Properties

Label 847.2.a.e
Level $847$
Weight $2$
Character orbit 847.a
Self dual yes
Analytic conductor $6.763$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 847.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(6.76332905120\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
Defining polynomial: \(x^{2} - x - 3\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{13})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta q^{2} -\beta q^{3} + ( 1 + \beta ) q^{4} + ( -1 + 2 \beta ) q^{5} + ( 3 + \beta ) q^{6} + q^{7} -3 q^{8} + \beta q^{9} +O(q^{10})\) \( q -\beta q^{2} -\beta q^{3} + ( 1 + \beta ) q^{4} + ( -1 + 2 \beta ) q^{5} + ( 3 + \beta ) q^{6} + q^{7} -3 q^{8} + \beta q^{9} + ( -6 - \beta ) q^{10} + ( -3 - 2 \beta ) q^{12} + ( -2 - 2 \beta ) q^{13} -\beta q^{14} + ( -6 - \beta ) q^{15} + ( -2 + \beta ) q^{16} + ( -5 + \beta ) q^{17} + ( -3 - \beta ) q^{18} + 3 q^{19} + ( 5 + 3 \beta ) q^{20} -\beta q^{21} + ( -5 + \beta ) q^{23} + 3 \beta q^{24} + 8 q^{25} + ( 6 + 4 \beta ) q^{26} + ( -3 + 2 \beta ) q^{27} + ( 1 + \beta ) q^{28} + ( -7 + \beta ) q^{29} + ( 3 + 7 \beta ) q^{30} + q^{31} + ( 3 + \beta ) q^{32} + ( -3 + 4 \beta ) q^{34} + ( -1 + 2 \beta ) q^{35} + ( 3 + 2 \beta ) q^{36} + ( 4 - 4 \beta ) q^{37} -3 \beta q^{38} + ( 6 + 4 \beta ) q^{39} + ( 3 - 6 \beta ) q^{40} -7 q^{41} + ( 3 + \beta ) q^{42} + ( -4 + \beta ) q^{43} + ( 6 + \beta ) q^{45} + ( -3 + 4 \beta ) q^{46} + ( 5 - 3 \beta ) q^{47} + ( -3 + \beta ) q^{48} + q^{49} -8 \beta q^{50} + ( -3 + 4 \beta ) q^{51} + ( -8 - 6 \beta ) q^{52} + ( -6 - 3 \beta ) q^{53} + ( -6 + \beta ) q^{54} -3 q^{56} -3 \beta q^{57} + ( -3 + 6 \beta ) q^{58} + ( 9 - \beta ) q^{59} + ( -9 - 8 \beta ) q^{60} + ( 2 + \beta ) q^{61} -\beta q^{62} + \beta q^{63} + ( 1 - 6 \beta ) q^{64} + ( -10 - 6 \beta ) q^{65} + ( -3 + 5 \beta ) q^{67} + ( -2 - 3 \beta ) q^{68} + ( -3 + 4 \beta ) q^{69} + ( -6 - \beta ) q^{70} + ( -2 - \beta ) q^{71} -3 \beta q^{72} + 5 q^{73} + 12 q^{74} -8 \beta q^{75} + ( 3 + 3 \beta ) q^{76} + ( -12 - 10 \beta ) q^{78} + ( 6 + \beta ) q^{79} + ( 8 - 3 \beta ) q^{80} + ( -6 - 2 \beta ) q^{81} + 7 \beta q^{82} -3 q^{83} + ( -3 - 2 \beta ) q^{84} + ( 11 - 9 \beta ) q^{85} + ( -3 + 3 \beta ) q^{86} + ( -3 + 6 \beta ) q^{87} + ( 6 - 9 \beta ) q^{89} + ( -3 - 7 \beta ) q^{90} + ( -2 - 2 \beta ) q^{91} + ( -2 - 3 \beta ) q^{92} -\beta q^{93} + ( 9 - 2 \beta ) q^{94} + ( -3 + 6 \beta ) q^{95} + ( -3 - 4 \beta ) q^{96} + ( 1 - 2 \beta ) q^{97} -\beta q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{3} + 3 q^{4} + 7 q^{6} + 2 q^{7} - 6 q^{8} + q^{9} + O(q^{10}) \) \( 2 q - q^{2} - q^{3} + 3 q^{4} + 7 q^{6} + 2 q^{7} - 6 q^{8} + q^{9} - 13 q^{10} - 8 q^{12} - 6 q^{13} - q^{14} - 13 q^{15} - 3 q^{16} - 9 q^{17} - 7 q^{18} + 6 q^{19} + 13 q^{20} - q^{21} - 9 q^{23} + 3 q^{24} + 16 q^{25} + 16 q^{26} - 4 q^{27} + 3 q^{28} - 13 q^{29} + 13 q^{30} + 2 q^{31} + 7 q^{32} - 2 q^{34} + 8 q^{36} + 4 q^{37} - 3 q^{38} + 16 q^{39} - 14 q^{41} + 7 q^{42} - 7 q^{43} + 13 q^{45} - 2 q^{46} + 7 q^{47} - 5 q^{48} + 2 q^{49} - 8 q^{50} - 2 q^{51} - 22 q^{52} - 15 q^{53} - 11 q^{54} - 6 q^{56} - 3 q^{57} + 17 q^{59} - 26 q^{60} + 5 q^{61} - q^{62} + q^{63} - 4 q^{64} - 26 q^{65} - q^{67} - 7 q^{68} - 2 q^{69} - 13 q^{70} - 5 q^{71} - 3 q^{72} + 10 q^{73} + 24 q^{74} - 8 q^{75} + 9 q^{76} - 34 q^{78} + 13 q^{79} + 13 q^{80} - 14 q^{81} + 7 q^{82} - 6 q^{83} - 8 q^{84} + 13 q^{85} - 3 q^{86} + 3 q^{89} - 13 q^{90} - 6 q^{91} - 7 q^{92} - q^{93} + 16 q^{94} - 10 q^{96} - q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.30278
−1.30278
−2.30278 −2.30278 3.30278 3.60555 5.30278 1.00000 −3.00000 2.30278 −8.30278
1.2 1.30278 1.30278 −0.302776 −3.60555 1.69722 1.00000 −3.00000 −1.30278 −4.69722
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \(-1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 847.2.a.e 2
3.b odd 2 1 7623.2.a.bs 2
7.b odd 2 1 5929.2.a.k 2
11.b odd 2 1 847.2.a.g yes 2
11.c even 5 4 847.2.f.r 8
11.d odd 10 4 847.2.f.o 8
33.d even 2 1 7623.2.a.bc 2
77.b even 2 1 5929.2.a.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
847.2.a.e 2 1.a even 1 1 trivial
847.2.a.g yes 2 11.b odd 2 1
847.2.f.o 8 11.d odd 10 4
847.2.f.r 8 11.c even 5 4
5929.2.a.k 2 7.b odd 2 1
5929.2.a.p 2 77.b even 2 1
7623.2.a.bc 2 33.d even 2 1
7623.2.a.bs 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(847))\):

\( T_{2}^{2} + T_{2} - 3 \)
\( T_{3}^{2} + T_{3} - 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -3 + T + T^{2} \)
$3$ \( -3 + T + T^{2} \)
$5$ \( -13 + T^{2} \)
$7$ \( ( -1 + T )^{2} \)
$11$ \( T^{2} \)
$13$ \( -4 + 6 T + T^{2} \)
$17$ \( 17 + 9 T + T^{2} \)
$19$ \( ( -3 + T )^{2} \)
$23$ \( 17 + 9 T + T^{2} \)
$29$ \( 39 + 13 T + T^{2} \)
$31$ \( ( -1 + T )^{2} \)
$37$ \( -48 - 4 T + T^{2} \)
$41$ \( ( 7 + T )^{2} \)
$43$ \( 9 + 7 T + T^{2} \)
$47$ \( -17 - 7 T + T^{2} \)
$53$ \( 27 + 15 T + T^{2} \)
$59$ \( 69 - 17 T + T^{2} \)
$61$ \( 3 - 5 T + T^{2} \)
$67$ \( -81 + T + T^{2} \)
$71$ \( 3 + 5 T + T^{2} \)
$73$ \( ( -5 + T )^{2} \)
$79$ \( 39 - 13 T + T^{2} \)
$83$ \( ( 3 + T )^{2} \)
$89$ \( -261 - 3 T + T^{2} \)
$97$ \( -13 + T^{2} \)
show more
show less