Properties

Label 847.2.a.d
Level $847$
Weight $2$
Character orbit 847.a
Self dual yes
Analytic conductor $6.763$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [847,2,Mod(1,847)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("847.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(847, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 847.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-3,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.76332905120\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 1) q^{2} + (\beta - 1) q^{3} + 3 \beta q^{4} + q^{5} - \beta q^{6} + q^{7} + ( - 4 \beta - 1) q^{8} + ( - \beta - 1) q^{9} + ( - \beta - 1) q^{10} + 3 q^{12} + 2 \beta q^{13} + ( - \beta - 1) q^{14} + \cdots + ( - \beta - 1) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - q^{3} + 3 q^{4} + 2 q^{5} - q^{6} + 2 q^{7} - 6 q^{8} - 3 q^{9} - 3 q^{10} + 6 q^{12} + 2 q^{13} - 3 q^{14} - q^{15} + 13 q^{16} - 5 q^{17} + 7 q^{18} - 8 q^{19} + 3 q^{20} - q^{21}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
−2.61803 0.618034 4.85410 1.00000 −1.61803 1.00000 −7.47214 −2.61803 −2.61803
1.2 −0.381966 −1.61803 −1.85410 1.00000 0.618034 1.00000 1.47214 −0.381966 −0.381966
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 847.2.a.d 2
3.b odd 2 1 7623.2.a.bx 2
7.b odd 2 1 5929.2.a.i 2
11.b odd 2 1 847.2.a.h yes 2
11.c even 5 2 847.2.f.d 4
11.c even 5 2 847.2.f.l 4
11.d odd 10 2 847.2.f.c 4
11.d odd 10 2 847.2.f.j 4
33.d even 2 1 7623.2.a.t 2
77.b even 2 1 5929.2.a.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
847.2.a.d 2 1.a even 1 1 trivial
847.2.a.h yes 2 11.b odd 2 1
847.2.f.c 4 11.d odd 10 2
847.2.f.d 4 11.c even 5 2
847.2.f.j 4 11.d odd 10 2
847.2.f.l 4 11.c even 5 2
5929.2.a.i 2 7.b odd 2 1
5929.2.a.s 2 77.b even 2 1
7623.2.a.t 2 33.d even 2 1
7623.2.a.bx 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(847))\):

\( T_{2}^{2} + 3T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{2} + T_{3} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 3T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 5T - 25 \) Copy content Toggle raw display
$19$ \( T^{2} + 8T + 11 \) Copy content Toggle raw display
$23$ \( T^{2} + T - 31 \) Copy content Toggle raw display
$29$ \( T^{2} + 7T + 11 \) Copy content Toggle raw display
$31$ \( T^{2} + 4T - 1 \) Copy content Toggle raw display
$37$ \( T^{2} - 4T - 16 \) Copy content Toggle raw display
$41$ \( T^{2} - 125 \) Copy content Toggle raw display
$43$ \( T^{2} + 5T - 95 \) Copy content Toggle raw display
$47$ \( T^{2} + 11T + 29 \) Copy content Toggle raw display
$53$ \( T^{2} + 7T + 11 \) Copy content Toggle raw display
$59$ \( T^{2} - 11T - 1 \) Copy content Toggle raw display
$61$ \( T^{2} + 13T + 41 \) Copy content Toggle raw display
$67$ \( T^{2} + T - 61 \) Copy content Toggle raw display
$71$ \( T^{2} + 21T + 79 \) Copy content Toggle raw display
$73$ \( T^{2} + 24T + 139 \) Copy content Toggle raw display
$79$ \( T^{2} - 15T + 55 \) Copy content Toggle raw display
$83$ \( T^{2} + 8T - 29 \) Copy content Toggle raw display
$89$ \( T^{2} - 7T + 1 \) Copy content Toggle raw display
$97$ \( (T - 7)^{2} \) Copy content Toggle raw display
show more
show less