Properties

Label 847.2.f.b
Level 847
Weight 2
Character orbit 847.f
Analytic conductor 6.763
Analytic rank 0
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 847.f (of order \(5\), degree \(4\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.76332905120\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 - \zeta_{10} + \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{2} + ( 2 \zeta_{10} + 2 \zeta_{10}^{3} ) q^{3} -3 \zeta_{10}^{3} q^{4} + 2 \zeta_{10} q^{5} + ( -2 - 4 \zeta_{10} - 2 \zeta_{10}^{2} ) q^{6} + \zeta_{10}^{3} q^{7} + ( 2 \zeta_{10} - \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{8} + ( -5 + \zeta_{10} - \zeta_{10}^{2} + 5 \zeta_{10}^{3} ) q^{9} +O(q^{10})\) \( q + ( -1 - \zeta_{10} + \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{2} + ( 2 \zeta_{10} + 2 \zeta_{10}^{3} ) q^{3} -3 \zeta_{10}^{3} q^{4} + 2 \zeta_{10} q^{5} + ( -2 - 4 \zeta_{10} - 2 \zeta_{10}^{2} ) q^{6} + \zeta_{10}^{3} q^{7} + ( 2 \zeta_{10} - \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{8} + ( -5 + \zeta_{10} - \zeta_{10}^{2} + 5 \zeta_{10}^{3} ) q^{9} + ( -2 - 4 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{10} + ( 6 + 6 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{12} + ( -2 \zeta_{10} + 2 \zeta_{10}^{2} ) q^{13} + ( -2 \zeta_{10} + \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{14} + ( -4 + 4 \zeta_{10} + 4 \zeta_{10}^{3} ) q^{15} + \zeta_{10} q^{16} + ( 2 - 2 \zeta_{10} + 2 \zeta_{10}^{2} ) q^{17} + ( 6 - 6 \zeta_{10} - 13 \zeta_{10}^{3} ) q^{18} + ( 4 \zeta_{10} - 4 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{19} + ( 6 - 6 \zeta_{10} + 6 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{20} + ( -2 - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{21} + ( -4 - 4 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{23} + ( -6 + 4 \zeta_{10} - 4 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{24} -\zeta_{10}^{2} q^{25} + ( -2 + 2 \zeta_{10} - 4 \zeta_{10}^{3} ) q^{26} + ( -4 - 8 \zeta_{10} - 4 \zeta_{10}^{2} ) q^{27} + 3 \zeta_{10} q^{28} + ( 4 - 4 \zeta_{10} + 2 \zeta_{10}^{3} ) q^{29} + ( -4 \zeta_{10} - 8 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{30} + ( 6 - 4 \zeta_{10} + 4 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{31} + ( -3 - 6 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{32} + ( -4 + 2 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{34} + ( -2 + 2 \zeta_{10} - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{35} + ( 12 \zeta_{10} + 3 \zeta_{10}^{2} + 12 \zeta_{10}^{3} ) q^{36} + ( 4 - 4 \zeta_{10} + 2 \zeta_{10}^{3} ) q^{37} + ( 4 - 12 \zeta_{10} + 4 \zeta_{10}^{2} ) q^{38} -4 \zeta_{10} q^{39} + ( -4 + 4 \zeta_{10} + 2 \zeta_{10}^{3} ) q^{40} + ( -2 \zeta_{10} + 10 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{41} + ( 6 - 4 \zeta_{10} + 4 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{42} -8 q^{43} + ( -10 - 8 \zeta_{10}^{2} + 8 \zeta_{10}^{3} ) q^{45} + ( 12 - 8 \zeta_{10} + 8 \zeta_{10}^{2} - 12 \zeta_{10}^{3} ) q^{46} + ( 2 \zeta_{10} + 4 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{47} + ( -2 + 2 \zeta_{10} + 2 \zeta_{10}^{3} ) q^{48} -\zeta_{10} q^{49} + ( 2 - \zeta_{10} + 2 \zeta_{10}^{2} ) q^{50} + 4 \zeta_{10}^{3} q^{51} + ( 6 \zeta_{10} - 6 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{52} + ( -6 + 2 \zeta_{10} - 2 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{53} + ( 20 + 20 \zeta_{10}^{2} - 20 \zeta_{10}^{3} ) q^{54} + ( -1 - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{56} + ( -8 + 8 \zeta_{10} - 8 \zeta_{10}^{2} + 8 \zeta_{10}^{3} ) q^{57} + ( -8 \zeta_{10} + 14 \zeta_{10}^{2} - 8 \zeta_{10}^{3} ) q^{58} + ( 2 - 2 \zeta_{10} - 2 \zeta_{10}^{3} ) q^{59} + ( 12 + 12 \zeta_{10}^{2} ) q^{60} + ( 2 - 6 \zeta_{10} + 2 \zeta_{10}^{2} ) q^{61} + ( -10 + 10 \zeta_{10} + 10 \zeta_{10}^{3} ) q^{62} + ( -4 \zeta_{10} - \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{63} + ( 13 - 13 \zeta_{10} + 13 \zeta_{10}^{2} - 13 \zeta_{10}^{3} ) q^{64} + ( -4 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{65} + ( 8 - 4 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{67} + ( 6 \zeta_{10} - 6 \zeta_{10}^{2} ) q^{68} + ( -8 \zeta_{10} - 8 \zeta_{10}^{2} - 8 \zeta_{10}^{3} ) q^{69} + ( 4 - 4 \zeta_{10} - 2 \zeta_{10}^{3} ) q^{70} + ( -4 + 8 \zeta_{10} - 4 \zeta_{10}^{2} ) q^{71} + ( -6 - 7 \zeta_{10} - 6 \zeta_{10}^{2} ) q^{72} + ( 2 - 2 \zeta_{10} - 4 \zeta_{10}^{3} ) q^{73} + ( -8 \zeta_{10} + 14 \zeta_{10}^{2} - 8 \zeta_{10}^{3} ) q^{74} + ( 2 - 2 \zeta_{10}^{3} ) q^{75} + ( 12 \zeta_{10}^{2} - 12 \zeta_{10}^{3} ) q^{76} + ( 4 + 8 \zeta_{10}^{2} - 8 \zeta_{10}^{3} ) q^{78} + ( 4 + 4 \zeta_{10} - 4 \zeta_{10}^{2} - 4 \zeta_{10}^{3} ) q^{79} + 2 \zeta_{10}^{2} q^{80} + ( 12 - 12 \zeta_{10} - 17 \zeta_{10}^{3} ) q^{81} + ( -18 + 14 \zeta_{10} - 18 \zeta_{10}^{2} ) q^{82} + ( 12 - 4 \zeta_{10} + 12 \zeta_{10}^{2} ) q^{83} + ( -6 + 6 \zeta_{10} + 6 \zeta_{10}^{3} ) q^{84} + ( 4 \zeta_{10} - 4 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{85} + ( 8 + 8 \zeta_{10} - 8 \zeta_{10}^{2} - 8 \zeta_{10}^{3} ) q^{86} + ( 4 - 4 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{87} + 2 q^{89} + ( 26 - 14 \zeta_{10} + 14 \zeta_{10}^{2} - 26 \zeta_{10}^{3} ) q^{90} + ( -2 \zeta_{10} + 2 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{91} + ( -12 + 12 \zeta_{10} + 12 \zeta_{10}^{3} ) q^{92} + ( 12 + 4 \zeta_{10} + 12 \zeta_{10}^{2} ) q^{93} + ( -10 - 10 \zeta_{10}^{2} ) q^{94} + ( -8 + 8 \zeta_{10} ) q^{95} + ( -6 \zeta_{10} - 12 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{96} + ( 2 + 10 \zeta_{10} - 10 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{97} + ( 1 + 2 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 5q^{2} + 4q^{3} - 3q^{4} + 2q^{5} - 10q^{6} + q^{7} + 5q^{8} - 13q^{9} + O(q^{10}) \) \( 4q - 5q^{2} + 4q^{3} - 3q^{4} + 2q^{5} - 10q^{6} + q^{7} + 5q^{8} - 13q^{9} + 12q^{12} - 4q^{13} - 5q^{14} - 8q^{15} + q^{16} + 4q^{17} + 5q^{18} + 12q^{19} + 6q^{20} - 4q^{21} - 8q^{23} - 10q^{24} + q^{25} - 10q^{26} - 20q^{27} + 3q^{28} + 14q^{29} + 10q^{31} - 20q^{34} - 2q^{35} + 21q^{36} + 14q^{37} - 4q^{39} - 10q^{40} - 14q^{41} + 10q^{42} - 32q^{43} - 24q^{45} + 20q^{46} - 4q^{48} - q^{49} + 5q^{50} + 4q^{51} + 18q^{52} - 14q^{53} + 40q^{54} - 8q^{57} - 30q^{58} + 4q^{59} + 36q^{60} - 20q^{62} - 7q^{63} + 13q^{64} + 8q^{65} + 40q^{67} + 12q^{68} - 8q^{69} + 10q^{70} - 4q^{71} - 25q^{72} + 2q^{73} - 30q^{74} + 6q^{75} - 24q^{76} + 20q^{79} - 2q^{80} + 19q^{81} - 40q^{82} + 32q^{83} - 12q^{84} + 12q^{85} + 40q^{86} + 24q^{87} + 8q^{89} + 50q^{90} - 6q^{91} - 24q^{92} + 40q^{93} - 30q^{94} - 24q^{95} + 26q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/847\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(365\)
\(\chi(n)\) \(1\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
148.1
−0.309017 + 0.951057i
0.809017 0.587785i
−0.309017 0.951057i
0.809017 + 0.587785i
−0.690983 2.12663i 1.00000 + 0.726543i −2.42705 + 1.76336i −0.618034 + 1.90211i 0.854102 2.62866i 0.809017 0.587785i 1.80902 + 1.31433i −0.454915 1.40008i 4.47214
323.1 −1.80902 1.31433i 1.00000 3.07768i 0.927051 + 2.85317i 1.61803 1.17557i −5.85410 + 4.25325i −0.309017 0.951057i 0.690983 2.12663i −6.04508 4.39201i −4.47214
372.1 −0.690983 + 2.12663i 1.00000 0.726543i −2.42705 1.76336i −0.618034 1.90211i 0.854102 + 2.62866i 0.809017 + 0.587785i 1.80902 1.31433i −0.454915 + 1.40008i 4.47214
729.1 −1.80902 + 1.31433i 1.00000 + 3.07768i 0.927051 2.85317i 1.61803 + 1.17557i −5.85410 4.25325i −0.309017 + 0.951057i 0.690983 + 2.12663i −6.04508 + 4.39201i −4.47214
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 847.2.f.b 4
11.b odd 2 1 847.2.f.n 4
11.c even 5 1 847.2.a.f 2
11.c even 5 1 inner 847.2.f.b 4
11.c even 5 2 847.2.f.m 4
11.d odd 10 1 77.2.a.d 2
11.d odd 10 2 847.2.f.a 4
11.d odd 10 1 847.2.f.n 4
33.f even 10 1 693.2.a.h 2
33.h odd 10 1 7623.2.a.bl 2
44.g even 10 1 1232.2.a.m 2
55.h odd 10 1 1925.2.a.r 2
55.l even 20 2 1925.2.b.h 4
77.j odd 10 1 5929.2.a.m 2
77.l even 10 1 539.2.a.f 2
77.n even 30 2 539.2.e.j 4
77.o odd 30 2 539.2.e.i 4
88.k even 10 1 4928.2.a.bv 2
88.p odd 10 1 4928.2.a.bm 2
231.r odd 10 1 4851.2.a.y 2
308.s odd 10 1 8624.2.a.ce 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
77.2.a.d 2 11.d odd 10 1
539.2.a.f 2 77.l even 10 1
539.2.e.i 4 77.o odd 30 2
539.2.e.j 4 77.n even 30 2
693.2.a.h 2 33.f even 10 1
847.2.a.f 2 11.c even 5 1
847.2.f.a 4 11.d odd 10 2
847.2.f.b 4 1.a even 1 1 trivial
847.2.f.b 4 11.c even 5 1 inner
847.2.f.m 4 11.c even 5 2
847.2.f.n 4 11.b odd 2 1
847.2.f.n 4 11.d odd 10 1
1232.2.a.m 2 44.g even 10 1
1925.2.a.r 2 55.h odd 10 1
1925.2.b.h 4 55.l even 20 2
4851.2.a.y 2 231.r odd 10 1
4928.2.a.bm 2 88.p odd 10 1
4928.2.a.bv 2 88.k even 10 1
5929.2.a.m 2 77.j odd 10 1
7623.2.a.bl 2 33.h odd 10 1
8624.2.a.ce 2 308.s odd 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(847, [\chi])\):

\( T_{2}^{4} + 5 T_{2}^{3} + 15 T_{2}^{2} + 25 T_{2} + 25 \)
\( T_{3}^{4} - 4 T_{3}^{3} + 16 T_{3}^{2} - 24 T_{3} + 16 \)
\( T_{13}^{4} + 4 T_{13}^{3} + 16 T_{13}^{2} + 24 T_{13} + 16 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + 5 T + 13 T^{2} + 25 T^{3} + 39 T^{4} + 50 T^{5} + 52 T^{6} + 40 T^{7} + 16 T^{8} \)
$3$ \( 1 - 4 T + 13 T^{2} - 30 T^{3} + 61 T^{4} - 90 T^{5} + 117 T^{6} - 108 T^{7} + 81 T^{8} \)
$5$ \( 1 - 2 T - T^{2} + 12 T^{3} - 19 T^{4} + 60 T^{5} - 25 T^{6} - 250 T^{7} + 625 T^{8} \)
$7$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
$11$ \( \)
$13$ \( 1 + 4 T + 3 T^{2} + 50 T^{3} + 341 T^{4} + 650 T^{5} + 507 T^{6} + 8788 T^{7} + 28561 T^{8} \)
$17$ \( 1 - 4 T - T^{2} - 58 T^{3} + 509 T^{4} - 986 T^{5} - 289 T^{6} - 19652 T^{7} + 83521 T^{8} \)
$19$ \( 1 - 12 T + 45 T^{2} - 52 T^{3} + 9 T^{4} - 988 T^{5} + 16245 T^{6} - 82308 T^{7} + 130321 T^{8} \)
$23$ \( ( 1 + 4 T + 30 T^{2} + 92 T^{3} + 529 T^{4} )^{2} \)
$29$ \( 1 - 14 T + 47 T^{2} + 208 T^{3} - 2275 T^{4} + 6032 T^{5} + 39527 T^{6} - 341446 T^{7} + 707281 T^{8} \)
$31$ \( 1 - 10 T + 9 T^{2} + 310 T^{3} - 2359 T^{4} + 9610 T^{5} + 8649 T^{6} - 297910 T^{7} + 923521 T^{8} \)
$37$ \( 1 - 14 T + 39 T^{2} + 272 T^{3} - 2611 T^{4} + 10064 T^{5} + 53391 T^{6} - 709142 T^{7} + 1874161 T^{8} \)
$41$ \( 1 + 14 T + 55 T^{2} - 434 T^{3} - 5991 T^{4} - 17794 T^{5} + 92455 T^{6} + 964894 T^{7} + 2825761 T^{8} \)
$43$ \( ( 1 + 8 T + 43 T^{2} )^{4} \)
$47$ \( 1 - 7 T^{2} - 270 T^{3} + 1669 T^{4} - 12690 T^{5} - 15463 T^{6} + 4879681 T^{8} \)
$53$ \( 1 + 14 T + 23 T^{2} - 400 T^{3} - 2899 T^{4} - 21200 T^{5} + 64607 T^{6} + 2084278 T^{7} + 7890481 T^{8} \)
$59$ \( 1 - 4 T - 43 T^{2} - 142 T^{3} + 4205 T^{4} - 8378 T^{5} - 149683 T^{6} - 821516 T^{7} + 12117361 T^{8} \)
$61$ \( 1 - 21 T^{2} - 410 T^{3} + 2901 T^{4} - 25010 T^{5} - 78141 T^{6} + 13845841 T^{8} \)
$67$ \( ( 1 - 20 T + 214 T^{2} - 1340 T^{3} + 4489 T^{4} )^{2} \)
$71$ \( 1 + 4 T + 25 T^{2} + 596 T^{3} + 7569 T^{4} + 42316 T^{5} + 126025 T^{6} + 1431644 T^{7} + 25411681 T^{8} \)
$73$ \( 1 - 2 T - 49 T^{2} - 406 T^{3} + 5929 T^{4} - 29638 T^{5} - 261121 T^{6} - 778034 T^{7} + 28398241 T^{8} \)
$79$ \( 1 - 20 T + 161 T^{2} - 1600 T^{3} + 18961 T^{4} - 126400 T^{5} + 1004801 T^{6} - 9860780 T^{7} + 38950081 T^{8} \)
$83$ \( 1 - 32 T + 461 T^{2} - 4596 T^{3} + 41849 T^{4} - 381468 T^{5} + 3175829 T^{6} - 18297184 T^{7} + 47458321 T^{8} \)
$89$ \( ( 1 - 2 T + 89 T^{2} )^{4} \)
$97$ \( 1 - 26 T + 459 T^{2} - 6352 T^{3} + 72389 T^{4} - 616144 T^{5} + 4318731 T^{6} - 23729498 T^{7} + 88529281 T^{8} \)
show more
show less