 - \zeta_{10}^{3} ) q^{42} + ( -2 - 9 \zeta_{10}^{2} + 9 \zeta_{10}^{3} ) q^{43} + ( -2 - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{45} + ( 11 - 3 \zeta_{10} + 3 \zeta_{10}^{2} - 11 \zeta_{10}^{3} ) q^{46} + ( \zeta_{10} - 6 \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{47} + ( 5 - 5 \zeta_{10} - 3 \zeta_{10}^{3} ) q^{48} -\zeta_{10} q^{49} + ( 4 + 4 \zeta_{10} + 4 \zeta_{10}^{2} ) q^{50} -5 \zeta_{10}^{3} q^{51} + ( -6 \zeta_{10} - 6 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{52} + ( 4 - 3 \zeta_{10} + 3 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{53} + ( -6 - 5 \zeta_{10}^{2} + 5 \zeta_{10}^{3} ) q^{54} + ( -5 - 4 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{56} + ( -2 - \zeta_{10} + \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{57} + ( 2 \zeta_{10} + 3 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{58} + ( -5 + 5 \zeta_{10} - 3 \zeta_{10}^{3} ) q^{59} -3 \zeta_{10} q^{60} + ( 1 - 7 \zeta_{10} + \zeta_{10}^{2} ) q^{61} + ( 1 - \zeta_{10} ) q^{62} + ( \zeta_{10} + \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{63} + ( -5 - \zeta_{10} + \zeta_{10}^{2} + 5 \zeta_{10}^{3} ) q^{64} + ( -2 - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{65} + ( 3 + 7 \zeta_{10}^{2} - 7 \zeta_{10}^{3} ) q^{67} + ( -30 + 15 \zeta_{10} - 15 \zeta_{10}^{2} + 30 \zeta_{10}^{3} ) q^{68} + ( 2 \zeta_{10} - 7 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{69} + ( -1 + \zeta_{10} + 2 \zeta_{10}^{3} ) q^{70} + ( -5 + 13 \zeta_{10} - 5 \zeta_{10}^{2} ) q^{71} + ( 9 + 5 \zeta_{10} + 9 \zeta_{10}^{2} ) q^{72} + ( -2 + 2 \zeta_{10} - 11 \zeta_{10}^{3} ) q^{73} + ( -4 \zeta_{10} - 4 \zeta_{10}^{3} ) q^{74} + ( 4 \zeta_{10} - 4 \zeta_{10}^{2} ) q^{75} + ( 21 + 15 \zeta_{10}^{2} - 15 \zeta_{10}^{3} ) q^{76} + ( -4 - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{78} + ( 8 - 7 \zeta_{10} + 7 \zeta_{10}^{2} - 8 \zeta_{10}^{3} ) q^{79} + ( 3 \zeta_{10} + 5 \zeta_{10}^{2} + 3 \zeta_{10}^{3} ) q^{80} + ( 6 - 6 \zeta_{10} - 2 \zeta_{10}^{3} ) q^{81} + ( 15 + 5 \zeta_{10} + 15 \zeta_{10}^{2} ) q^{82} + ( -6 - \zeta_{10} - 6 \zeta_{10}^{2} ) q^{83} + 3 \zeta_{10}^{3} q^{84} + ( 5 \zeta_{10} + 5 \zeta_{10}^{3} ) q^{85} + ( 13 - 2 \zeta_{10} + 2 \zeta_{10}^{2} - 13 \zeta_{10}^{3} ) q^{86} + ( -1 + 4 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{87} + ( 2 - 3 \zeta_{10}^{2} + 3 \zeta_{10}^{3} ) q^{89} + ( 5 - 2 \zeta_{10} + 2 \zeta_{10}^{2} - 5 \zeta_{10}^{3} ) q^{90} + ( 2 \zeta_{10} + 2 \zeta_{10}^{3} ) q^{91} + ( -9 + 9 \zeta_{10} + 24 \zeta_{10}^{3} ) q^{92} + ( 3 - 5 \zeta_{10} + 3 \zeta_{10}^{2} ) q^{93} + ( 4 + 5 \zeta_{10} + 4 \zeta_{10}^{2} ) q^{94} + ( 2 - 2 \zeta_{10} - 5 \zeta_{10}^{3} ) q^{95} + ( 6 \zeta_{10} - 3 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{96} + ( -7 + 7 \zeta_{10} - 7 \zeta_{10}^{2} + 7 \zeta_{10}^{3} ) q^{97} + ( 2 + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 3 q^{3} + 6 q^{4} - q^{5} - 3 q^{6} + q^{7} + 7 q^{8} + 4 q^{9} + O(q^{10}) \) \( 4 q - 4 q^{2} + 3 q^{3} + 6 q^{4} - q^{5} - 3 q^{6} + q^{7} + 7 q^{8} + 4 q^{9} + 6 q^{10} + 12 q^{12} + 6 q^{13} - q^{14} + 3 q^{15} - 14 q^{16} - 15 q^{17} - 4 q^{18} + q^{19} - 9 q^{20} + 2 q^{21} - 2 q^{23} - 6 q^{24} + 4 q^{25} - 6 q^{26} + 9 q^{27} + 9 q^{28} - 6 q^{29} + 2 q^{30} - 3 q^{31} + 30 q^{32} + 40 q^{34} + q^{35} - 9 q^{36} - 12 q^{37} - 26 q^{38} + 2 q^{39} + 7 q^{40} - 25 q^{41} + 3 q^{42} + 10 q^{43} - 6 q^{45} + 27 q^{46} + 8 q^{47} + 12 q^{48} - q^{49} + 16 q^{50} - 5 q^{51} - 6 q^{52} + 6 q^{53} - 14 q^{54} - 12 q^{56} - 8 q^{57} + q^{58} - 18 q^{59} - 3 q^{60} - 4 q^{61} + 3 q^{62} + q^{63} - 17 q^{64} - 4 q^{65} - 2 q^{67} - 60 q^{68} + 11 q^{69} - q^{70} - 2 q^{71} + 32 q^{72} - 17 q^{73} - 8 q^{74} + 8 q^{75} + 54 q^{76} - 12 q^{78} + 10 q^{79} + q^{80} + 16 q^{81} + 50 q^{82} - 19 q^{83} + 3 q^{84} + 10 q^{85} + 35 q^{86} - 12 q^{87} + 14 q^{89} + 11 q^{90} + 4 q^{91} - 3 q^{92} + 4 q^{93} + 17 q^{94} + q^{95} + 15 q^{96} - 7 q^{97} + 6 q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/847\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(365\)
\(\chi(n)\) \(1\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
148.1
−0.309017 + 0.951057i
0.809017 0.587785i
−0.309017 0.951057i
0.809017 + 0.587785i
0.118034 + 0.363271i 1.30902 + 0.951057i 1.50000 1.08981i 0.309017 0.951057i −0.190983 + 0.587785i 0.809017 0.587785i 1.19098 + 0.865300i −0.118034 0.363271i 0.381966
323.1 −2.11803 1.53884i 0.190983 0.587785i 1.50000 + 4.61653i −0.809017 + 0.587785i −1.30902 + 0.951057i −0.309017 0.951057i 2.30902 7.10642i 2.11803 + 1.53884i 2.61803
372.1 0.118034 0.363271i 1.30902 0.951057i 1.50000 + 1.08981i 0.309017 + 0.951057i −0.190983 0.587785i 0.809017 + 0.587785i 1.19098 0.865300i −0.118034 + 0.363271i 0.381966
729.1 −2.11803 + 1.53884i 0.190983 + 0.587785i 1.50000 4.61653i −0.809017 0.587785i −1.30902 0.951057i −0.309017 + 0.951057i 2.30902 + 7.10642i 2.11803 1.53884i 2.61803
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 847.2.f.c 4
11.b odd 2 1 847.2.f.l 4
11.c even 5 1 847.2.a.h yes 2
11.c even 5 1 inner 847.2.f.c 4
11.c even 5 2 847.2.f.j 4
11.d odd 10 1 847.2.a.d 2
11.d odd 10 2 847.2.f.d 4
11.d odd 10 1 847.2.f.l 4
33.f even 10 1 7623.2.a.bx 2
33.h odd 10 1 7623.2.a.t 2
77.j odd 10 1 5929.2.a.s 2
77.l even 10 1 5929.2.a.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
847.2.a.d 2 11.d odd 10 1
847.2.a.h yes 2 11.c even 5 1
847.2.f.c 4 1.a even 1 1 trivial
847.2.f.c 4 11.c even 5 1 inner
847.2.f.d 4 11.d odd 10 2
847.2.f.j 4 11.c even 5 2
847.2.f.l 4 11.b odd 2 1
847.2.f.l 4 11.d odd 10 1
5929.2.a.i 2 77.l even 10 1
5929.2.a.s 2 77.j odd 10 1
7623.2.a.t 2 33.h odd 10 1
7623.2.a.bx 2 33.f even 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(847, [\chi])\):

\( T_{2}^{4} + 4 T_{2}^{3} + 6 T_{2}^{2} - T_{2} + 1 \)
\( T_{3}^{4} - 3 T_{3}^{3} + 4 T_{3}^{2} - 2 T_{3} + 1 \)
\( T_{13}^{4} - 6 T_{13}^{3} + 16 T_{13}^{2} - 16 T_{13} + 16 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T + 6 T^{2} + 4 T^{3} + T^{4} \)
$3$ \( 1 - 2 T + 4 T^{2} - 3 T^{3} + T^{4} \)
$5$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$7$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
$11$ \( T^{4} \)
$13$ \( 16 - 16 T + 16 T^{2} - 6 T^{3} + T^{4} \)
$17$ \( 625 + 250 T + 100 T^{2} + 15 T^{3} + T^{4} \)
$19$ \( 121 + 99 T + 31 T^{2} - T^{3} + T^{4} \)
$23$ \( ( -31 + T + T^{2} )^{2} \)
$29$ \( 121 + 11 T + 16 T^{2} + 6 T^{3} + T^{4} \)
$31$ \( 1 + 7 T + 19 T^{2} + 3 T^{3} + T^{4} \)
$37$ \( 256 + 128 T + 64 T^{2} + 12 T^{3} + T^{4} \)
$41$ \( 15625 + 3125 T + 375 T^{2} + 25 T^{3} + T^{4} \)
$43$ \( ( -95 - 5 T + T^{2} )^{2} \)
$47$ \( 841 - 87 T + 34 T^{2} - 8 T^{3} + T^{4} \)
$53$ \( 121 - 11 T + 16 T^{2} - 6 T^{3} + T^{4} \)
$59$ \( 1 + 7 T + 124 T^{2} + 18 T^{3} + T^{4} \)
$61$ \( 1681 + 369 T + 46 T^{2} + 4 T^{3} + T^{4} \)
$67$ \( ( -61 + T + T^{2} )^{2} \)
$71$ \( 6241 - 1817 T + 204 T^{2} + 2 T^{3} + T^{4} \)
$73$ \( 19321 + 973 T + 159 T^{2} + 17 T^{3} + T^{4} \)
$79$ \( 3025 - 275 T + 60 T^{2} - 10 T^{3} + T^{4} \)
$83$ \( 841 + 319 T + 151 T^{2} + 19 T^{3} + T^{4} \)
$89$ \( ( 1 - 7 T + T^{2} )^{2} \)
$97$ \( 2401 + 343 T + 49 T^{2} + 7 T^{3} + T^{4} \)
show more
show less